Skip to main content
Log in

Distribution properties of the channel interactions inN-body scattering and applications

Свойства распределений для канальных взаимодействий вN-частичном рассеянии и приложения

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

We derive several classes of distribution properties for the channel internal and external interactions, as well as for generalized residual interactions, in the framework of theN-body scattering theory An essential feature of our distribution properties is that all coefficients are unity (natural distributions). We give several examples of the great advantages coming from the employment of the natural distributions in practical applications. Several classes of cluster expansions are derived for the channel resolvent operators and the Hepp-Narodetskiî-Yakubovskiî expansion is proved in a simple algebraic way. We present compact procedures leading to both the Sloan-Bencze-Redish equations and the Faddeev-Yakubovskiî equations with artificial indices in the unknowns. We consider also many types of decompositions for the fullN-body scattering wave functions and, finally, we present general operatorial reversion properties for linked-cluster strings of resolvents and interactions.

Riassunto

Nell'ambito della teoria dello scattering aN corpi, si derivano varie classi di proprietà di distribuzione sia per le interazioni interne ed esterne di canale, sia per interazioni residue generalizzate. Costituisce una caratteristica essenziale delle nostre proprietà di distribuzione il fatto che tutti i coefficienti siano uguali a uno (distribuzioni naturali). In questo lavoro diamo anche numerosi esempi dei notevoli vantaggi associati all'uso delle distribuzioni naturali nelle applicazioni pratiche. In particolare, si derivano varie classi di espansioni in “clusters” sia per il risolvente totale che peri risolventi di canale, e si dà una semplice dimostrazione algebrica dell'espansione di Hepp-Narodetskiî-Yakubovskiî. Si presentano dei procedimenti che consentono di ottenere in modo diretto e conciso sia le equazioni di Sloan-Bencze-Redish, sia le equazioni di Faddeev-Yakubovskiî con incognite contrassegnate da indici artificiali. Si considerano anche molti tipi di decomposizione per le funzioni d'onda totali di scattering e, infine, si deducono delle proprietà generali di inversione per operatori costituiti da risolventi e interazioni.

Резюме

Мы определяем несколько классов свойств распределений для канальных внутренних и внешних взаимодействий, а также для обобщенных остаточных взаимодействий в рамкх теорииN-частичного рассеяния. Существенная особенность наших свойств распределениь состоит в том, что все коэффициенты представляют единицу (естественные распределения). Мы приводим несколько примеров тех преимуществ, которые проистекают от использования естественных расределений в практических приложениях. Выводятся несколько классов кластерных разложений для операторов резольвенты. Алгебраическим способом доказывается разложение Геппа-Народетского-Якубовского. Мы предлагаем компактные процедуры, приводящие к уравнениям Слоана-Бензе-Редиша и к уравнениям Фаддеева-Якубовского с искусственными индексами при неизвестных. Мы рассматриваем также много типов разложений для полных волновых функцийN-частичного рассеяния. В заключение мы отмечаем общие свойства операторного обращения для связанной кластерной струны резольвент и взаимодействий.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Vanzani:The N-body problem, inFew-Body Nuclear Physics, edited by IAEA (Vienna, 1978), p. 57.

  2. V. Vanzani:Lett. Nuovo Cimento,16, 1 (1976).

    Article  Google Scholar 

  3. Gy. Bencze andV. Vanzani: inReaction Models 1977, edited byL. P. Csernai (Budapest, 1978), p. 98.

  4. V. Vanzani: inProceedings of the International Conference on Nuclear Structure (Tokyo, 1977), p. 481.

  5. G. Cattapan andV. Vanzani:Three-cluster distorted-wave methods, inProceedings of the III International Conference on Clustering Aspects of Nuclear Structure and Nuclear Reactions (Winnipeg, Canada, 1978), p. 554; inFew-Body Systems and Nuclear Forces, edited byH. Zingl, M. Haftel andH. Zankel, Vol.1 (Berlin, 1978), p. 371.

