Skip to main content
Log in

An analysis of cavity growth during superplasticity

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Cavity growth at high temperatures may be controlled by vacancy diffusion, giving cavities which are approximately spherical and randomly distributed, or by power-law creep, giving cavities which are elongated and aligned in the direction of the tensile stress. In general, diffusion growth is favored at low total strains, and there is a transition to power-law growth at a critical cavity radius,r c. The value ofr c increases with decreasing strain-rate, so that there is also a transition from predominanly power-law growth at high stress levels to predominantly diffusion growth at low stress levels. Both types of cavities have been observed in superplastic materials, but the diffusion growth rate may be enhanced if the cavity intersects a number of grain boundaries. The analysis is in good agreement with experimental results reported for three diffent superplastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Sagat, P. Blenkinsop, and D.M.R. Taplin:J. Inst. Metals, 1972, vol. 100, pp. 268–74.

    CAS  Google Scholar 

  2. G. L. Dunlop, E. Shapiro, D. M. R. Taplin, and J. Crane:Met. Trans, 1973, vol. 4, pp. 2039–44.

    Article  CAS  Google Scholar 

  3. K. Matsuki and M. Yamada:J. Jpn. Inst. Met., 1973, vol. 37, pp. 448–54.

    Google Scholar 

  4. R. G. Fleck, C. J. Beever, and D. M. R. Taplin:J. Mater. Sci., 1974, vol. 9, pp. 1737–44.

    Article  CAS  Google Scholar 

  5. C. W. Humphries and N. Ridley:J. Mater. Sci., 1974, vol. 9, pp. 1429–35.

    Article  CAS  Google Scholar 

  6. S. Sagat and D. M. R. Taplin:Acta Met., 1976, vol. 24, pp. 307–15.

    Article  CAS  Google Scholar 

  7. H. Ishikawa, D. G. Bhat, F. A. Mohamed, and T. G. Langdon:Met. Trans. A, 1977, vol. 8A, pp. 523–25.

    Article  CAS  Google Scholar 

  8. S.-A. Shei and T. G. Langdon:J. Mater. Sci., 1978, vol. 13, pp. 1084–92.

    Article  CAS  Google Scholar 

  9. D. W. Livesey and N. Ridley:Met. Trans. A, 1978, vol. 9A, pp. 519–26.

    Article  CAS  Google Scholar 

  10. D. A. Miller and T. G. Langdon:Met. Trans. A, 1978, vol. 9A, pp. 1688–90.

    Article  CAS  Google Scholar 

  11. W. Beere and M. V. Speight:Met. Sci., 1978, vol. 12, pp. 172–76.

    Article  CAS  Google Scholar 

  12. R. W. Balluffi and L. L. Seigle:Acta Met., 1957, vol. 5, pp. 449–54.

    Article  CAS  Google Scholar 

  13. D. Hull and D. E. Rimmer:Phil. Mag., 1959, vol. 4, pp. 673–87.

    Article  CAS  Google Scholar 

  14. M. V. Speight and J. E. Harris:Met. Sci. J., 1967, vol. 1, pp. 83–85.

    Article  CAS  Google Scholar 

  15. B. F. Dyson and D. M. R. Taplin:Grain Boundaries, pp. E23–28. The Institution of Metallurgists. London, 1976.

    Google Scholar 

  16. M. V. Speight and W. Beere:Met. Sci., 1975, vol. 9, pp. 190–91.

    Article  Google Scholar 

  17. R. Raj and M. F. Ashby:Acta Met., 1975, vol. 23, pp. 653–66.

    Article  Google Scholar 

  18. J. W. Hancock:Met. Sci., 1976, vol. 10, pp. 319–25.

    Article  CAS  Google Scholar 

  19. F. A. McClintock:J. Appl. Mech., 1968, vol. 35, pp. 363–71.

    Google Scholar 

  20. R. J. DiMelfi and W. D. Nix:Int. J. Fract., 1977, vol. 13, pp. 341–48.

    CAS  Google Scholar 

  21. W. D. Nix, D. K. Matlock and R. J. DiMelfi:Acta Met. 1977, vol. 25, pp. 495–503.

    Article  CAS  Google Scholar 

  22. D. W. James and G. M. Leak:Phil. Mag., 1965, vol. 12, pp. 491–503.

    Article  CAS  Google Scholar 

  23. H. Jones:Met. Sci. J., 1971, vol. 5, pp. 15–18.

    Article  CAS  Google Scholar 

  24. S.-A. Shei and T. G. Langdon:Acta Met., 1978, vol. 26, pp. 639–46.

    Article  CAS  Google Scholar 

  25. S.-A. Shei and T. G. Langdon:Acta Met., 1978, vol. 26, pp. 1153–58.

    Article  CAS  Google Scholar 

  26. M. F. Ashby:Acta Met., 1972, vol. 20, pp. 887–97.

    Article  CAS  Google Scholar 

  27. E. S. Wadja:Acta Met., 1954, vol. 2, pp. 184–87.

    Article  Google Scholar 

  28. T. E. Volin and R. W. Balluffi:Phys. Status Solidi, 1968, vol. 25, pp. 163–73.

    Article  CAS  Google Scholar 

  29. H. Ishikawa, F. A. Mohamed, and T. G. Langdon:Phil. Mag., 1975, vol. 32, pp. 1269–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

DAVID A. MILLER, formerly Research Associate, Department of Materials Science, University of Southern California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.A., Langdon, T.G. An analysis of cavity growth during superplasticity. Metall Trans A 10, 1869–1874 (1979). https://doi.org/10.1007/BF02811731

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811731

Keywords

Navigation