Skip to main content
Log in

Phenolsulfonphthalein (phenol red) metabolism in primary monolayer cultures of adult rat hepatocytes

  • Published:
In Vitro - Plant Aims and scope Submit manuscript

Summary

The sulfonic acid dye, phenolsulfonphthalein (PSP or phenol red), has been incorporated as a pH indicator in many tissue culture media formulations since the emergence of tissue culture methodologies. The present study was designed to examine the pathway, time course, and degree of metabolism of this anionic dye in monolayer cultures of adult rat hepatocytes. Thin layer chromatographic studies coupled with β-glucuronidase studies show that glucuronidation is the major metabolic pathway for PSP in vitro. About 20% of the dye is metabolized in the first 24 h, but this functional activity is decreased by approximately half at 48 h, and even further at 72 h of culture. This metabolic activity was not affected by continuous exposure to the dye. The effect of PSP concentration on its rate of metabolism by the adult rat hepatocyte in culture seemed to be biphasic, and at concentrations of less than 100µM there was indication of a saturable process. Although PSP seemed not to be toxic to hepatocyte cultures, it is partially metabolized by these cells (as opposed to no observed metabolism in human fibroblasts or HeLa cells). Therefore, its incorporation into tissue culture media formulations for use in hepatocyte cultures should be avoided, especially when studying the mechanism(s) of glucuronidation or metabolic pathways thought to be affected by this anionic dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morton, H. J. A survey of commercially available tissue culture media. In Vitro 6: 89–108; 1970.

    Article  PubMed  CAS  Google Scholar 

  2. Bissell, D. M.; Hammaker, L. E.; Meyer, U. A. Parenchymal cells from adult rat liver in nonproliferating monolayer culture. J. Cell Biol. 59: 722–734; 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Pariza, M. W.; Yager, J. D.; Goldfarb, S.; Gurr, J. A.; Yanag, S.; Grossman, S. H.; Becker, T. C.; Barber, T. A.; Potter, V. R. Biochemical autoradiographic and electron microscopic studies of adult rat liver parenchymal cells in primary culture. Gerchensen, L. E.; Thompson, E. B. eds. Gene expression and carcinogenesis in cultured liver. New York: Academic Press; 1975: 137–167.

    Google Scholar 

  4. Bonney, R. J.; Becker, J. E.; Walker, P. R.; Potter, V. R. Hormone responsive adult liver parenchymal cells in primary culture. In Vitro 8: 407; 1973.

    Google Scholar 

  5. Leffert, H. L.; Paul, D. Studies in primary cultures of differentiated fetal liver cells. J. Cell Biol. 52: 559–568; 1972.

    Article  PubMed  CAS  Google Scholar 

  6. Williams, G. M.; Bermudez, E.; Scaramuzzino, D. Rat hepatocyte primary cell cultures: III. Improved dissociation and attachment techniques and the enhancement of survival by culture medium. In Vitro 13: 809–817; 1977.

    Article  PubMed  CAS  Google Scholar 

  7. Decad, G. M.; Hsieh, D. P. H.; Byard, J. L. Maintenance of cytochrome P-450 and metabolism of alflatoxin B1 in primary hepatocyte cultures. Biochem. Biophys. Res. Commun. 78: 279–287; 1977.

    Article  PubMed  CAS  Google Scholar 

  8. Bissell, D. M. Phenotypic stability of adult rat hepatocytes in primary monolayer culture. Ann. NY Acad. Sci. 349: 85–98; 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Sperber, I. The biliary excretion and choleretic effect of phenolsulfonphthalein. Acta Physiol. Scand. Suppl. 145. 42: 129–130; 1957.

    Google Scholar 

  10. Kim, J. H.; Hong, S. K. Urinary and biliary excretions of various phenol red derivatives in the anesthetized dog. Am. J. Physiol. 202: 174–178; 1962.

    PubMed  CAS  Google Scholar 

  11. Dhumeaux, M. M. D.; Berthelot, P.; Fauvert, R. Glucuronide formation of phthalein dyes by the liver. Biologie Gastro-Enterol. 1: 37–47; 1968.

    CAS  Google Scholar 

  12. Jauregui, H. O.; Hayner, N. T.; Driscoll, J. L.; Williams-Holland, R.; Lipsky, M.; Galletti, P. M. Trypan blue uptake and lactate dehydrogenase in adult rat hepatocytes—freshly isolated cells, cell suspensions, and primary monolayer cultures. In Vitro 17: 1100–1110; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Trinder, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 6: 24–27; 1969.

    CAS  Google Scholar 

  14. Stege, T. E.; Loose, L. D.; Di Luzio, N. R. Comparative uptake of sulfobromophthalein by isolated Kupffer and parenchymal cells. Proc. Soc. Exp. Biol. Med. 149: 455–461; 1975.

    PubMed  CAS  Google Scholar 

  15. Acosta, D.; Anuforo, D. C.; Smith, R. V. Primary monolayer cultures of postnatal rat liver cells with extended differentiated functions. In Vitro 14: 428–436; 1978.

