Skip to main content
Log in

Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The tensile deformation, crack-tip micromechanics, and fracture behaviors of a two-phase (γ + α2) gamma titanium aluminide alloy, Ti-47Al-2.6Nb-2(Cr+V), heat-treated for the microstructure of either fine duplex (gamma + lamellar) or predominantly lamellar microstructure were studied in the 25 °C to 800 °C range.In situ tensile and fracture toughness tests were performed in vacuum using a high-temperature loading stage in a scanning electron microscope (SEM), while conventional tensile tests were performed in air. The results revealed strong influences of microstructure on the crack-tip deformation, quasi-static crack growth, and the fracture initiation behaviors in the alloy. Intergranular fracture and cleavage were the dominant fracture mechanisms in the duplex microstructure material, whose fracture remained brittle at temperatures up to 600 °C. In contrast, the nearly fully lamellar microstructure resulted in a relatively high crack growth resistance in the 25 °C to 800 °C range, with interface delamination, translamellar fracture, and decohesion of colony boundaries being the main fracture processes. The higher fracture resistance exhibited by the lamellar microstructure can be attributed, at least partly, to toughening by shear ligaments formed as the result of mismatched crack planes in the process zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-W. Kim:J. Met., 1989, vol. 41 (7), pp. 24–30.

    CAS  Google Scholar 

  2. Y.-W. Kim and F.H. Froes: inHigh-Temperature Aluminides and Intermetallics, S.H. Whang, C.T. Liu, D. Pope, and J.O. Stiegler, eds.,TMS, Warrendale, PA, 1990, pp. 465–92.

    Google Scholar 

  3. Y.-W. Kim: inHigh Temperature Ordered Intermetallic Alloys IV, J.O. Stiegler, L.A. Johnson, and D.P. Pope, eds., MRS, Pittsburgh, PA, 1991, pp. 777–94.

    Google Scholar 

  4. J.M. Larsen, K.A. Williams, S.J. Balsone, and M.A. Stucke: inHigh-Temperature Aluminides and Intermetallics, S.H. Whang, C.T. Liu, D. Pope, and J.O. Stiegler, eds.,TMS, Warrendale, PA, 1990, pp. 521–56.

    Google Scholar 

  5. Y.-W. Kim: inIntermetallic Compounds-Structure and Mechanical Properties-JIMIS 6, O. Izumi, ed., Japan Institute of Metals, Sendai, Japan, 1991, pp. 753–62.

    Google Scholar 

  6. Y.-W. Kim:Acta Metall., in press.

  7. S.-C. Huang and E.L. Hall: inHigh-Temperature Ordered Intermetallic Alloys III, C.T. Liu, A.J. Taub, N.S. Stoloff, and C.C. Koch, eds.,MRS, Pittsburgh, PA, 1989, vol. 133, pp. 373–83.

    Google Scholar 

  8. T. Tsujimoto and K. Hashimoto: inHigh-Temperature Ordered Intermetallic Alloys III, C.T. Liu, A.J. Taub, N.S. Stoloff, and C.C. Koch, eds.,MRS, Pittsburgh, PA, 1989, vol. 133, pp. 391–96.

    Google Scholar 

  9. T. Kawabata, T. Tamura, and O. Izumi: inHigh-Temperature Ordered Intermetallic Alloys III, C.T. Liu, A.J. Taub, N.S. Stoloff, and C.C. Koch, eds.,MRS, Pittsburgh, Pa, 1989, vol. 133, pp. 329–34.

    Google Scholar 

  10. Y.-W. Kim and D.M. Dimiduk:J. Met., 1991, vol. 43 (8), pp. 40–47.

    CAS  Google Scholar 

  11. J.J. Valencia, C. McCullough, C.G. Levi, and R. Mehrabian:Scripta Metall., 1987, vol. 21, pp. 1341–46.

    Article  CAS  Google Scholar 

  12. D.S. Shong and Y.-W. Kim:Scripta Metall., 1989, vol. 23, pp. 257–61.

    Article  CAS  Google Scholar 

  13. Y.-W. Kim and J.J. Kleek:PM 90—World Conference on Powder Metallurgy, The Institute of Metals, London, 1990, vol. 1, pp. 272–88.

