Skip to main content
Log in

Crack size effects on the chemical driving force for aqueous corrosion fatigue

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Small crack size accelerates corrosion fatigue propagation through high strength 4130 steel in aqueous 3 pct NaCl. The size effect is attributed to crack geometry dependent mass transport and electrochemical reaction processes which govern embrittlement. For vacuum or moist air, growth rates are defined by stress intensity range independent of crack size (0.1 to 40 mm) and applied maximum stress (0.10 to 0.95 Φys). In contrast small (0.1 to 2 mm) surface elliptical and edge cracks in saltwater grow up to 500 times faster than long (15 to 40 mm) cracks at constant δK. Small cracks grow along prior austenite grain boundaries, while long cracks propagate by a brittle transgranular mode associated with tempered martensite. The small crack acceleration is maximum at low δK levels and decreases with increasing crack length at constant stress, or with increasing stress at constant small crack size. Reductions in corrosion fatigue growth rate correlate with increased brittle transgranular cracking. Crack mouth opening, proportional to the crack solution volume to surface area ratio, determines the environmental enhancement of growth rate and the proportions of inter- and transgranular cracking. Small cracks grow at rapid rates because of enhanced hydrogen production, traceable to increased hydrolytic acidification and reduced oxygen inhibition within the occluded cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. McEvily and R. P. Wei:Corrosion Fatigue: Chemistry, Me- chanics and Microstructure, O. Devereaux, A. J. McEvily, and R.W. Staehle, eds., NACE, Houston, TX, 1973, pp. 381–95.

    Google Scholar 

  2. R. P. Wei and Gunchoo Shim:Corrosion Fatigue Mechanics: Metal- lurgy, Electrochemistry and Engineering, ASTM STP 801,T. W. Crooker and B.N. Leis, eds., ASTM, Philadelphia, PA, 1983, pp. 5–25.

    Google Scholar 

  3. P. M. Scott:Corrosion Fatigue Mechanics: Metallurgy, Electro- chemistry and Engineering, ASTM STP 801, T. W. Crooker and B.N. Leis, eds., ASTM, Philadelphia, PA, 1983, pp. 110–43.

    Google Scholar 

  4. R.N. Parkins:Metal Sci., 1979, vol. 13, pp. 381–86.

    CAS  Google Scholar 

  5. T. W. Crooker, S.J. Gill, G.R. Yoder, and F.D. Bogar:Environment-Sensitive Fracture: Evaluation and Comparison of Test Methods, ASTM STP 821, T. Dean, E. N. Pugh, and G.M. Ugiansky, eds., ASTM, Philadelphia, PA, 1984.

    Google Scholar 

  6. C. E. Jaske, D. Broek, J. E. Slater, and W. E. Anderson:Corrosion Fatigue Technology, ASTM STP 642, H. L. Craig, Jr., T. W. Crooker, and D.W. Hoeppner, eds., ASTM, Philadelphia, PA, 1978, pp. 1–47.

    Google Scholar 

  7. R. P. Wei:Fatigue Mechanisms, ASTM STP 675, J.T. Fong, ed., ASTM, Philadelphia, PA, 1979, pp. 816–31.

    Google Scholar 

  8. C.E. Jaske, J.H. Payer, and V. S. Balint: MCIC Report 81-42, Battelle, Columbus, OH, 1981.

  9. R.P. Wei and G.W. Simmons:Int. J. Frac, 1981, vol. 17, pp. 235–47.

    Article  CAS  Google Scholar 

  10. R.W. Hertzberg:Deformation and Fracture Mechanics of Engineer- ing Materials, 2nd ed., John Wiley and Sons, New York, NY, 1983, pp. 519–618.

    Google Scholar 

  11. B.F. Brown:Met. Rev., 1968, Review 129, pp. 171–83.

    Google Scholar 

  12. S. R. Novak and S. T. Rolfe:Corrosion, 1970, vol. 26, pp. 121–30.

    CAS  Google Scholar 

  13. S.R. Novak: Ph.D. Dissertation, University of Pittsburgh, Pitts- burgh, PA, 1977.

    Google Scholar 

  14. P. Shahinian and R. W. Judy, Jr.:Stress Corrosion— New Approaches, ASTM STP 610, H.L. Craig, Jr., ed., ASTM, Phila- delphia, PA, 1982, pp. 128–42.

