Skip to main content
Log in

Indirect environmental effects of dikes on estuarine tidal channels: Thinking outside of the dike for habitat restoration and monitoring

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

While the most obvious effects of dike construction and marsh conversion are those affecting the converted land (direct or intended effects), less immediately apparent effects also occur seaward of dikes (indirect or unintended effects). I analyzed historical photos of the Skagit River delta marshes (Washingto, U.S.) and compared changes in estuarine marsh and tidal channel surface area from 1956–2000 in the Wiley slough area of the South fork Skagit delta, and from 1937–2000 in the North Fork delta. Dike construction in the late 1950s caused the loss of 80 ha of estuarine marsh and 6.7 ha of tidal channel landward of the Wiley Slough dikes. A greater amount of tidal channel surface area, 9.6 ha, was lost seaward of the dikes. Similar losses were observed for two smaller North Fork tidal channel systems. Tidal channels far from dikes did not show comparable changes in channel surface areas. These results are consistent with hydraulic geometry theory, which predicts that diking reduces tidal flushing in the undiked channel remnants and this results in sedimentation. Dikes may have significant seaward effects on plants and animals associated with tidal channel habitat. Another likely indirect dike effect is decreased sinuosity in a distributary channel of the South Fork Skagit River adjacent to and downstream of the Wiley Slough dikes, compared to distributary channels upstream or distant from the dikes. Loss of floodplain area to diking and marsh conversion prevents flood energy dissipation over the marsh surface. The distributary channal has responded to greater flood energy by increasing mean channel width and decreasing sinuosity. Restoration of diked areas should consider historic habitat loss swaward of dikes, as well as possible benefits to these areas from dike breaching or removal. Habitat restoration by breaching or removal of dikes should be monitored in areas directly affected by dikes, areas indirectly affected, and distinct reference areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Allen, E. A., P. E. Fell, M. A. Peck, J. A. Gieg, C. R. Guthke, andM. D. Newkirk. 1994. Gut contents of common mummichogs,Fundulus heteroclitus L., in a restored impounded marsh and in natural reference marshes.Estuaries 17:462–471.

    Article  Google Scholar 

  • Anisfeld, S. C., M. J. Tobin, andG. Benoit. 1999. Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound.Estuaries 22:231–244.

    Article  CAS  Google Scholar 

  • Barrett, N. E. andW. A. Niering. 1993. Tidal marsh restoration: Trends in vegetation change using a geographical information system (GIS).Restoration Ecology 1:18–28.

    Article  Google Scholar 

  • Brockmeyer, Jr.,R. E., J. R. Rey, R. W., Virnstein, R. G. Gilmore, andL. Earnest. 1997. Rehabilitation of impounded estuarine wetlands by hydrologic reconnection to the Indian River Lagoon, Florida (USA).Wetlands Ecology and Management 4:93–109.

    Article  Google Scholar 

  • Bryant, J. C. andR. H. Charbeck. 1998. Effects of impoundment on vertical accretion of coastal marsh.Estuaries 21:416–422.

    Article  Google Scholar 

  • Bull, W. B. 1975. Allometric change of landforms.Geological Society of America Bulletin 86:1489–1498.

    Article  Google Scholar 

  • Church, M. andD. M. Mark. 1980. On size and scale in geomorphology.Progress in Physical Geography 4:342–390.

    Article  Google Scholar 

  • Collins, B. D. 1998. Preliminary assessment of historic conditions of the Skagit River in the Fir Island area: Implications for salmonid habitat restoration. Report prepared for the Skagit System Cooperative, La Conner, Washington.

  • Collins, B. D. andD. R. Montgomery. 2001. Importance of archival and process studies to characterizing pre-settlement riverine geomorphic processes and habitat in the Puget Lowland, p. 227–243.In J. M. Dorava, D. R. Montgomery, B. Palcsak, and F. Fitzpatrick (eds.), Geomorphic Processes and Riverine Habitat. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Dragovich, J. D., L. A. Gilbertson, D. K. Norman, G. Anderson, andG. T. Petro. 2002. Geologic Map of the Utsalady and Conway 7.5-minute Quadrangles, Skagit, Snohomish, and Island Counties, Washington, Washington State Department of Natural Resources, Olympia, Washington.

    Google Scholar 

  • French, J. R. andD. R. Stoddart. 1992. Hydrodynamics of salt marsh creek systems: Implications for marsh morphological development and material exchange.Earth Surface Processes and Landforms 17:235–252.

    Article  Google Scholar 

  • Friedrichs, C. T. 1995. Stability shear stress and equilibrium cross-sectional geometry of sheltered tidal channels.Journal of Coastal Research 11:1062–1074.

    Google Scholar 

  • Healey, M. C. 1982. Juvenile Pacific salmon in estuaries: The life support system, p. 315–341.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, Inc., New York.

    Google Scholar 

  • Hood, W. G. 2002. Application of landscape allometry to restoration of tidal channels.Restoration Ecology 10:213–222.

    Article  Google Scholar 

  • Hume, T. M. 1991. Empirical stability relationships for estuarine waterways and equations for stable channel design.Journal of Coastal Research 7:1097–1111.

    Google Scholar 

  • Keck, R., D. Maurer, andL. Watling. 1973. Tidal stream development and its effect on the distribution of the American oyster.Hydrobiologia 42:369–379.

    Article  Google Scholar 

  • Keuler, R. F. 1979. Characteristics and Processes of the Coastal Zone in Skagit County, Washington, Department of Geology, Western Washington University, Bellingham, Washington.

    Google Scholar 

  • Leopold, L. B., M. G. Wolman, andJ. P. Miller. 1964. Fluvial Processes in Geomorphology. W. H. Freeman and Co., New York.