  14. M.J. Blackburn and M.P. Smith: AFWAL Technical Report No. AFWAL-TR-82-4086, 1982.

  15. K.S. Chan and Y.-W. Kim: inMicrostructure/Property Relationships in Titanium Alloys and Titanium Aluminides, Y.-W. Kim and R.R. Boyer, eds.,TMS, Warrendale, PA, 1991, pp. 179–96.

    Google Scholar 

  16. P.G. Breig and S.W. Scoot:Materials and Manufacturing Processes, 1989, vol. 4 (1), pp. 77–83.

    Article  Google Scholar 

  17. Y.-W. Kim: inMicrostructure/Property Relationships in Titanium Alloys and Titanium Aluminides, Y.-W. Kim and R.R. Boyer, eds.,TMS, Warrendale, PA, 1991, pp. 91–103.

    Google Scholar 

  18. K.S. Chan:Metall. Trans. A, 1990, vol. 21A, pp. 2687–99.

    CAS  Google Scholar 

  19. A. Nagy, J.B. Campbell, and D.L. Davidson:Rev. Sci. Instrum., 1984, vol. 55, pp. 778–82.

    Article  Google Scholar 

  20. E.A. Franke, D.J. Wenzel, and D.L. Davidson:Rev. Sci. Instrum., 1990, vol. 62 (5), pp. 1270–79.

    Article  Google Scholar 

  21. D.L. Davidson, K.S. Chan, and R.A. Page: inMicromechanics: Experimental Techniques, W. Sharpe, ed.,ASME, New York, NY, 1989, AMD-vol. 102, pp. 73–87.

    Google Scholar 

  22. D.R. Williams, D.L. Davidson, and J. Lankford:Experimental Mechanics, 1980, vol. 20, pp. 134–39.

    Article  Google Scholar 

  23. J.W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  24. J.R. Rice and G.R. Rosengren:J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–13.

    Article  Google Scholar 

  25. K.S. Chan:Metall. Trans. A, 1991, vol. 22A, pp. 2021–29.

    CAS  Google Scholar 

  26. K.S. Chan and Y.-W. Kim:Metall. Trans. A, in press.

  27. K.S. Chan:Scripta Metall., 1990, vol. 24, pp. 1725–30.

    Article  CAS  Google Scholar 

  28. M.J. Blackburn and M.P. Smith: AFWAL Technical Report No. AFWAL-TR-82-4086, 1982.

  29. W.O. Soboyejo, S.J. Midea, D.S. Schwartz, and M.J. Parzuchowski: inMicrostructure/Property Relationships in Titanium Alloys and Titanium Aluminides, Y.-W. Kim, R.R. Boyer, and J.A. Hall, eds.,TMS, Warrendale, PA, 1991, pp. 197–212.

    Google Scholar 

  30. Y. Pan: Southwest Research Institute, San Antonio, TX, unpublished research, 1991.

  31. K.S. Chan:Metall. Trans., 1990, vol. 21A, pp. 69–80.

    CAS  Google Scholar 

  32. M.S. Dadkhah and A.S. Kobayashi:Eng. Fract. Mech., 1989, vol. 34, pp. 253–62.

    Article  Google Scholar 

  33. C.L. Hom and R.M. McMeeking: inAnalytical, Numerical, and Experimental Aspects of Three-Dimensional Fracture Processes, A.J. Rosakis, K. Ravi-Chandar, and Y. Rajapakse, eds., ASME, New York, NY, 1988, AMD-vol. 91, pp. 215–26.

    Google Scholar 

  34. T. Nakamura and D.M. Parks: inAnalytical, Numerical, and Experimental Aspects of Three-Dimensional Fracture Processes, A.J. Rosakis, K. Ravi-Chandar, and Y. Rajapakse, eds., ASME, New York, NY, 1988, AMD-vol. 91, pp. 215–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S., Kim, YW. Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy. Metall Trans A 23, 1663–1677 (1992). https://doi.org/10.1007/BF02804362

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804362

Keywords

Navigation