Skip to main content
Log in

Regeneration of nicotinamide cofactors for use in organic synthesis

  • Review
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The high cost of nicotinamide cofactors requires that they be regeneratedin situ when used in preparative enzymatic synthesis. Numerous strategies have been tested forin situ regeneration of reduced and oxidized cofactors. Regeneration of reduced cofactors is relatively straightforward; regeneration of oxidized cofactors is more difficult. This review summarizes methods for preparation of the cofactors, factors influencing their stability and lifetime in solution, methods for theirin situ regeneration, and process considerations relevant to their use in synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitesides, G. M., and Wong, C.-H. (1985),Angw. Chem. Int. Ed. Eng. 24, 617.

    Google Scholar 

  2. Jones, J. B. (1986),Tetrahedron. 42, 3351.

    CAS  Google Scholar 

  3. Whitesides, G. M., and Wong, C.-H. (1983),Aldrichim. Acta 16, 27.

    CAS  Google Scholar 

  4. Findeis, M. A., and Whitesides, G. M. (1984),Anim. Rep. Med. Chem. 19, 263.

    CAS  Google Scholar 

  5. Whitesides, G. M. (1985), inEnzymes in Organic Synthesis (Ciba Found. Symp. III), Pitman, London, p. 76.

    Google Scholar 

  6. Suckling, C. J., and Suckling, K. E. (1974),Chem. Soc. Rev. 3, 387.

    CAS  Google Scholar 

  7. Suckling, C. J., and Wood, H. C. S. (1979),Chem. Br. 15, 243.

    CAS  Google Scholar 

  8. Jones, J. B., Sih, C. J., and Perlman, D. (eds.) (1976),Applications of Biochemical Systems in Organic Chemistry, Wiley, New York, NY.

    Google Scholar 

  9. Chibata, I. (1978),Immobilized Enzymes — Research and Development, Halsted, New York, NY.

    Google Scholar 

  10. Jones, J. B., inAsymetric Synthesis, vol. 5, Morrison, J. D., ed., Academic, New York, NY, pp. 309-344.

  11. Bergmeyer, H. U. (ed.) (1974),Methods of Enzymatic Analysis, 2nd Ed., Academic, New York/Verlag Chemie, Weinheim; (b) Bergmeyer, H. U., Bergmeyer, J., and Grassl, M. (eds.) (1984–1987)Methods of Enzymatic Analysis, 3rd Ed., Academic, New York/Verlag Chemie, Weinheim.

    Google Scholar 

  12. Boyer, P. D. (ed.) (1975),The Enzymes, vol. 2, 3rd Ed., Academic, New York, NY.

    Google Scholar 

  13. Bergmeyer, H. U., Bergmeyer, J., and Grassl, M. (eds.) (1984–1987)Methods of Enzymatic Analysis, 3rd Ed., Academic, New York/Verlag Chemie, Weinheim, pp. 126–328.

    Google Scholar 

  14. Perry, L. J., and Wetzel, R. (1984),Science 226, 555.

    CAS  Google Scholar 

  15. Fersht, A. R., Shi, J.-P., Wilkinson, A. J., Blow, D. M., Carter, P., Waye, M. M. Y., and Winter, G. P. (1984);Ang. Chem. 96, 455;Ang. Chem. Int. Ed. Eng. 23, 467.