    Google Scholar 

  15. O. Vosikovsky and R. J. Cooke:Int. J. Pres. Ves. Piping, 1978, vol. 6, pp. 113–29.

    Article  Google Scholar 

  16. R.P. Gangloff:Advances in Crack Length Measurement, C.J. Beevers, ed., EMAS, London, 1982, pp. 175–230.

    Google Scholar 

  17. S. J. Hudak, Jr.:J. Engr. Math. Tech., 1981, vol. 103, pp. 26–35.

    Article  CAS  Google Scholar 

  18. M.H. El Haddad, T.J. Topper, and B. Mukherjee:J. Test. Eval., 1981, vol. 9, pp. 65–81.

    Article  Google Scholar 

  19. J.C. Newman, Jr.:Behavior of Short Cracks in Airframe Components, Conf. Proc. No. 328, AGARD, France, 1983, pp. 6.1–6.26.

    Google Scholar 

  20. R.O. Ritchie and S. Suresh:Matl. Sci. and Engr., 1983, vol. 57, pp. 27–30.

    Article  Google Scholar 

  21. K.S. Chan and J. Lankford:Scripta Met., 1983, vol. 17, pp. 529–32.

    Article  Google Scholar 

  22. J.F. McCarver and R.O. Ritchie:Matl. Sci. and Engr., 1982, vol. 55, pp. 63–67.

    Article  Google Scholar 

  23. S. Suresh and R.O. Ritchie:Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

  24. D. L. Davidson:Fat. Eng. Matl. Struc, 1981, vol. 3, pp. 229–36.

    Article  Google Scholar 

  25. A. Rezrek, M.R. James, and W.L. Morris:Metall. Trans. A, 1983, vol. 14A, pp. 1697–705.

    Google Scholar 

  26. R. P. Gangloff and R. O. Ritchie:Fundamentals of Deformation and Fracture, K. J. Miller, ed., Cambridge University Press, Cambridge, in press, 1984.

    Google Scholar 

  27. R.P. Gangloff:Res. Mech. Let., 1981, vol. 1, pp. 299–306.

    CAS  Google Scholar 

  28. W.G. Clark, Jr.:Cracks and Fracture, ASTM STP 601, ASTM, Philadelphia, PA, 1976, pp. 138–53.

    Google Scholar 

  29. P. Doig and P. E. J. Flewitt:Metall. Trans. A, 1983, vol. 14A, pp. 978–83.

    Google Scholar 

  30. S. Usami and S. Shida:Fat. Engr. Matl. Struc, 1979, vol. 1, pp. 471–81.

    Article  CAS  Google Scholar 

  31. D. Taylor and J.F. Knott:Fat. Eng. Matl. Struc., 1981, vol. 4, pp. 147–55.

    Article  CAS  Google Scholar 

  32. R. J. Taunt and W. Charnock:Matl. Sci. and Engr., 1978, vol. 35, pp. 219–28.

    Article  Google Scholar 

  33. F J. Bradshaw:Scripla Met., 1967, vol. 1, pp. 41–43.

    Article  Google Scholar 

  34. B.R. Lawn:Mat. Sci. and Engr., 1974, vol. 13, pp. 277–83.

    Article  CAS  Google Scholar 

  35. T. W. Weir, G. W. Simmons, R. G. Hart, and R. P. Wei:ScriptaMet., 1980, vol. 14, pp. 357–64.

    Article  CAS  Google Scholar 

  36. A. Turnbull and J.G.N. Thomas:J. Electrochem. Soc., 1982, vol. 129, pp. 1412–22.

    Article  CAS  Google Scholar 

  37. A. Turnbull:Br. Corros. J., 1980, vol. 15, pp. 162–71.

    CAS  Google Scholar 

  38. A. Turnbull:Corr. Sci., 1982, vol. 22, pp. 877–93.

    Article  CAS  Google Scholar 

  39. W. H. Hartt, J. S. Tennant, and W. C. Hooper:Corrosion Fatigue Technology, ASTM STP 642, H. L. Craig, Jr., T. W. Crooker, and D.W. Hoeppner, eds., ASTM, Philadelphia, PA, 1978, pp. 5–18.

