Skip to main content
Log in

A fracture mechanics study of stress corrosion cracking of type-316 austenitic steel

  • Environmental Interactions
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A new test specimen configuration, designated the T-notch double cantilever beam (TNDCB), was developed, calibrated and employed for a fracture mechanics study of stress corrosion cracking (SCC) of cold worked Type-316 austenitic stainless steel exposed to hot aqueous solutions of 44.7 wt pct MgCl2. The effects of stress intensity (K I ), temperature (T) and electrochemical potential (E) upon the crack velocity (v) and fractography were investigated. The stress intensity (K ISCC ) below whichv became immeasurably small was ∼12 MN·m−3/2. Above this value, three regions of behavior were observed. Region I exhibitedK I dependent cracking followed by Region II which exhibitedK I independent cracking and an apparent activation energy of 63 to 67 kJ/mol, followed by Region III where cracking again became dependent uponK I . The relative proportions of intergranular and transgranular crack paths were markedly dependent upon bothK I andE, and less sensitive toT. Crack velocity was insensitive to small changes inE with respect to the free corrosion potentials (E corr), but could be terminated by an applied active potential of ∼−0.35 VSCE. The pH within the propagating crack was estimated to be <1.0 atE corr, rising to ∼4.5 at −0.35 VSCE. The mechanism of SCC was discussed with respect to film rupture events caused by crack tip plastic deformation, adsorption controlled processes on the metal surface, and hydrogen diffusion in the metal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. O. Speidel:Met. Trans. A, 1975, vol. 6A, pp. 631–51.

    Article  CAS  Google Scholar 

  2. M. J. Blackburn, J. A. Feeney, and T. R. Beck,Advances in Corrosion Science and Technology, vol. 3, pp. 67–292, Plenum Press, NY, 1973.

    Google Scholar 

  3. L. P. Lee and D. Tromans:Environment Sensitive Fracture of Engineering Materials, Z. A. Foroulis, ed., AIME, 1979.

  4. B. F. Brown:The Theory of Stress Corrosion Cracking in Alloys, J. C. Scully, ed., pp. 186–203, NATO, Brussels, 1971.

    Google Scholar 

  5. Stress Corrosion—New Approaches, H. L. Craig, ed., ASTM STP 610, ASTM, Philadelphia, 1976.

    Google Scholar 

  6. M. J. Robinson and J. C. Scully:Proceedings of 1973 Firminy Conference—Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R. W. Staehle, J. Hochman, R. D. McCright, and J. E. Slater, eds., pp. 1095–1103, NACE, Houston, 1977.

    Google Scholar 

  7. H. Lefakis and W. Rostoker:Corrosion, 1977, vol. 33, pp. 178–81.

    CAS  Google Scholar 

  8. M. O. Speidel:Corrosion, 1977, vol. 33, pp. 199–203.

    CAS  Google Scholar 

  9. M. O. Speidel:Corrosion, 1976, vol. 32, pp. 187–90.

    CAS  Google Scholar 

  10. A. Bursle: Ph.D Thesis, Univ. of New South Wales, 1977.

  11. R. M. Latanision and R. W. Staehle.Proceedings of Conference—Fundamental Aspects of Stress Corrosion Cracking, R. W. Staehle, A. J. Forty, and D. van Rooyen, eds., pp. 214–96, NACE, Houston, 1969.

    Google Scholar 

  12. R. W. Staehle,The Theory of Stress Corrosion Cracking in Alloys, J. C. Scully, ed., pp. 223–86, NATO, Brussels, 1971.

    Google Scholar 

  13. S. W. Dean, Jr.,Stress Corrosion—New Approaches, H. L. Craig, ed., pp. 308–37, ASTM STP 610, ASTM, Philadelphia, 1976.

    Google Scholar 

  14. M. A. Streicher and I. B. Casale.Proceedings of Conference—Fundamental Aspects of Stress Corrosion Cracking, R. W. Staehle, A. J. Forty, and D. van Rooyen, eds., pp. 305–07, NACE, Houston, 1969.

    Google Scholar 

  15. A. J. Sedriks:Corrosion, 1975, vol. 31, p. 339.

    CAS  Google Scholar 

  16. H. Tada, P. C. Paris, and G. R. Irwin:The Stress Analysis of Cracks Handbook, Del Research Corp, Hellertown, PA, 1973.

    Google Scholar 

  17. W. F. Brown and J. E. Srawley: ASTM STP 410, ASTM, Philadelphia, 1966.

    Google Scholar 

  18. G. R. Irwin and J. A. Kies:Weld. J. Res. Suppl., 1954, vol. 33, pp. 193–98.

    Google Scholar 

  19. J. F. Knott:Fundamentals of Fracture Mechanics, Butterworths, London, 1973.

    Google Scholar 

  20. Metals Handbook—Properties and Selection of Metals, vol. 1, ASM, Metals Park, OH, 1961.

  21. H. H. Lee and H. H. Uhlig:J. Electrochem. Soc., 1970, vol. 117, pp. 18–22.

    Article  CAS  Google Scholar 

  22. J. A. Davis and B. E. Wilde:J. E. Electrochem. Soc., 1970, vol. 117, pp. 1348–51.

    Article  CAS  Google Scholar 

  23. Digby D. Macdonald:Modern Aspects of Electrochemistry, B. E. Conway and J. O'M Bockris, eds., no. 11, pp. 141–97, Plenum Press, NY, 1975.