    CAS  Google Scholar 

  16. Winter, G. P., and Fersht, A. R. (1984)Trends Biotechnol. 2, 115.

    CAS  Google Scholar 

  17. Kaiser, E. T., and Lawrence, D. S. (1984),Science 226, 505.

    CAS  Google Scholar 

  18. Hayenga, K. J., Lawlis, V. B., and Snedecor, B. R. (1984) European Patents Appl. EP 114,507.

  19. Wilson, M. E., and Whitesides, G. M. (1978),J. Am. Chem. Soc. 100, 306.

    CAS  Google Scholar 

  20. Ulmer, K. M. (1983),Science 219, 666.

    CAS  Google Scholar 

  21. Lee, L. G., and Whitesides, G. M. (1985),J. Am. Chem. Soc. 107, 6999.

    CAS  Google Scholar 

  22. Williams-Ashman, H. G., and Banks, J. (1954),Arch. Biochem. Biophys. 50, 513.

    CAS  Google Scholar 

  23. Hakala, M. T., Glaid, A. J., and Schwert, G. W. (1956),J. Biol. Chem. 221, 191.

    CAS  Google Scholar 

  24. Sakai, T., Uchida, T., and Chibata, I. (1973),Agr. Biol. Chem. 37, 1049.

    CAS  Google Scholar 

  25. Sakai, T., Uchida, T., and Chibata, I. (1973),Agr. Biol. Chem. 37, 1041.

    CAS  Google Scholar 

  26. Kornberg, A. (1957),Methods Enzymol. 3, 876.

    Google Scholar 

  27. Watanabe, T., Oka, O., Hoda, Y.,and Saheki, T. (1979), Japanese Patents 79 80,493; 79 80,494.

  28. Watanabe, T., Oka, O., Hoda, Y., and Saheki, T. (1975), Japanese Patents 75 160,484; 75 160,485.

  29. Saegi, H., and Kubo, E. (1976), Japanese Patent 76 28,716.

  30. Viesture, Z., Furmane, R., and Eglais, V. (1983),Mikrobn. Sint. Fermentov Poluch. Ikh Prep. Form 103.

  31. Furmane, R., Viesture, Z., Liepina, V., Darge, M., and Irgens, A. (1978),Tekhnol. Mikrobn. Sint. 91.

  32. Nakayama, K., Sato, Z., Tanaka, H., and Kinoshita, S. (1968),Agric. Biol. Chem. 32, 1331.

    CAS  Google Scholar 

  33. Red Star Yeast Co., Randolph, MA.

  34. Horecker, B. L., and Kornberg, A. (1957),Methods Enzymol. 3, 879.

    Google Scholar 

  35. Murata, K., Kato, J., and Chibata, I. (1979),Biotech. Bioeng. 21, 887.

    CAS  Google Scholar 

  36. Hayashi, T., Tanaka, Y., and Kawashima, K. (1979),Biotech. Bioeng. 21, 1019.

    CAS  Google Scholar 

  37. Uchida, T., Watanabe, T., Kato, J., and Chibata, I. (1978),Biotech. Bioeng. 20, 255.

    CAS  Google Scholar 

  38. Lehninger, A. L. (1957),Methods Enzymol. 3, 885.

    Google Scholar 

  39. Rafter, G. W., and Colowick, S. P. (1957),Methods Enzymol. 3, 887.

    Google Scholar 

  40. Eguchi, S. Y., Nishio, N., and Nagai, S. (1983),Agr. Biol. Chem. 47, 2941.

    CAS  Google Scholar 

  41. Walt, D. R., Findeis, M. A., Rios-Mercadillo, V. M., Augé, J., and White-sides, G. M. (1984),J. Am. Chem. Soc. 106, 234.

