Skip to main content
Log in

The role of microstructure in hydrogen-assisted fracture of 7075 aluminum

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Underaged, peak strength (T6), and overaged (T73) microstructures were studied in 7075 plate material. Hydrogen charged and uncharged tensile specimens of longitudinal orientation were tested between −196°C and room temperature. The results confirm a hydrogen embrittlement effect, manifested mainly in the temperature dependence of the reduction of area loss; a classical behavior of hydrogen embrittlement. The maximum embrittlement shifted to lower temperatures with further aging. The effect of hydrogen was largest for the underaged condition and smallest for the overaged, thus following the pattern found for the sensitivity to stress-corrosion cracking in high strength aluminum alloys. The fracture path was predominantly transgranular, with minor amounts of intergranular fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kelly and R. B. Nicholson:Progr. Mater Sci., 1963, vol. 10, pp. 151–391.

    Article  Google Scholar 

  2. M. O. Speidel and M. V. Hyatt:Advances in Corrosion Science and Technology, vol. 2, pp. 115–335, Plenum, NY, 1972.

    Google Scholar 

  3. M. W. Hyatt and M. O. Speidel:Stress Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys, pp. 147–244, Naval Res. Lab., Washington 1972.

    Google Scholar 

  4. R. H. Brown, D. O. Sprowls, and M. B. Shumaker:Stress Corrosion Cracking of Metals—A State of the Art, pp. 87–118, STP 518, ASTM, Philadelphia, 1972.

    Google Scholar 

  5. G. M. Ugiansky, L. P. Skolnick, and S. W. Stiefel:Corrosion, 1969, vol. 25, pp. 77–86.

    CAS  Google Scholar 

  6. A. W. Thompson and I. M. Bernstein:Rev. Coat. Corros., 1975, vol. 2, pp. 3–44.

    CAS  Google Scholar 

  7. A. W. Thompson and I. M. Bernstein:Advances in Corrosion Science and Technology, vol. 7, pp. 53–175, Plenum, NY, 1979.

    Google Scholar 

  8. M. O. Speidel:The Theory of Stress Corrosion Cracking in Alloys, pp. 289–341, NATO, Brussels, 1971.

    Google Scholar 

  9. P. N. T. Unwin and R. B. Nicholson:Acta Met., 1969, vol. 17, pp. 1379–93.

    Article  CAS  Google Scholar 

  10. J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards:Met. Trans. A, 1976, vol. 7A, pp. 821–29.

    Article  CAS  Google Scholar 

  11. M. O. Speidel:Hydrogen in Metals, pp. 249–73, ASM, Metals Park, OH, 1974.

    Google Scholar 

  12. J. A. S. Green, H. W. Hayden, and W. G. Montague:Effect of Hydrogen on Behavior of Materials, pp. 200–15, TMS-AIME, NY, 1976.