    Google Scholar 

  • Mandelbrot, B. 1983. The Fractal Geometry of Nature. W. H. Freeman and Co., New York.

    Google Scholar 

  • McIvor, C. C. andW. E. Odum. 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage.Ecology 69:1341–1351.

    Article  Google Scholar 

  • Niering, W. A. 1997. Tidal wetland restoration and creation along the east coast of North American, p. 259–285.In K. M. Urbanska, N. R. Webb, and P. J. Edwards (eds.), Restoration Ecology and Sustainable Development. Cambridge University Press, London, U.K.

    Google Scholar 

  • Ouchi, S. andM. Matsushita. 1992. Measurement of self-affinity on surfaces as a trial application of fractal geometry to landform analysis.Geomorphology 5:115–130.

    Article  Google Scholar 

  • Peck, M. A., P. E. Fell, E. A. Allen, J. A. Gieg, C. R. Guthke, andM. D. Newkirk. 1994. Evaluation of tidal marsh restoration: Comparison of selected macroinvertebrate populations on a restored impounded valley marsh and an unimpounded valley marsh within the same salt marsh system in Connecticut, USA.Environmental Management 18:282–293.

    Article  Google Scholar 

  • Portnoy, J. W. 1991. Summer oxygen depletion in a diked New England estuary.Estuaries 14:122–129.

    Article  CAS  Google Scholar 

  • Portnoy, J. W. 1999. Salt marsh diking and restoration: Biogeochemical implications of altered wetland hydrology.Environmental Management 24:111–120.

    Article  Google Scholar 

  • Portnoy, J. W. andA. E. Giblin. 1997. Effects of historic tidal restrictions on salt marsh sediment chemistry.Biogeochemistry 36:275–303.

    Article  CAS  Google Scholar 

  • Raposa, K. B. andC. T. Roman. 2001. Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh.Wetlands 21:451–461.

    Article  Google Scholar 

  • Renger, E. andH.-W. Partenscky. 1974. Stabilitätsverhalten von Watteinzugsgebieten.Die Küste; Archiv für Forschung und Technik an der Nord- und Ostsee 25:73–86.

    Google Scholar 

  • Rodriguez-Iturbe, I. andA. Rinaldo. 1997. Fractal River Basins: Chance and Self-organization. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction.Environmental Management 8:141–150.

    Article  Google Scholar 

  • Simenstad, C. A. 1984. The ecology of estuarine hannels of the Pacific northwest coast: A community profile. FWS/OBS-83/05. U.S. Fish and Wildlife Service, Washington, D.C.

    Google Scholar 

  • Simenstad, C. A., K. L. Fresh, andE. O. Salo. 1982. The role of Puget Sound and Washington coastal estuaries in the life history of Pacific salmon: An unappreciated function, p. 343–364.In V. S. Kennedy (ed.), Estuarine Comparisons Academic Press, Inc., New York.

    Google Scholar 

  • Simenstad, C. A., W. G. Hood, R. M. Thom, D. A. Levy, andD. L. Bottom. 2000. Landscape structure and scale constraints on restoring estuarine wetlands for Pacific coast juvenile fishes, p. 597–630.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  • Soukup, M. A. andJ. W. Portnoy. 1986. Impacts from mosquito control-induced sulphur mobilization in a Cape Cod estuary.Environmental Conservation 13:47–50.

    Article  CAS  Google Scholar 

  • St. Omer, L. 1994. Soil and plant characteristics in a dyked and a tidal marsh in San Francisco Bay.American Midland Naturalist 132:32–43.

    Article  Google Scholar 

  • Sugihara, G. andR. M. May. 1990. Applications of fractals in ecology.Trends in Ecology and Evolution 5:79–86.

    Article  Google Scholar 

  • Swamy, V., P. E. Fell, M. Body, M. B. Keaney, M. K. Nyaku, E. C. McIlvain, andA. L. Keen. 2002. Macroinvertebrate and fish populations in a restored impounded salt marsh 21 years after the reestablishment of tidal flooding.Environmental Management 29:516–530.

    Article  Google Scholar 

  • Thom, R. M. 1992. Accretion rates of low intertidal salt marshes in the Pacific Northwest.Wetlands 12:147–156.

    Article  Google Scholar 

  • U.S. Federal, Register. 1999. Endangered and Threatened Wildlife and Plants. Listing of Nine Evolutionarily Significant Units of Chinook Salmon, Chum Salmon, Sockeye Salmon, and Steelhead, 64(147):41835–41839.

    Google Scholar 

  • Warren, R. S., P. E. Fell, R. Rozsa, A. H. Brawley, A. C. Orsted, E. T. Olson, V. Swamy, andW. A. Niering. 2002. Salt marsh restoration in Connecticut: 20 years of science and management.Restoration Ecology 10:497–513.

    Article  Google Scholar 

  • Wenner, E. L. andH. R. Beatty. 1988. Macrobenthic communities from wetland impoundments and adjacent open marsh habitats in South Carolina.Estuaries 11:29–44.

    Article  Google Scholar 

  • Woldenberg, M. J. 1966. Horton’s laws justified in terms of allometric growth and steady state in open systems.Geological Society of America Bulletin 77:431–434.

    Article  Google Scholar 

  • Zar, J. H. 1984. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Zeff, M. L. 1988. Sedimentation in a salt marsh-tidal channel system, southern New Jersey.Marine Geology 82:33–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory Hood, W. Indirect environmental effects of dikes on estuarine tidal channels: Thinking outside of the dike for habitat restoration and monitoring. Estuaries 27, 273–282 (2004). https://doi.org/10.1007/BF02803384

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803384

Keywords

Navigation