    CAS  Google Scholar 

  42. Walt, D. R., Rios-Mercadillo, V. M., Augé, J., and Whitesides, G. M. (1980),J. Am. Chem. Soc. 102, 7805.

    CAS  Google Scholar 

  43. Kornberg, A. (1950),J. Biol. Chem. 182, 779.

    CAS  Google Scholar 

  44. Hughes, N. A., Kenner, G. W., and Todd, A. R. (1950),J. Biol. Chem. 182, 3733.

    Google Scholar 

  45. Traub, A., Kaufman, E., and Teitz, Y. (1969),Anal. Biochem. 28, 469.

    CAS  Google Scholar 

  46. Lowry, O. H., Passoneau, J. V., and Rock, M. K. (1961),J. Biol. Chem. 236, 2756.

    CAS  Google Scholar 

  47. Wong, C.-H., and Whitesides, G. M. (1981),J. Am. Chem. Soc. 103, 4890.

    CAS  Google Scholar 

  48. Vistin, R., Schlenk, F., and von Euler, H. (1937),Ber. Chem. Ges. 70, 1369.

    Google Scholar 

  49. Kaplan, N. O. (1960), inThe Enzymes, vol. 3, 2nd Ed., Boyer, P. D., ed., Academic, New York, NY, p. 105.

    Google Scholar 

  50. Adler, E., Hellström, H., and onEuler, H. (1936),Z. Physiol. Chem. 242, 225.

    CAS  Google Scholar 

  51. Warburg, O., Christian, W., and Griese, A. (1935),Biochemische Z.282, 157.

    CAS  Google Scholar 

  52. Oppenheimer, N. J., and Kaplan, N. O. (1974),Biochemistry 13, 4675.

    CAS  Google Scholar 

  53. Johnson, S. L., and Tuazon, P. T. (1977),Biochemistry 16, 1175.

    CAS  Google Scholar 

  54. Kaplan, N. O., Colowick, S. P., and Barnes, C. C. (1951),J. Biol. Chem. 191, 461.

    CAS  Google Scholar 

  55. Schlenk, F., vonEuler, H., Heiwinkel, H., Gleim, W., and Nyström, H. (1937),Z. Pln/siol. Chem. 12, 204.

    Google Scholar 

  56. Guilbert, C. C., and Johnson, S. L. (1977),Biochemistry 16, 335.

    CAS  Google Scholar 

  57. Colowick, S. P., Kaplan, N. O., and Ciotti, M. M. (1951),J. Biol. Chem. 191, 447.

    CAS  Google Scholar 

  58. Johnson, S. L., and Smith, K. W. (1976),Biochemistry 15, 553.

    CAS  Google Scholar 

  59. Biellman, J.-F., Lapinte, C., Haid, E., and Wiemann, G. (1979),Biochemistry 18, 1212.

    Google Scholar 

  60. San Pietro, A. (1955),J. Biol. Chem. 217, 579.

    CAS  Google Scholar 

  61. Johnson, S. L., and Smith, K. W. (1977),J. Org. Chem. 42, 2580.

    CAS  Google Scholar 

  62. Ozols, R. F., and Marinetti, G. W. (1969),Biochem. Biophys. Res. Commun. 34, 712.

    CAS  Google Scholar 

  63. Everse, J., Zoll, E. L., Kahan, L., and Kaplan, N. O. (1971),Bioorg. Chem. 1, 207.

    Google Scholar 

  64. VanEys, J., and Kaplan, N. O. (1957),J. Biol. Chem. 228, 305.

    CAS  Google Scholar 

  65. VanEys, J., Kaplan, N. O., and Stolzenbach, F. E. (1957),Biochim. Biophys. Acta 23, 177.

    Google Scholar 

  66. Burton, R. M., and Kaplan, N. O. (1954),J. Biol. Chem. 206, 283.

    CAS  Google Scholar 

  67. Burton, R. M., San Pietro, A., and Kaplan, N. O. (1957),Arch. Biochem. Biophys. 70, 87.

    CAS  Google Scholar 

  68. VanEys, J. (1958),J. Biol. Chem. 233, 1203.

    CAS  Google Scholar 

  69. Griffin, J. H., and Criddle, R. S. (1970),Biochemistry 9, 1195.

    CAS  Google Scholar 

  70. Wilton, D. C. (1979),Biochem. J.177, 951.

    CAS  Google Scholar 

  71. Burgner, J. W., II, and Ray, W. J. Jr., (1984),Biochemistry 23, 3626; 3636.

    CAS  Google Scholar 

  72. Calculations are based on initial reactor conditions reported in references cited by this paper. Typically, in batch reactors, the total concentration of nicotinamide cofactor is on the order of the sum of the Michaelis constants for NAD(P) and NAD(P)H of the oxidizing and reducing enzymes, respectively. Such concentrations provide an efficient compromise between maximal utilization of enzymatic activity (optimizingV/Vmax) and maximal utilization of cofactor (optimizingTTN). Values for KNAD tend to be on the order of 0.1 mM, and values for Knadh tend to be on the order of 0.01 mM (13,45). Thus, KNAD/KNADH is approximately 10. For coupled enzymes having 5 ≤ Knad/KNadh ≤ 10 and that differ in cost by no more than two orders of magnitude, the calculated total cost of enzyme per unit rate of product formation reaches a minimum when the oxidizing and reducing enzymes are present with relative activities of from 5:1 to 1:5 (71). When the relative enzyme activities are set so as to minimize the cost of enzyme per unit rate of product formation, these systems also give calculated values of [NAD]/([NAD] + [NADH]), which are generally in the range of 0.20-0.95.