    Google Scholar 

  13. J. R. Low:Progr. Mater. Sci., 1963, vol. 12, pp. 1–96.

    Google Scholar 

  14. W. E. Wood and W. W. Gerberich:Met. Trans., 1974, vol. 5, pp. 1285–94.

    Article  CAS  Google Scholar 

  15. A. W. Thompson:Environmental Degradation of Engineering Materials, pp. 3–17, VPI Press, Blacksburg, VA, 1977.

    Google Scholar 

  16. J. Albrecht, B. J. McTiernan, I. M. Bernstein, and A. W. Thompson:Scr. Met., 1977, vol. 11, pp. 893–97.

    Article  CAS  Google Scholar 

  17. R. J. Gest and A. R. Troiano:L’Hydrogene dans les Metaux, pp. 427–32, Editions Science et Industrie, Paris, 1972.

    Google Scholar 

  18. R. J. Gest and A. R. Troiano:Corrosion, 1974, vol. 30, pp. 374–79.

    Google Scholar 

  19. A. W. Thompson:Met. Trans., 1973, vol. 4, pp. 2819–25.

    Article  CAS  Google Scholar 

  20. M. R. Louthan, G. R. Caskey, J. A. Donovan, and D. E. Rawl:Mater. Sci. Eng., 1972, vol. 10, pp. 357–68.

    Article  CAS  Google Scholar 

  21. A. W. Thompson:Mater. Sci. Eng., 1974, vol. 14, pp. 253–64.

    Article  CAS  Google Scholar 

  22. H. Y. Hunsicker:Aluminum, vol. 1, pp. 109–62 (esp. p. 154), ASM, Metals Park, OH, 1967.

    Google Scholar 

  23. Metals Handbook, vol. 8, 8th Ed., p. 31, ASM, Metals Park, OH, 1973.

  24. A. R. Troiano:Trans. ASM, 1960, vol. 62, pp. 54–80.

    Google Scholar 

  25. J. Albrecht and G. Lütjering:Influence of Microstructure on Fatigue Crack Propagation Rate of Aluminum Alloys, Report ESA-TT-418, European Space Agency, Access No. N78-18203, DFVLR, Cologne, W. Germany, 1974.

    Google Scholar 

  26. L. M. Foster, T. H. Jack, and W. W. Hill:Met. Trans., 1970, vol. 1, pp. 3117–24.

    CAS  Google Scholar 

  27. J. A. Donovan:Met. Trans. A, 1976, vol. 7A, pp. 1677–83.

    Article  CAS  Google Scholar 

  28. M. R. Louthan, G. R. Caskey, and A. H. Dexter:Radiation Effects and Tritium Technology for Fusion Reactors, vol. IV, pp. 117–32, Oak Ridge Nat’l. Laboratory, Oak Ridge, TN, 1976.

    Google Scholar 

  29. H. W. Liu:J. Basic Eng. (Trans. ASME, Series D), 1970, vol. 92D, pp. 633–38.

    Google Scholar 

  30. L. Montgrain and P. R. Swann:Hydrogen in Metals, pp. 575–84, ASM, Metals Park, OH, 1974.

    Google Scholar 

  31. G. M. Scamans, R. Alani, and P. R. Swann:Corros. Sci., 1976, vol. 16, pp. 443–59.

    Article  CAS  Google Scholar 

  32. G. M. Scamans:J. Mater. Sci., 1978, vol. 13, pp. 27–36.

    Article  CAS  Google Scholar 

  33. A. W. Thompson:Effect of Hydrogen on Behavior of Materials, pp. 467–77. TMS-AIME, NY, 1976.

    Google Scholar 

  34. A. W. Thompson:Met. Trans. A, 1979, vol. 10A, pp. 727–31.

    Article  CAS  Google Scholar 

  35. G. S. Ansell, H. S. Kim, and H. C. Rogers:Trans. ASM, 1966, vol. 59, pp. 630–43.

    CAS  Google Scholar 

  36. A. W. Thompson and I. M. Bernstein:Fracture 1977, vol. 2, pp. 249–54, Univ. of Waterloo Press, Waterloo, Ontario, 1977.

    Google Scholar 

  37. R. J. Jacko and D. J. Duquette:Met. Trans. A, 1977, vol. 8A, pp. 1821–27.

    Article  CAS  Google Scholar 

  38. P. Doig, P. E. J. Flewitt, and J. W. Edington:Corrosion, 1977, vol. 33, pp. 217–21.

    CAS  Google Scholar 

  39. J. M. Chen, T. S. Sun, R. K. Viswanadham, and J. A. S. Green:Met. Trans. A, 1977, vol. 8A, pp. 1935–40.

    Article  CAS  Google Scholar 

  40. U. R. Evans:Stress Corrosion Cracking and Embrittlement, pp. 158–62, Wiley, NY, 1956.

    Google Scholar 

  41. J. C. Scully:Effect of Hydrogen on Behavior of Materials, pp. 129–47, TMS-AIME, NY, 1976.

    Google Scholar 

  42. R. M. Latanision, O. H. Gastine, and C. R. Compeau:Environment-Sensitive Fracture of Engineering Materials, pp. 48–70, TMS-AIME, Warrendale, PA, 1979.

    Google Scholar 

  43. A.J. Bursle and E. N. Pugh:, pp. 18–47.

    Google Scholar 

  44. A. W. Thompson:, pp. 379–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

J. ALBRECHT, formerly with the Department of Metallurgy and Materials Science, Carnegie-Mellon University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, J., Thompson, A.W. & Bernstein, I.M. The role of microstructure in hydrogen-assisted fracture of 7075 aluminum. Metall Trans A 10, 1759–1766 (1979). https://doi.org/10.1007/BF02811712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811712

Keywords

Navigation