Skip to main content
Log in

Prediction of activation energies for creep and self-diffusion from hot hardness data

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

It is shown that the activation energy for creep or self-diffusion for pure metals can be determined from hot hardness data above 0.75T m by means of the expressionH/E=G expQ L/nRT· HereH is the hot hardness,E is the elastic modulus,G is a material constant,Q L is the lattice self-diffusion activation energy,R is the gas constant,T is the absolute temperature, andn is the stress exponent for creep assumed equal to five. Hot hardness data above 0.5T m plotted as logarithmH/E against reciprocal absolute temperature reveal two straight lines with a break observed at about 0.75T m. It is shown that the break occurs at a value of strain rate, ∈, over lattice self-diffusivity,D L, of about 109, a value associated with power-law breakdown for creep. These observations suggest two conclusions regarding the rate-controlling process during hot indentation testing of pure metals. Between 0.75 and 1.0T m, the deformation process is associated with lattice self-diffusion and creep flow in the power. law region. Between 0.5 and 0.75T m the rate-determining process is associated with dislocation pipe diffusion and creep flow in the power-law breakdown region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. P. Bens:Trans. ASM, 1947, vol. 38, p. 505.

    Google Scholar 

  2. F. Garofall, P. R. Malenock, and G. V. Smith:Trans. ASM, 1953, vol. 45, p. 377.

    Google Scholar 

  3. E. E. Underwood:Mater. Methods, 1957, vol. 45, p. 127;J. Inst. Metals, 1959–60, vol. 88, p. 266.

    Google Scholar 

  4. E. R. Petty:J. Inst. Metals, 1960–61, vol. 89, p. 123. E. R. Petty and H. O’Neill:Metallurgia, 1961, vol. 63, p. 25.

    Google Scholar 

  5. T. O. Mulhearn and D. Tabor:J. Inst. Metals, 1960–61, vol. 89, p. 7.

    CAS  Google Scholar 

  6. R. K. Steele and M. J. Donachie:Trans. ASM, 1965, vol. 58, p. 273.

    CAS  Google Scholar 

  7. A. G. Atkins, A. Silverio, and D. Tabor:J. Inst. Metals, 1966, vol. 94, p. 369.

    CAS  Google Scholar 

  8. Jorgen Larsen-Badsé:Trans. Jap. Inst. Metals, 1968, vol. 9, p. 312.

    Google Scholar 

  9. E. Hargreaves:J. Inst. Metals, 1928, vol. 39, p. 301. F. Hargreaves and R. L. Hills:J. Inst. Metals, 1929, vol. 41, p. 257.

    Google Scholar 

  10. V. P. Shishokin:Z. Anorg. Chem., 1930, vol. 189, p. 263; V. P. Shishokin:Zh. Techn. Fiz., 1938, vol. 8. p. 1613; V. P. Shishokin and N. A. Vikhoreva:Zh. Techn. Fiz., 1940, vol. 10. p. 500.

    Article  CAS  Google Scholar 

  11. J. Pomey, A. Royez, and J. P. Georges:C. R. Acad. Sci., Paris, 1957, vol. 245, p. 1424:Mem. Sci. Rev. Met., 1959, vol. 56, p. 215.

    CAS  Google Scholar 

  12. Jorgen Larsen-Badse:Time Dependent Hardness of Soft Metals, ORNL-TM-1771. April 1967:The Temperature and Time Dependence of the Hardness of Iron and Nickel, ORNL-TM-1861, July 1967. Oak Ridge National Laboratory. Oak Ridge. Tennesse.

  13. A. J. Ardell:Acta Met., 1963, vol. 11, p. 591.

    Article  CAS  Google Scholar 

  14. E. M. Savitsky:The Influence of Temperature on the Mechanical Properties of Metals and Alloys, Translated from Russian, Stanford University Press, Stanford, Calif., O. D. Sherby, Technical Editor., 1962.