  73. Chenault, H. K., and Whitesides, G. M., unpublished results.

  74. Heppel, L. A., Harkness, D., and Hilmoe, R. (1982),J. Biol. Chem. 273, 841.

    Google Scholar 

  75. Miwa, M., Tanaka, M., Matsushima, T., and Sugimura, T. (1974),J. Biol. Chem. 249, 3475.

    CAS  Google Scholar 

  76. Everse, J., Anderson, B., and You, K.-S. (eds.) (1982),The Pyndine Nucleotide Coenzymes, Academic, New York, NY.

    Google Scholar 

  77. Oppenheimer, N. J., and Kaplan, N. O. (1974),Biochemistry 13, 4685.

    CAS  Google Scholar 

  78. Kaplan, N. O., Ciotti, M. M., and Stolzenbach, F. E. (1954),J. Biol. Chem. 211, 431.

    CAS  Google Scholar 

  79. Gerlach, D., Pfleiderer, G., and Holdbrook, J. J. (1965),Biochem. Z.343, 354.

    CAS  Google Scholar 

  80. Burgner, J. W., II, and Ray, W. J. Jr., (1984),Biochemistry 23, 3620.

    CAS  Google Scholar 

  81. Parker, D. M., Lodola, A., and Holbrook, J. J. (1978),Biochem. J. 173, 959.

    CAS  Google Scholar 

  82. Everse, J., Barnett, R. E., Thorne, C. J. R., and Kaplan, N. O. (1971),Arch. Biochem. Biophys. 143, 444.

    CAS  Google Scholar 

  83. Arnold, C. J. Jr., and Kaplan, N. O. (1974),J. Biol. Chem. 249, 652.

    CAS  Google Scholar 

  84. VanEys, J., Stolzenbach, F. E., Sherwood, L., and Kaplan, N. O. (1958),Biochim. Biophys. Acta 27, 63.

    CAS  Google Scholar 

  85. Burton, K., and Wilson, T. H. (1953),Biochem. J. 54, 86.

    CAS  Google Scholar 

  86. Olson, J. A., and Anfinsen, C. B. (1953),J. Biol. Chem. 202, 841.

    CAS  Google Scholar 

  87. Rodkey, F. L., and Donovan, J. A. Jr., (1959),J. Biol. Chem. 234, 677.

    CAS  Google Scholar 

  88. Rodkey, F. L. (1955),J. Biol. Chem. 213, 777.

    Google Scholar 

  89. Rodkey, F. L. (1959),J. Biol. Chem. 234, 188.

    CAS  Google Scholar 

  90. Burton, K. (1957),Ergeb. Physiol. 49, 275.

    Google Scholar 

  91. Clark, W. M. (1960),Oxidation-Reduction Potentials of Organic Systems, Williams and Wilkins, Baltimore, MD, pp. 356–518.

    Google Scholar 

  92. Long, C. (ed.) (1961),Biochemists’ Handbook, D. Van Nostrand, Princeton, NJ, pp. 85–94.

    Google Scholar 

  93. Dickens, F., and McIlwain, H. W. (1938),Biochem. J. 32, 1615.

    CAS  Google Scholar 

  94. Zelitch, I. (1955),J. Biol. Chem. 216, 553.

    CAS  Google Scholar 

  95. Lowe, H. J., and Clark, W. M. (1956),J. Biol. Chem. 221, 983.

    CAS  Google Scholar 

  96. Strecker, H. J., and Hararay, I. (1954),J. Biol. Chem. 211, 263.

    CAS  Google Scholar 

  97. Loach, P. A. (1970), inHandbook of Biochemistry, Sober, H. A., ed., CRC, Cleveland, OH, pp. J33-J40.

    Google Scholar 

  98. Anderson, L., and Plaut, G. W. E. (1949), inRespiratory Enzymes, Lardy, H. A., ed., Burgess, Minneapolis, MN, pp. 71–84.