    Google Scholar 

  24. R. J. Biernat and R. G. Robins:Electrochem. Acta, 1972, vol. 17, pp. 1261–83.

    Article  CAS  Google Scholar 

  25. H. H. Uhlig and E. W. Cook, Jr.:J. Electrochem. Soc., 1969, vol. 116, pp. 173–77.

    Article  CAS  Google Scholar 

  26. P. Doig and P. E. J. Flewitt:Met. Trans. A, 1978, vol. 9A, pp. 357–62.

    Article  CAS  Google Scholar 

  27. Chemical Engineers Handbook, J. H. Perry, ed., McGraw Hill, NY, 1941.

    Google Scholar 

  28. T. P. Nikiforuk: M.A. Sc. Thesis, Univ. of British Columbia, 1976.

  29. M. Marek and R. F. Hochman:Corrosion, 1970, vol. 26, pp. 5–6.

    CAS  Google Scholar 

  30. J. D. Harston and J. C. Scully:Corrosion, 1970, vol. 26, pp. 387–95.

    CAS  Google Scholar 

  31. B. G. Ateya and H. W. Pickering:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., pp. 207–22, ASM, Metals Park, OH, 1974.

    Google Scholar 

  32. B. E. Wilde:J. Electrochem. Soc., 1971, vol. 118, pp. 1717–25.

    Article  CAS  Google Scholar 

  33. W. F. Linke and A. Seidell:Solubilities Inorganic and Metal-Organic Compounds, vol. II, 517, Chem. Soc., Washington, D.C., 1965.

    Google Scholar 

  34. J. W. Cobble:J. Am Chem. Soc., 1964, vol. 86, pp. 5394–5401.

    Article  CAS  Google Scholar 

  35. M. G. Fontana and N. D. Greene:Corrosion Engineering, McGraw-Hill, NY, 1978.

    Google Scholar 

  36. J. C. Scully:The Theory of Stress Corrosion Cracking in Alloys, J. C. Scully, ed., pp. 1–16, NATO, Brussels, 1971.

    Google Scholar 

  37. D. A. Vermilyea:Proceedings of 1973 Firminy Conference—Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R. W. Staehle, J. Hochmann, R. D. McCright, and J. E. Slater, eds., pp. 208–17, NACE, Houston, 1977.

    Google Scholar 

  38. D. S. Dugdale:J. Mech. Phys. Solids, 1960, vol. 8, p. 100.

    Article  Google Scholar 

  39. F. A. McClintock and G. R. Irwin:Fracture Toughness Testing and Its Applications, pp. 84–113, ASTM STP 381, ATM Philadelphia, 1964.

    Google Scholar 

  40. S. Glasstone, K. Laidler, and H. Eyring:Theory of Rate Processes, McGraw-Hill, NY, 1941.

    Google Scholar 

  41. M. R. Louthan, Jr. and R. G. Derrick:Corros. Sci. 1975, vol. 15, pp. 565–77.

    Article  CAS  Google Scholar 

  42. J. C. Scully:Met. Sci., 1978, vol. 12, pp. 290–300.

    Article  CAS  Google Scholar 

  43. Passivity and Its Breakdown on Iron and Iron Base Alloys, R. W. Staehle and H. Okada, eds., NACE, Houston, 1976.

    Google Scholar 

  44. H. H. Uhlig:Proceedings of Conference—Fundamental Aspects of Stress Corrosion Cracking, R. W. Staehle, A. J. Forty, and D. van Rooyen, eds., pp. 86–91, NACE, Houston, 1969.

    Google Scholar 

  45. H. H. Uhlig:Passivity and Its Breakdown on Iron and Iron Base Alloys, R. W. Staehle and H. Okada, eds., pp. 110–11, NACE, Houston, 1976.

    Google Scholar 

  46. M. R. Louthan Jr.:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., pp. 53–75, ASM, Metals Park, OH, 1974.

    Google Scholar 

  47. A. W. Thompson:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., pp. 91–102, ASM, Metals Park, OH, 1974.

    Google Scholar 

  48. H. Okada, S. Abe and T. Murata:Passivity and Its Breakdown on Iron and Iron Base Alloys, R. W. Staehle and H. Okada, eds., pp. 147–54, NACE, Houston, 1976.

    Google Scholar 

  49. J. M. West:Electrodeposition and Corrosion Processes, D. Van Nostrand, ed., London, 1965.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Alan J. RUSSELL, formerly Research Student, University of British Columbia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, A.J., Tromans, D. A fracture mechanics study of stress corrosion cracking of type-316 austenitic steel. Metall Trans A 10, 1229–1238 (1979). https://doi.org/10.1007/BF02811978

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811978

Keywords

Navigation