    Article  PubMed  CAS  Google Scholar 

  16. van Bezooijen, C. F.; Grell, T.; Knook, D. L. Bromosulfophthalein uptake by isolated liver parenchymal cells. Biochem. Biophys. Res. Commun. 69: 354–361; 1976.

    Article  PubMed  Google Scholar 

  17. Schwenk, M.; Burr, R.; Schwarz, L.; Pfaff, E. Uptake of bromosulfophthalein by isolated liver cells. Eur. J. Biochem. 64: 189–197; 1976.

    Article  CAS  Google Scholar 

  18. Schwarz, L. R.; Summer, K. H.; Schwenk, M. Transport and metabolism of bromosulfophthalein by isolated rat liver cells. Eur. J. Biochem. 94: 617–622; 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Blom, A.; Keulemans, K.; Meijer, D. K. Transport of dibromosulphthalein by isolated rat hepatocytes. Biochem. Pharmacol. 30: 1809–1816; 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Minder, E.; Paumgartner, G. Disparate Na ± requirement of taurocholate and indocyanine green uptake by isolated hepatocytes. Experientia 35: 888–890; 1979.

    Article  PubMed  CAS  Google Scholar 

  21. Sperber, I. Secretion of organic anions in the formation of urine and bile. Pharmacol. Rev. 11: 109–134; 1959.

    PubMed  CAS  Google Scholar 

  22. Sperber, I. Biliary secretion of organic anions and its influence on bile flow. Taylor, W. ed. The biliary system. Philadelphia: Davis; 1965: 457–467.

    Google Scholar 

  23. Homan, E. R.; Guarino, A. M. Biliary excretion of phenol red by Wistar and Gunn rats. Proc. Soc. Exp. Biol. Med. 146: 46–49; 1974.

    PubMed  CAS  Google Scholar 

  24. Hart, L. G.; Schanker, L. S. The chemical forms in which phenol red is secreted into the bile of rats. Proc. Soc. Exp. Biol. Med. 123: 433–435; 1966.

    PubMed  CAS  Google Scholar 

  25. Despopoulos, A. Congruence of renal and hepatic excretory functions: sulfonic acid dyes. Am. J. Physiol. 220: 1755–1758; 1971.

    PubMed  CAS  Google Scholar 

  26. Gardiner, T. H.; Schanker, L. S. Active transport of phenol red by rat lung slices. J. Pharmacol. Exp. Ther. 196: 455–462; 1976.

    PubMed  CAS  Google Scholar 

  27. Goresky, C. A. The hepatic uptake and excretion of sulfobromophthalein and bilirubin. Canad. Med. Assoc. J. 92: 851–857; 1965.

    PubMed  CAS  Google Scholar 

  28. Paumgartner, G.; Reichen, J. Kinetics of hepatic uptake of unconjugated bilirubin. Clin. Sci. Mol. Med. 51: 169–176; 1976.

    PubMed  CAS  Google Scholar 

  29. Paumgartner, G.; Probst, P.; Krames, R.; Leevy, C. M. Kinetics of indocyanin green removal from the blood. Ann. NY Acad. Sci. 170: 134–147; 1970.

    Article  CAS  Google Scholar 

  30. Berk, P. D.; Wolkoff, A. W.; Scharschmidt, B. F.; Shupeck, M.; Ketley, J. N.; Waggoner, J. G.; Jakoby, W. B. Recent studies on the metabolism of conjugated bilirubin. Bianchi, L.; Gerok, W.; Sickinger, K. eds. Liver and bile. Lancaster: MTP Press; 1977: 177–185.

    Google Scholar 

  31. Jacobsen, J. Binding of bilirubin to human serum: Determination of the dissociation constants. FEBS Lett. 55: 112–114; 1969.

    Article  Google Scholar 

  32. Plotz, P. H.; Berk, P. D.; Scharschmidt, B. F.; Gordon, J. K.; Vergalla, J. Removing substances from blood by affinity chromatography: I. Removing bilirubin and other albumin-bound substances from plasma and blood with albumin-conjugated agarose beads. J. Clin. Invest. 53: 778–785; 1974.

    PubMed  CAS  Google Scholar 

  33. Mender, E.; Paumgartner, G. Disparate Na± requirement of bile acids and indocyanine green uptake by isolated hepatocytes. Gastroenterology 73: A-37: 1235; 1977.

    Google Scholar 

  34. Levi, A. J.; Gatmaitan, Z.; Arias, I. M. Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin sulfobromophthalein and other anions. J. Clin. Invest. 48: 2156–2167; 1969.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported in part by NIH Grants HL-11945-11 and 1 R01 AM 26520-01A1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driscoll, J.L., Hayner, N.T., Williams-Holland, R. et al. Phenolsulfonphthalein (phenol red) metabolism in primary monolayer cultures of adult rat hepatocytes. In Vitro Cell.Dev.Biol.-Plant 18, 835–842 (1982). https://doi.org/10.1007/BF02796324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02796324

Key words

Navigation