    Google Scholar 

  99. Woods, D. D. (1936),Biochem. J. 30, 515.

    CAS  Google Scholar 

  100. Strecker, H. J., and Korkes, S. (1952),J. Biol. Chem. 196, 769.

    CAS  Google Scholar 

  101. Segel, I. H. (1975),Biochemical Calculations, 2nd Ed., Wiley, New York, NY, pp. 414–415.

    Google Scholar 

  102. Shaked, Z., and Whitesides, G. M. (1980),J. Am. Chem. Soc. 102, 7104.

    CAS  Google Scholar 

  103. Wichmann, R., Wandrey, C., Bückmann, A. F., and Kula, M.-R. (1981),Biotechnol. Bioeng. 23, 2789.

    CAS  Google Scholar 

  104. Tischer, W., Tiemeyer, W. and Simon, H. (1980),Biochemie 62, 331.

    CAS  Google Scholar 

  105. Schütte, H., Flossdorf, J., Sahm, H., and Kula, M.-R. (1976),Eur. J. Biochem. 62, 151.

    Google Scholar 

  106. Wong, C.-H., Daniels, L., Orme-Johnson, W. H., and Whitesides, G. M. (1981),J. Am. Chem. Soc. 103, 6227.

    CAS  Google Scholar 

  107. Balch, W. E., and Wolfe, R. S. (1976),Appl. Environ. Microbiol. 32, 781.

    CAS  Google Scholar 

  108. Shin, M. (1971),Methods Enzymol. 23, 440.

    CAS  Google Scholar 

  109. Carrea, G., Bovara, R., Longhi, R., and Barani, R. (1984),Enzyme Microb. Technol. 6, 307.

    CAS  Google Scholar 

  110. Wong, C.-H., and Whitesides, G. M. (1983),J. Am. Chem. Soc. 105, 5012.

    CAS  Google Scholar 

  111. Lee, L. G., and Whitesides, G. M. (1986),J. Org. Chem. 51, 25.

    CAS  Google Scholar 

  112. Hirschbein, B. L., and Whitesides, G. M. (1982),J. Am. Chem. Soc. 104, 4458.

    CAS  Google Scholar 

  113. Isaque, A., Milhausen, M., and Levy, H. R. (1974),Biochem. Biophys. Res. Commun. 59, 894.

    Google Scholar 

  114. Wong, C.-H., Gordon, J., Cooney, C. L., and Whitesides, G. M. (1981),J. Org. Chem. 46, 4676.

    CAS  Google Scholar 

  115. Kazlauskas, R. J., and Whitesides, G. M. (1985),J. Org. Chem. 50, 1069.

    CAS  Google Scholar 

  116. Guiseley, K. B., and Ruoff, P. M. (1961),J. Org. Chem. 26, 1248.

    CAS  Google Scholar 

  117. Wong, C.-H., McCurry, S. D., and Whitesides, G. M. (1980),J. Am. Chem. Soc. 102, 7938.

    CAS  Google Scholar 

  118. Wong, C.-H., Drueckhammer, D. G., and Sweers, H. M. (1985),J. Am. Chem. Soc. 107, 4028.

    CAS  Google Scholar 

  119. Levy, H. R., Loewus, F. A., and Vennesland, B. (1957),J. Am. Chem. Soc. 79, 2949.

    CAS  Google Scholar 

  120. Vandecasteele, J.-P., and Lemal, J. (1980),Bull. Soc. Chim. France 101.

  121. Pollak, M., Blumenfeld, H., Wax, M., Baughn, R. L., and Whitesides, G. M. (1980),J. Am. Chem. Soc. 102, 6324.

    CAS  Google Scholar 

  122. Jones, J. B., and Beck, J. F. (1976), in ref. (8), pp. 107–401.

  123. Wang, S. S., and King, C. K. (1979),Adv. Biochem. Eng. 12, 119.

    CAS  Google Scholar 

  124. Kato, T., Berger, S. J., Carter, J. A., and Lowry, O. H. (1973),Anal. Biochem. 53, 86.

    CAS  Google Scholar 

  125. Bernofsky, C., and Swan, M. (1973),Anal. Biochem. 53, 452.

    CAS  Google Scholar 

  126. Schulman, M. P., Gupta, N. K., Omachi, A., Hoffman, G., and Marshall, W. E. (1974),Anal. Biochem. 60, 302.

    CAS  Google Scholar 

  127. Zagalak, B., Frey, P. A., Karabatsos, G. L., and Abeles, R. H. (1966),J. Biol. Chem. 241, 3028.

    CAS  Google Scholar 

  128. Fink, D. J., and Rodwell, V. W. (1975),Biotechn. Bioeng. 17, 1029.

    CAS  Google Scholar 

  129. Dodds, D. R., and Jones, J. B. (1982),Chem. Comm., 1080.

  130. Wratten, C. C., and Cleland, W. W. (1963),Biochemistry 2, 935.

    CAS  Google Scholar 

  131. Ginsberg, A. N., and Gavrikova, A. P. (1947),Biokhimiya 12, 406.

    Google Scholar 

  132. Mansson, M.-O., Larsson, P.-O., and Mosbach, K. (1982),Methods Enzymol. 89, 457.

    Google Scholar 

  133. Wong, C.-H., and Whitesides, G. M. (1982),J. Org. Chem. 47, 2816.

    CAS  Google Scholar 

  134. Grisolia, S., Guerri, C., and Godfrey, W. (1975),Biochem. Biophys. Res. Commun. 66, 1112.

    CAS  Google Scholar 

  135. Klibanov, A. M., and Pugliski, A. V. (1980),Biotech. Lett. 2, 445.

    CAS  Google Scholar 

  136. Ergerer, P., Simon, H., Tanaka, A., and Fukui, S. (1982),Biotechn. Lett. 4, 489.

    Google Scholar 

  137. Danielsson, B., Winquist, F., Malpote, J. Y., and Mosbach, K. (1982),Biotech. Lett. 4, 673.

    CAS  Google Scholar 

  138. Payen, B., Segui, M., Monsan, P., Schneider, K., Friedrich, C. G., and Schlegel, H. G. (1983),Biotech. Lett. 5, 463.

    CAS  Google Scholar 

  139. Simon, H., and Günther, H. (1983), inBiomimetic Chemistry, Yoshida, Z. I., and Ise, N., eds., Kodonasha, Tokyo/Elsevier, Amsterdam, p. 207.

    Google Scholar 

  140. Simon, H., Bader, J., Günther, H., Neumann, S., and Thanos, J. (1984),Ann. NY Acad. Sci. 434, 171.

    CAS  Google Scholar 

  141. Simon, H., Bader, J., Günther, H., Neumann, S., and Thanos, J. (1985),Ang. Chan. 97, 541;Ang. Chem. Int. Ed. Eng. 24, 539.