    Google Scholar 

  40. R. Alkire and D. Sutari:J. Electrochem Soc., 1979, vol. 26, pp. 15–22.

    Article  Google Scholar 

  41. P. Doig and P. E. J. Flewitt:Corrosion, 1981, vol. 37, pp. 378–83.

    CAS  Google Scholar 

  42. B. Tompkins:Proc Conf. Influence of Environment on Fatigue, Inst. Mech. Engr., London, 1977, pp. 111–16.

    Google Scholar 

  43. J.M. Barsom:Int. J. Frac. Mech., 1971, vol. 7, pp. 163–82.

    Google Scholar 

  44. J.A. Smith, M.H. Peterson, and B.F. Brown:Corrosion, 1970, vol. 26, pp. 255–58.

    Google Scholar 

  45. G. Sandoz, C. T. Fujii, and B. F. Brown:Corr. Sci., 1970, vol. 10, pp. 839–45.

    Article  CAS  Google Scholar 

  46. P. A. Parrish, K. B. Das, C. M. Chen, and E. D. Verink, Jr.:Effect of Hydrogen on Behavior of Materials, A. W. Thompson and I. M. Bernstein, eds., TMS-AIME, Warrendale, PA, 1976, pp. 169–81.

    Google Scholar 

  47. B.F. Brown:Stress Corrosion Cracking and Hydrogen Em- brittlement of Iron Base Alloys, J. Hockmann, J. Slater, R. D. McCright, and R. W. Staehle, eds., NACE, Houston, TX, 1976, pp. 747–50.

    Google Scholar 

  48. S. Suresh and R.O. Ritchie:Scripta Met., 1983, vol. 17, pp. 575–80.

    Article  CAS  Google Scholar 

  49. R. van der Velden, H. L. Ewalds, and W. A. Schultze:Corrosion Fatigue: Mechanics, Metallurgy, Electrochemistry and Engineering, ASTM STP 801, T. W. Crooker and B. N. Leis, eds., ASTM, Phila- delphia, PA, 1983, pp. 64–80.

    Google Scholar 

  50. E. Bardai, J. M. SΦndenfor, and P. O. Gartland:Proc. Conf. Euro- pean Offshore Steel Research, Welding Institute, London, 1978, pp. 415–38.

    Google Scholar 

  51. B.F. Jones:J. Matl. Sci., 1982, vol. 17, pp. 499–507.

    Article  CAS  Google Scholar 

  52. R.P. Gangloff:Fatigue Crack Growth Measurement and Data Analysis, ASTM STP 738, S. J. Hudak, Jr. and R. J. Bucci, eds., ASTM, Philadelphia, PA, 1981, pp. 120–38.

    Google Scholar 

  53. W. C. Hooper and W. H. Hartt:Corrosion, 1978, vol. 34, pp. 320–23.

    CAS  Google Scholar 

  54. W. H. Hartt and S.S. Rajpathak: Corrosion 83, Paper No. 62, NACE, Houston, TX, 1983.

    Google Scholar 

  55. M. Müller:Metall. Trans. A, 1982, vol. 13A, pp. 649–55.

    Google Scholar 

  56. D. W. Hoeppner:Fatigue Mechanisms, ASTM STP 675, J. T. Fong, ed., ASTM, Philadelphia, PA, 1979, pp. 841–70.

    Google Scholar 

  57. H.H. Lee and H.H. Uhlig:Metall. Trans., 1972, vol. 3, pp. 2949–57.

    Article  CAS  Google Scholar 

  58. B.D. Craig and G. Krauss:Metall. Trans. A, 1980, vol. 11A, pp. 1799–807.

    CAS  Google Scholar 

  59. D.L. Williamson, R.G. Shupmann, J.P. Materkowski, and G. Krauss:Metall. Trans. A, 1979, vol. 10A, pp. 379–82.

    CAS  Google Scholar 

  60. F. Zia-Ebrahimi and G. Krauss:Metall. Trans. A, 1983, vol. 14A, pp. 1109–19.

    CAS  Google Scholar 

  61. 1980 Annual Book of ASTM Standards, Part 10, E647-78T, ASTM, Philadelphia, PA, 1980, pp. 749–67.

