Skip to main content
Log in

Selenium-mediated biochemical changes in Japanese quails

Tissue uptake and distribution of injected75selenium labeled sodium selenite in relation to dietary selenium status

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The tissue uptake and distribution of injected [75Se]-sodium selenite as a variance with time and as influenced by dietary selenium status was followed in the tissues of Japanese quails,Coturnix coturnix japonica. Quails maintained on a low selenium semipurified (basal) diet and basal diets supplemented with 0.2 and 2.0 ppm selenium as sodium selenite were injected intraperitonially with75Se as sodium selenite (2.8 microcuries). The injected75Se was monitored in blood, liver, kidney, heart, and testis at 24, 72, and 144 h after injection. Maximal uptake of the injected75Se was observed in tissues of quails maintained on basal diet. The uptake of75Se in tissues in general was determined by the dietary Se status. Among the organs studied, kidney had the maximal level of75Se, 0.2 ppm (μg/g wet tissue) followed by liver, testis, and heart, but testis had the maximal level when the level per milligram of protein was considered, about 3.0 ng/mg protein, followed by liver, kidney, and heart. About 10–20% of the tissue75Se was located in the mitochondria and 50–60% in the post-mitochondrial supernatant fractions in all dietary Se levels. Significant incorporation of75Se in the mitochondrial membrane was observed. The percent distribution ratio between the membrane and matrix fractions of the mitochondria remained constant at all dietary Se levels which, in liver was 65∶35, in kidney 55∶45, and in testis 75∶25. However, in heart mitochondria, the distribution of75Se between membrane and matrix varied with dietary Se status, the ratio being 82∶18 in the basal group, and 72∶28 and 41∶59 in the 0.2 and 2.0 ppm Se-supplemented groups, respectively. This is indicative of a preferential uptake of75Se in the mitochondrial membrane in conditions of deficiency. About 40–60% of the mitochondrial membrane-associated75Se was released upon Triton treatment in all the organs. Of the membrane-bound75Se, about 10–15% was acid-labile in liver and kidney and 25% in the heart tissue. Possibilities of tissue specific roles, especially in the heart mitochondrial membrane-related processes, are indicated for selenium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Flohe, (1982),Free Radicals in Biology, Vol. 5, Academic, NY, pp. 223–249.

    Google Scholar 

  2. L. Flohe, (1979),Oxygen Free Radicals and Tissue Damage, Ciba Found. Symp., no. 65, Excerta Med. Found., Amsterdam, p. 95.

    Google Scholar 

  3. A. Wendel, (1980),Enzymatic Basis of Detoxication, vol. 1, Academic, NY, pp. 333–353.

    Google Scholar 

  4. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, (1973),Science,179, 588.

    Article  PubMed  CAS  Google Scholar 

  5. N. D. Pedersen, P. D. Whanger, P. H. Weswig, and O. H. Muth (1972),Bioinorg. Chem. 2, 33.

    Article  Google Scholar 

  6. P. D. Whanger, N. D. Pedersen, and P. H. Weswig, (1973),Biochem. Biophys. Res. Commun. 53 1031.

    Article  PubMed  CAS  Google Scholar 

  7. R. F. Burk, and P. E. Gregory, (1982),Arch. Biochem. Biophys. 213, 73.

    Article  PubMed  CAS  Google Scholar 

  8. N. Vasanthy, R. Padma Bai, M. Babu, and K. Lalitha, (1986),Biol. Trace Elem. Res. 10, 79.

    Google Scholar 

  9. M. Babu, R. Padma Bai, N. Vasanthy, K. Lalitha, and K. T. Joseph, (1986),Biol. Trace Elem. Res. 10, 317.

    CAS  Google Scholar 

  10. B. J. Davis, (1964),Ann. NY Acad. Sci.,121, 404.

    Article  PubMed  CAS  Google Scholar 

  11. P. J. Blackshear, (1984),Meth. Enzymol. 104, 237.

    Article  PubMed  CAS  Google Scholar 

  12. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randals, (1951),J. Biol. Chem. 193, 265.

    PubMed  CAS  Google Scholar 

  13. E. D. Heimann, J. S. Morris, and W. E. Loch, (1985)Nutr. Rep. Inter.,32, 1153.

    CAS  Google Scholar 

  14. D. Behne, and T. Hofer, (1982),J. Nutr. 112, 1082.

    Google Scholar 

  15. W. G. Hoekstra, D. Hafeman, S. H. Oh, and H. E. Ganther, (1973),Fed. Proc. 32, 385.

    Google Scholar 

  16. H. I. Calvin, (1978),J. Exp. Zool.,204, 445.

    Article  PubMed  CAS  Google Scholar 

  17. A. S. M. Wu, J. E. Oldfield, L. R. Shull, and P. F. Cheeke, (1979),Biol. Reprod. 20, 793.

    Article  PubMed  CAS  Google Scholar 

  18. E. Wallace, H. I. Calvin, and G. W. Cooper, (1983),Gamete Research,4, 377.

    Article  Google Scholar 

  19. J. C. Hansen, and P. Kristensen, (1979),J. Nutr.,109, 1223.

    PubMed  CAS  Google Scholar 

  20. F. H. Stults, J. W. Forstrom, D. T. Y. Chiu, and A. L. Tappel, (1977),Arch. Biochem. Biophys. 183, 490.

    Article  PubMed  CAS  Google Scholar 

  21. R. D. Lawrence, and R. F. Burk, (1975),Biochem. Biophys. Res. Commun.,71, 952.

    Article  Google Scholar 

  22. J. J. Zakowski, and A. L. Tappel, (1976),Biochim. Biophys. Acta. 445, 558.

    Google Scholar 

  23. C. P. J. Caygill, and A. T. Diplock, (1973),FEBS Lett.,33, 172.

    Article  PubMed  CAS  Google Scholar 

  24. C. P. J. Caygill, A. T. Diplock, and E. H. Jeffery, (1973),Biochem. J. 136, 851.

    PubMed  CAS  Google Scholar 

  25. N. Haugaard, N. H. Lee, R. Kostrzewa, R. S. Horn, and E. S. Haugaard, (1969),Biochim. Biophys. Acta. 172, 198.

    Article  PubMed  CAS  Google Scholar 

  26. S. Minakami, F. Schindler, and R. W. Estabrook, (1964),J. Biol. Chem. 239, 2042.

    PubMed  CAS  Google Scholar 

  27. N. Vasanthy, K. Lalitha, and B. Chance,Arch. Biochem. Biophys. (Communicated).

  28. J. A. Fee, and G. Palmer, (1971),Biochim. Biophys. Acta.,245, 175.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayanaswami, V., Lalitha, K. Selenium-mediated biochemical changes in Japanese quails. Biol Trace Elem Res 14, 87–99 (1987). https://doi.org/10.1007/BF02795599

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02795599

Index Entries

Navigation