    CAS  Google Scholar 

  142. Abril, O., and Whitesides, G. M. (1982),J. Am. Chem. Soc. 104, 1552.

    CAS  Google Scholar 

  143. Jensen, M. A., and Elving, P. J. (1984),Biochim. Biophys. Acta 764, 310.

    CAS  Google Scholar 

  144. Janik, B., and Elving, P. J. (1968),Chem. Rev. 68, 295.’

    CAS  Google Scholar 

  145. Burnett, R. W., and Underwood, A. L. (1968),Biochemistry 7, 3328.

    CAS  Google Scholar 

  146. Biellman, J.-F., and Lapinte, C. (1978),Tet. Lett. 683.

  147. Aizawa, M., Coughlin, R. W., and Charles, M. (1976),Biotech. Bioeng. 18, 209.

    CAS  Google Scholar 

  148. Aizawa, M., Suzuki, S., and Kubo, M. (1976),Biochim. Biophys. Acta 444, 886.

    CAS  Google Scholar 

  149. Day, R. J., Kinsey, S. J., Seo, E. T., Weliky, N., and Silverman, H. P. (1972),Trans. NY Acad. Sci. 34, 588.

    CAS  Google Scholar 

  150. (a) Wienkamp, R., and Steckhan, E. (1982),Aug. Chem. 94, 786;Angeio. Chem. Int. Ed. Engl. 21, 782; (b) Ang. Chem. Suppl., 1739.

    CAS  Google Scholar 

  151. Simon, H., Günther, H., Bader, J., and Tischer, W. (1981),Ang. Chem. Int. Ed. Eng. 20, 861.

    Google Scholar 

  152. Günther, H., Frank, C., Schuetz, H.-J., Bader, J., and Simon, H. (1983),Ang. Chem. Int. Ed. Eng. 22, 322.

    Google Scholar 

  153. Simon, H., Günther, H., Bader, J., and Neumann, S. (1985),Enzymes in Organic Synthesis (Ciba Found. Symp. III), Pitman, London, pp. 97–111.

    Google Scholar 

  154. Bader, J., Günther, H., Nagataa, S., Schuetz, H.-J., Link, M.-L., and Si-mon, H. (1984),J. Biotechnol. 1, 95.

    CAS  Google Scholar 

  155. Neumann, S., and Simon, H. (1984),FEBS Lett. 167, 29.

    CAS  Google Scholar 

  156. Ergerer, P., and Simon, H. (1982),Biotechnol. Lett. 4, 501.

    Google Scholar 

  157. Shaked, Z., Barber, J. J., and Whitesides, G. M. (1981),J. Org. Chem. 46, 4100.

    CAS  Google Scholar 

  158. DiCosimo, R., Wong, C.-H., Daniels, L., and Whitesides, G. M. (1981),J. Org. Chem. 46, 4622.

    CAS  Google Scholar 

  159. Jones, J. B., Sneddon, D. W., Higgins, W., and Lewis, A. J. (1972),J. Chem. Soc. Chem. Commun., 856.

  160. Wayman, M., and Lern, W. J. (1971),Can. J. Chem. 49, 1140.

    CAS  Google Scholar 

  161. Mandler, D., and Willner, I. (1984),J. Am. Chem. Soc. 106, 5352.

    CAS  Google Scholar 

  162. Wienkamp, R., and Steckhan, E. (1983),Ang. Chem. 95, 508; Ang. Chem. Int. Ed. Eng.22, 497.

    CAS  Google Scholar 

  163. (a) Mandler, D., and Willner, I., (1986),J. Chem. Soc, Perk. Trans. 2, 805; (b) (1986)J. Chem. Soc, Chem. Commun. 851.

    Google Scholar 

  164. Willner, I., Mandler, D., and Riklin, A., (1986)J. Chem. Soc, Chem. Commun. 1022.

  165. Willner, I., and Maidan, R., to be published.

  166. Godbole, S. S., D’Souza, S. F., and Nadkarni, G. B. (1983),Enzyme Microb. Technol. 5, 125.

    CAS  Google Scholar 

  167. Miura, Y., Nakano, Y., Yagi, K., and Miyamoto, K. (1981),Agric Biol. Chem. 45, 845.

    CAS  Google Scholar 

  168. Karube, I., Otsuka, T., Kayano, H., Matsunaga, T., and Suzuki, S. (1980),Biotech. Bioeng. 22, 2655.

    CAS  Google Scholar 

  169. Benemann, J. R., Berenson, J. A., Kaplan, N. O., and Kamen, M. D. (1973),Proc. Natl. Acad. Sci. USA 70, 2317.

    CAS  Google Scholar 

  170. Rao, K. K., Rosa, L., and Hall, D. O. (1976),Biochem. Biophys. Res. Commun. 68, 21.

    CAS  Google Scholar 

  171. Wandrey, C. (1983), inBiotech. 83, Online, Northwood, UK, pp. 577–588.

  172. Leuchtenberger, W. (1984),Europe-Japan Congress on Membranes and Membrane Processes, Stresa, Italy.

    Google Scholar 

  173. Wong, C.-H., Pollak, A., McCurry, S. D., Sue, J. M., Knowles, J. R., and Whitesides, G. M. (1982),Methods Enzymol. 89, 108.