  62. G.R. Yoder, L. A. Cooley, and T. W. Crooker:Fatigue Crack Growth Measurement and Data Analysis, ASTM STP 738, S. J. Hudak, Jr. and R.J. Bucci, eds., ASTM, Philadelphia, PA, 1981, pp. 85–102.

    Google Scholar 

  63. R.P. Gangloff:Fat. Engr. Matl. Struc., 1981, vol. 4, pp. 15–31.

    Article  CAS  Google Scholar 

  64. R. H. Van Stone, D. D. Krueger, and L. T. Duvelius:Fracture Me- chanics: I4th Symposium, ASTM STP 791, J.C. Lewis and G. Sines, eds., ASTM Philadelphia, PA, 1984, vol. II, pp. 553–78.

    Google Scholar 

  65. H. Tacta, P. C. Paris, and G. R. Irwin:The Stress Analysis of Cracks Handbook, Del Research Corp., St. Louis, MO, 1973, p. 2.10.

    Google Scholar 

  66. M. O. Speidel:High Temperature Materials in Gas Turbines, Am Elsevier Publ. Co., New York, NY, 1974, pp. 207–55.

    Google Scholar 

  67. E. J. Imhof and J. M. Barsom:Progress in Flaw Growth and Frac- ture Toughness Testing, ASTM STP 536, ASTM, Philadelphia, PA, 1973, pp. 182–205.

    Google Scholar 

  68. J.M. Barsom, E.J. Imhof, and S.T. Rolfe:J. Eng. Frac Mech., 1971, vol. 2, pp. 301–21.

    Article  CAS  Google Scholar 

  69. R.J. Bucci:Fatigue Crack Growth Measurement and Data Analysis, ASTM STP 738, S.J. Hudak, Jr. and R.J. Bucci, eds., ASTM, Philadelphia, PA, 1981, pp. 5–28.

    Google Scholar 

  70. J. M. Barsom:Corrosion Fatigue, O. F. Devereux, A. J. McEvily, and R.W. Staehle, eds., NACE, Houston, TX, 1972, pp. 424–36.

    Google Scholar 

  71. S.J. Hidak, Jr. and R. P. Wei:Int. J. Pressure Vessels and Piping, 1981, vol. 9, pp. 63–74.

    Article  Google Scholar 

  72. C. S. Carter: “Stress Corrosion Cracking and Corrosion Fatigue of Medium and High Strength Steels,” Boeing Company Report, Seattle, WA, 1977.

    Google Scholar 

  73. G. Sandoz: “High Strength Steels,” inStress Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys, B.F. Brown, ed., Naval Research Laboratory Report, Washington, DC, 1972.

    Google Scholar 

  74. H. E. Townsend, Jr.:Metall. Trans. A, 1975, vol. 6A, pp. 877–89.

    CAS  Google Scholar 

  75. P. N. Thielen and M. E. Fine:Metall. Trans. A, 1975, vol. 6A, pp. 2133–44.

    CAS  Google Scholar 

  76. O. Vosikovsky:Trans. ASME, 1975, vol. 97, pp. 298–304.

    CAS  Google Scholar 

  77. I. M. Austen and E. F. Walker:Proc Conf. Influence of Environment on Fatigue, Inst. Mech. Engr., London, 1977, pp. 1–10.

    Google Scholar 

  78. R. P. Gangloff: Exxon Research and Engineering Report CR.26BV.84, Annandale, NJ, 1984.

    Google Scholar 

  79. R. P. Gangloff:Embrittlement by the Localized Crack Environment, R. P. Gangloff, ed., TMS-AIME, Warrendale, PA, 1984, pp. 265–90.

    Google Scholar 

  80. C.L. Briant and S.K. Banerji:Met. Rev., Review 232, 1978, pp. 164–99.

    Google Scholar 

  81. R.P. Gangloff and R.P. Wei:Fractography in Failure Analysis, ASTM STP 645, B. M. Strauss and W. H. Cullen, Jr., eds., ASTM, Philadelphia, PA, 1978, pp. 87–106.