  6. M. L'Huillier, E. F. Redish andP. C. Tandy: preprint University of Maryland, TR. 76-068 (1975);P. Benoist-Gueutal, M. L'Huillier, E. F. Redish andP. C. Tandy:Phys. Rev. C,17, 1924 (1978).

  7. K. Hepp:Helv. Phys. Acta,42, 425 (1969).

    MathSciNet  Google Scholar 

  8. I. M. Narodetskiî andO. A. Yakubovskiî:Sov. Journ. Nucl. Phys.,14, 178 (1972).

    Google Scholar 

  9. I. Sloan:Phys. Rev. C,6, 1945 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  10. Gy. Bencze:Nucl. Phys.,210 A, 568 (1973).

    Article  ADS  Google Scholar 

  11. E. F. Redish:Nucl. Phys.,225 A, 16 (1974);235 A, 82 (1974).

    Article  ADS  Google Scholar 

  12. W. Sandhas: inFew-Body Dynamics, edited byA. N. Mitra, I. Slaus, V. S. Bhasin andV. K. Gupta (Amsterdam, 1976), p. 540.

  13. V. Vanzani: inFew-Body Systems and Nuclear Forces, edited byH. Zingl, M. Haftel andH. Zankel, Vol.1 (Berlin, 1978), p. 360.

  14. O. A. Yakubovskiî:Sov. Journ. Nucl. Phys.,5, 937 (1967).

    Google Scholar 

  15. B. R. Karlsson andE. M. Zeiger:Phys. Rev. D,9, 1761 (1974);10, 1291 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Weinberg:Phys. Rev.,133, B 232 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  17. W. Hunziker:Helv. Phys. Acta,39, 451 (1966);Acta Phys. Austr. Suppl.,17, 43 (1977).

    MathSciNet  MATH  Google Scholar 

  18. F. Riahi:Helv. Phys. Acta,42, 299 (1969).

    MathSciNet  MATH  Google Scholar 

  19. C. Van Winter:Mat. Fys. Skr. Dan. Vid. Selsk.,2, No. 8 (1964).

  20. G. Cattapan andV. Vanzani: to be published.

  21. P. Benoist-Gueutal:Phys. Lett.,56 B, 413 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Cattapan andV. Vanzani:Uniqueness of the N-body Lippmann-Schwinger-Glöckle-Tobocman equations, preprint IFPD 4 78, (Phys. Rev. C, in press).

  23. W. Glöckle:Nucl. Phys.,141 A, 620 (1970);W. Tobocman:Phys. Rev. C,11, 43 (1975).

    Article  ADS  Google Scholar 

  24. V. Vanzani: inFew-Body Dynamics, edited byA. N. Mitra, I. Slaus, V. S. Bhasin andV. K. Gupta (Amsterdam, 1976), p. 394.

  25. Gy. Bencze:Phys. Lett.,72 B, 155 (1977).

    Article  ADS  Google Scholar 

  26. L. Rosenberg:Phys. Rev.,140, B 217 (1964).

    Article  Google Scholar 

  27. E. F. Redish, P. C. Tandy andM. L'Huillier:Phys. Lett.,61 B, 413 (1976);M. L'Huillier, E. F. Redish andP. C. Tandy:Journ. Math. Phys.,19, 1276 (1978);T. Sasakawa:Phys. Rev. C,13, 1801 (1976);Suppl. Progr. Theor. Phys.,61, 149 (1977).

    Article  ADS  Google Scholar 

  28. G. Cattapan andV. Vanzani:Singularity analysis of N-body scattering wave junctions, preprint IFPD 1 79 (to be published).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattapan, G., Vanzani, V. Distribution properties of the channel interactions inN-body scattering and applications. Nuov Cim A 50, 97–119 (1979). https://doi.org/10.1007/BF02804775

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804775

Navigation