    CAS  Google Scholar 

  174. Carrea, G., Bovara, R., Cremonesi, P., and Lodi, R. (1984),Biotech. Bioor?. 26, 560.

    CAS  Google Scholar 

  175. Wong, C.-H., and Matos, J. R. (1985),J. Org. Chem. 50, 1992.

    CAS  Google Scholar 

  176. Chenault, H. K., and Whitesides, G. M., results to be published.

  177. Laudahn, G. (1963),Biochem. Z. 337, 449.

    CAS  Google Scholar 

  178. Duncan, R. J. S., and Tipton, K. F. (1969),Eur. J. Biochem. 11, 58.

    CAS  Google Scholar 

  179. Lane, R. S., and Dekkar, E. E. (1969),Biochem. 8, 2958.

    CAS  Google Scholar 

  180. Romano, M., and Cerra, M. (1969),Biochem. Biophys. Acta 177, 421.

    CAS  Google Scholar 

  181. Chambers, R. P., Walle, E. M., Baricos, W. H., and Cohen, W. (1978),Enz. Eng. 3, 363.

    Google Scholar 

  182. Lemière, G. L., Lepoivre, J. A., and Alderweireldt, F. C. (1985),Tet. Lett. 26, 4527.

    Google Scholar 

  183. Hatanaka, A., Kajiwara, T., and Tomohiro, S. (1974),Agric. Biol. Chem. 38, 1819.

    CAS  Google Scholar 

  184. Lamed, R. J., and Zeikus, J. G. (1981),Biochem. J. 195, 183.

    CAS  Google Scholar 

  185. Kato, T., Berger, S. J., Carter, J. A., and Lowry, O. H. (1973),Anal. Biochem. 53, 86.

    CAS  Google Scholar 

  186. (a) Campbell, J., and Chang, T. M. S. (1976),Biochem. Biophys. Res. Commun. 69, 562; (b) (1978),Enz. Eng. 3, 371.

    CAS  Google Scholar 

  187. Hoskins, D. D., Whiteley, H. R., and Mackler, B. (1962),J. Biol. Chem. 237, 2647.

    CAS  Google Scholar 

  188. Adachi, O., Matsushita, K., Shinagawa, E., and Ameyama, M. (1979),J. Biochem. 86, 699.

    CAS  Google Scholar 

  189. Haas, E. (1955),Methods Enzymol. 2, 712.

    Google Scholar 

  190. Akerson, A., Ehrenberg, A., and Theorell, H. (1963), inThe Enzymes, vol. 7, 2nd Ed., Boyer, P. D., ed., Academic, New York, NY, p. 477.