    Google Scholar 

  15. O. D. Sherby and P. M. Burke:Progr Mater. Sci., 1968, vol. 13, p. 325.

    Article  Google Scholar 

  16. A. K. Mukherjee, J. E. Bird, and J. E. Dorn:Trans. ASM, 1969, vol. 62, p. 155.

    CAS  Google Scholar 

  17. J. Weertman:Trans. ASM, 1968, vol. 61, p. 681.

    CAS  Google Scholar 

  18. J. Weertman:J. Appl. Phys., 1957, vol. 28, p. 362.

    Article  CAS  Google Scholar 

  19. C. R. Barrett and W. D. Nix:Acta Met., 1965, vol. 13, p. 1247.

    Article  Google Scholar 

  20. S. L. Robinson and O. D. Sherby:Acta Met., 1969, vol. 17, p. 109.

    Article  CAS  Google Scholar 

  21. A. J. Ardell and O. D. Sherby:Trans. TMS-AIME, 1967, vol. 239, p. 1547.

    CAS  Google Scholar 

  22. R. Gifkins: C.S.I.R.O. Div. of Tribo-physics, Melbourne University, Melbourne, Australia, private communication.

  23. O. D. Sherby and J. E. Dorn:Trans. TMS-AIME, 1952, vol. 194, p. 959.

    Google Scholar 

  24. W. D. Klopp, W. R. Witzke, and P. L. Raffo:Trans. TMS-AIME, 1965, vol. 233, p. 1860.

    Google Scholar 

  25. C. R. Barrett, A. J. Aidell, and O. D. Sherby:Trans. TMS-AIME, 1964, vol. 230, p. 200.

    CAS  Google Scholar 

  26. J. Weertman, W. V. Green, and E. G Zukas:J. Matl. Sci. Eng., 1970, vol. 6, p. 199.

    Article  Google Scholar 

  27. J. Engl and G. Heidtkamp:Z. Phys., 1935, vol. 95, p. 30.

    Article  CAS  Google Scholar 

  28. P. Ludwik:Z. Phys. Chem., 1916, vol. 91, p. 232.

    CAS  Google Scholar 

  29. C. R. Barrett and O. D. Sherby:Trans. TMS-AIME, 1964, vol. 230, p. 1322.

    Google Scholar 

  30. M. E. Fine:Rev. Sci. Instr., 1957, vol. 28, p. 643

    Article  CAS  Google Scholar 

  31. T. S. Lundy and J. F. Murdock:J. Appl. Phys., 1962, vol. 33, p. 1971.

    Article  Google Scholar 

  32. M. Beyeler and Y. Adda:J. de Phys., 1968, vol. 29, p. 345.

    CAS  Google Scholar 

  33. A. Kuper, H. Letaw, L. Slifkin, E. Sonder, and C. T. Tomizuka:Phys. Rev., 1954, vol. 96, p. 1224; andPhys. Rev., 1955, vol. 98, p. 1870.

    Article  CAS  Google Scholar 

  34. O. D. Sherby and M. T. Simnad:Trans. ASM, 1961, vol. 54, p. 227.

    CAS  Google Scholar 

  35. O. D. Sherby:Acta Met., 1962, vol. 10, p. 235.

    Article  Google Scholar 

  36. W. Chubb:Trans. TMS-AIME, 1955, vol. 203, p. 189.

    Google Scholar 

  37. W. Köster:Z. Metallk., 1948, vol. 39, p. 1.

    Google Scholar 

  38. G. E. Shirn:Acta Met., 1955, vol. 3, p. 87.

    Article  CAS  Google Scholar 

  39. P. E. Armstrong and H. L. Brown:Trans. TMS-AIME, 1964, vol. 230, p. 962.

    CAS  Google Scholar 

  40. J. F. Murdock, T. S. Lundy, and E. E. Stansbury:Acta Met., 1964, vol. 12, p. 1033.

    Article  Google Scholar 

  41. C. M. Libanati and F. Dyment:Acta Met., 1963, vol. 11, p. 1263.

    Article  CAS  Google Scholar 

  42. Y. Adda and A. Kirianenko:C. R. Acad. Sci., Paris, 1958, vol. 247, p. 744.

    CAS  Google Scholar 

  43. Y. Adda, A. Kirianenko, and C. MairyJ. Nucl. Mater., 1959, vol. 3, p. 300.

    Article  Google Scholar 

  44. V. S. Lyashenko, V. N. Bykov, and L. V. Pavinov:Fiz. Metal. Metalloved., 1959, vol. 8, p. 362.

    CAS  Google Scholar 

  45. F. Dyment and C. M. Libanati:J. Mater. Sci., 1968, vol. 3, p. 349.

    Article  CAS  Google Scholar 

  46. J. I. Federer and T. S. Lundy:Trans. TMS-AIME, 1963., vol. 227, p. 592.

    CAS  Google Scholar 

  47. P. E. Armstrong, D. T. Eash, and J. E. Hockett: Los Alamos Scientific Laboratory, Los Alamos, New Mexico, unpublished research.

  48. O. D. Sherby:Trans. TMS-AIME, 1958, vol. 212, p. 708.

    CAS  Google Scholar 

  49. H. Buhler and H. W. Wagener:Z. Metallk., 1966, vol. 57, p. 825.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherby, O.D., Armstrong, P.E. Prediction of activation energies for creep and self-diffusion from hot hardness data. Metall Trans 2, 3479–3484 (1971). https://doi.org/10.1007/BF02811630

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811630

Navigation