    Google Scholar 

  82. B.D. Craig:Metall. Trans. A, 1982, vol. 13A, pp. 907–12.

    Google Scholar 

  83. R.P. Wei and G.W. Simmons:Scripta Met., 1976, vol. 10, pp. 153–58.

    Article  CAS  Google Scholar 

  84. P. M. Scott and D. R. V. Silvester: Tech Rep. UKOSRP 3/02, Harwell Corrosion Service, UKAEA, Harwell, 1977.

    Google Scholar 

  85. J. Congleton, I.H. Craig, B.K. Denton, and R.N. Parkins:Metal Sci., 1979, vol. 13, pp. 436–43.

    CAS  Google Scholar 

  86. R. Holder:Proc. Conf. Influence of Environment on Fatigue, Inst. Mech. Engr., London, 1977, pp. 37–41.

    Google Scholar 

  87. A. Turnbull: National Physical Laboratory Report, NPL DMA(D) 363, Teddington, 1983.

  88. H. G. Nelson and D. P. Williams:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloys, J. Hochmann, J. Slater, R. D. McCright, and R.W. Staehle, eds., NACE, Houston, TX, 1976, pp. 390–404.

    Google Scholar 

  89. P. M. Scott, T. W. Thorpe, and D. R. V. Silvester:Corr. Sci., 1983, vol. 23, pp. 559–75.

    Article  CAS  Google Scholar 

  90. D. Tromans: Metall. Trans. A, 1981, vol. 12A, pp. 1445–53.

    Google Scholar 

  91. J. McBreen and M. A. Genshaw:Proc. Conf. Fundamental Aspects of Stress Corrosion Cracking, R.W. Staehle, A.J. Forty, and D. Van Rooyen, eds., NACE, Houston, TX, 1969, pp. 51–63.

    Google Scholar 

  92. W. W. Gerberich and A.G. Wright:Environmental DegrAadation of Engineering Materials in Hydrogen, M. R. Louthan, R.P. McNitt, and R. D. Sisson, eds., VPI Press, Blacksburg, VA, 1981, pp. 183–206.

    Google Scholar 

  93. R.P. Wei and Ming Gao:Scripta Met., 1983, vol. 17, pp. 959–62.

    Article  Google Scholar 

  94. R. P. Gangloff: unpublished research, Exxon Research and Engineer- ing Company, Annandale, NJ, 1984.

    Google Scholar 

  95. S. Lynch:Advances in the Mechanics and Physics of Surfaces, R. M. Latanision and T. E. Fischer, eds., Harwood Academic Publishers, New York, NY, 1983, pp. 265–364.

    Google Scholar 

  96. J. Lankford:Fat. Engr. Math. Struc., 1983, vol. 6, pp. 15–31.

    Article  Google Scholar 

  97. J. Lankford ;Fat. Engr. Math. Struc., 1982, vol. 5, pp. 233–48.

    Article  Google Scholar 

  98. S. Suresh and R. O. Ritchie:Int. Met. Rev., 1984, in press.

  99. P. Chauhan and B.W. Roberts:Metall. Matl. Tech., 1979, pp. 131–36.

  100. S.J. Hudak, Jr., O. H. Burnside, and K.S. Chan: Offshore Tech- nology Conference Paper, OTC 4771, Houston, TX, 1984.

  101. S.J. Maddox:Weld. Res. Suppl., 1974, vol. 53, pp. 401s-09s.

    Google Scholar 

  102. J. M. Hyzak and I. M. Bernstein:Metall. Trans. A, 1982, vol. 13A, pp. 34–43.

    Google Scholar 

  103. M. Kesten and K. F. Windgassen:Hydrogen Effects in Metals, I. M. Bernstein and A. W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, pp. 1017–25.

    Google Scholar 

  104. H. G. Nelson:Effect of Hydrogen on the Behavior of Materials, A.W. Thompson and I.M. Bernstein, eds., TMS-AIME, War- rendale, PA, 1977, pp. 602–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangloff, R.P. Crack size effects on the chemical driving force for aqueous corrosion fatigue. Metall Trans A 16, 953–969 (1985). https://doi.org/10.1007/BF02814848

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814848

Keywords

Navigation