    Google Scholar 

  191. Gwak, S. H., Ota, Y., Yagi, O., and Minoda, Y. (1982),J. Ferment. Technol. 60, 205.

    CAS  Google Scholar 

  192. Chambers, R. P., Ford, J. R., Allender, J. H., Baricos, W. H., and Cohen,W. (1974),Enz. Eng. 2, 195.

    Google Scholar 

  193. Baricos, W. H., Chambers, R. P., and Cohen, W. (1976),Anal. Lett. 9, 257.

    CAS  Google Scholar 

  194. Massey, V. (1963), inThe Enzymes, vol. 7, 2nd Ed., Boyer, P. D., ed., Aca-demic, New York, NY, p. 275.

    Google Scholar 

  195. Kelly, R. M., and Kirwain, D. J. (1977),Biotech. Bioeng. 19, 1215.

    CAS  Google Scholar 

  196. Jaegfeldt, H., Torstensson, A., and Johansson, G. (1978),Anal. Chim. Acta 97, 221.

    CAS  Google Scholar 

  197. Aizawa, M., Coughlin, R. W., and Charles, M. (1975),Biochim. Biophys. Acta 385, 362.

    CAS  Google Scholar 

  198. Jaegfeldt, H., Torstensson, A. B. C, Gorton, L. G. C., and Johansson, G. (1981),Anal. Chem. 53, 1979.

    CAS  Google Scholar 

  199. Laval, J.-M., Bourdillon, C., and Moiroux, J. (1984),J. Am. Chem. Soc. 106, 4701.

    CAS  Google Scholar 

  200. Coughlin, R. W., and Alexander, B. F. (1975),Biotech. Bioeng. 17, 1379.

    CAS  Google Scholar 

  201. Coughlin, R. W., Aizawa, M., Alexander, B. F., and Charles, M. (1975),Biotech. Bioeng. 17, 515.

    CAS  Google Scholar 

  202. Jaegfeldt, H.(1980),J. Electroanal. Chan. 110, 295.

    CAS  Google Scholar 

  203. Moireux, J., and Elving, P. J. (1979),Anal. Chan. 51, 346.

    Google Scholar 

  204. Moireux, J., and Elving, P. J. (1978),Anal. Chan. 50, 1056.

    Google Scholar 

  205. Jones, J. B., and Taylor, K. E. (1976),Can. J. Chan. 54, 2974.

    CAS  Google Scholar 

  206. Jones, J. B., and Taylor, K. E. (1976),Can. J. Chan. 54, 2969.

    CAS  Google Scholar 

  207. Jones, J. B., and Taylor, K. E. (1973),Chan. Comm., 205.

  208. Jakovac, I. J., Goodbrand, H. B., Lok, K. P., and Jones, J. B. (1982),J. Am. Chan. Soc. 104, 4659.

    CAS  Google Scholar 

  209. Watanabe, H., and Hastings, J. W. (1982),Mol. Cell. Biochem. 44, 181.

    CAS  Google Scholar 

  210. Drueckhammer, D. G., Riddle, V. W., and Wong, C.-H., (1985)J. Org. Chan. 50, 5387.

    CAS  Google Scholar 

  211. Pinder, S., and Clark, J. B. (1971),Methods Enzymol. 18 B, 20.

    CAS  Google Scholar 

  212. Legoy, M.-D., Larreta Garde, V., LeMoullec, J.-M., Ergan, F., and Thomas, D. (1980),Biochimie 62, 341.

    Google Scholar 

  213. Legoy, M.-D., Larreta Garde, V., Ergan, F., and Thomas, D. (1979),J. Solid Phase Biochem. 4, 143.

    CAS  Google Scholar 

  214. Legoy, M.-D., Le Moullec, J.-M., and Thomas, D. (1978),FEBS Lett. 94, 335.

    CAS  Google Scholar 

  215. Mcllwain, H. J. (1937),J. Chan. Soc, 1704.

  216. Julliard, M., and Le Petit, J. (1982),Photochem. Photobiol. 36, 283.

    CAS  Google Scholar 

  217. Mansson, M. O., Mattiasson, B., Gestrelius, S., and Mosbach, K. (1976),Biotech. Bioeng. 18, 1145.

    CAS  Google Scholar 

  218. Chave, E., Actamowicz, E., and Burstein, C. (1982),Applied Biochem. Biotechnol. 7, 431.

    CAS  Google Scholar 

  219. Burstein, C., Ounissi, H., Legoy, M. D., Gellf, G., and Thomas, D. (1981),Applied Biochem. Biotechnol. 6, 329.

    CAS  Google Scholar 

  220. Ergan, F., Thomas, D., and Chang, T. M. S. (1984),Applied Biochem. Biotechnol. 10, 61.

    CAS  Google Scholar 

  221. Klibanov, A. M. (1983),Adv. Appl. Microbiol. 29, 1.

    CAS  Google Scholar 

  222. Klibanov, A. M. (1978),Anal. Biochem. 93, 1.

    Google Scholar 

  223. Davies, P., and Mosbach, K. (1974),Biochun. Biophys. Acta 370, 329.

    CAS  Google Scholar 

  224. Allen, P. M., and Bowen, W. R. (1985),Trends Biotechnol. 3, 145.

    CAS  Google Scholar 

  225. Weibel, M. K., Weetall, H. H., and Bright, H. J. (1971),Biochem. Biophys. Res. Commun. 44, 347.

    CAS  Google Scholar 

  226. Craven, D. B., Harvey, M. J., and Dean, P. D. G. (1974),FEBS Lett. 38, 320.

    CAS  Google Scholar 

  227. Lindberg, M., Larsson, P.-O., and Mosbach, K. (1973),Eur. J. Biochem. 40, 187.

    CAS  Google Scholar 

  228. Lowe, C. R., and Mosbach, K. (1974),Eur. J. Biochem. 49, 511.

    CAS  Google Scholar 

  229. Gestrelius, S., Mansson, M.-O., and Mosbach, K. (1975),Eur. J. Biochem. 57, 529.

    CAS  Google Scholar 

  230. Mansson, M.-O., Larsson, P.-O., and Mosbach, K. (1978),Eur. J. Biochem. 86, 455.

    CAS  Google Scholar 

  231. Morikawa, Y., Karube, I., and Suzuki, S. (1978),Biochim. Biophys. Acta 523, 263.

    CAS  Google Scholar 

  232. Wykes, J. R., Dunnill, P., and Lilly, M. D. (1975),Biotech. Bioeng. 17, 51.

    CAS  Google Scholar 

  233. Yamazaki, Y., Maeda, H., and Suzuki, H. (1976),Biotech. Bioeng. 18, 1761.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenault, H.K., Whitesides, G.M. Regeneration of nicotinamide cofactors for use in organic synthesis. Appl Biochem Biotechnol 14, 147–197 (1987). https://doi.org/10.1007/BF02798431

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02798431

Index Entries

Navigation