Skip to main content
Log in

Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Oxidative damage on biological molecules has been proposed as a major cause of alterations observed in aging brain as well as in neurodegenerative diseases. In this study, we measured membrane fluidity in mitochondria extracted from three cerebral regions and cerebellum of Alzheimer disease (AD) patients and age-matched controls by means of fluorescence polarization technique. A significant reduction of mitochondrial membrane fluidity was found in AD, except in cerebellum. In controls, a decrease of membrane fluidity was observed along with age, and it was also related to the content of the oxidized nucleoside 8-hydroxy-2′-deoxyguanosine (OH8dG) in mitochondrial DNA (mtDNA). Alteration in membrane fluidity seems to be a result of lipid peroxidation, since it dramatically decreased when mitochondria were exposed to FeCl2 and H2O2. The parallel increase of viscosity in mitochondrial membrane and the amount of OH8dG in mtDNA is suggestive of a relationship between these biological markers of oxidative stress. These results provide further evidence that oxidative stress may play a role in the pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando S., Kon K., Aino K., and Totani Y. (1990) Increased levels of lipid peroxides in aged rat brain as revealed by direct assay of peroxide values.Neurosci. Lett. 133, 199–204.

    Article  Google Scholar 

  • Beal M. F., Mattson W. R., and Swartz K. J. (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid.J. Neurochem. 55, 1327–1339.

    Article  PubMed  CAS  Google Scholar 

  • Benzi G. and Moretti A. (1995) Are reactive oxygen species involved in Alzheimer’s disease?Neurobiol. Aging 16, 661–674.

    Article  PubMed  CAS  Google Scholar 

  • Blass J. P. (1993) Pathophysiology of the Alzheimer syndrome.Neurology 43, 525–538.

    Google Scholar 

  • Chen J. J. and Yu B. P. (1994) Alterations in mitochondrial membrane fluidity by lipid peroxidation products.Free Radical Biol. Med. 17, 411–418.

    Article  CAS  Google Scholar 

  • Dyrks T., Dyrks E., Hartmann T., Masters C., and Beyreuther K. (1992) Amyloidogenicity of βA4 and βA4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation.J. Biol Chem. 267, 18,210–18,217.

    CAS  Google Scholar 

  • Dyrks T., Dyrks E., Masters C. L., and Beyreuther K. (1993) Amyloidogenicity of rodent and human βA4 sequences.FEBS Lett. 324, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Fraga C. G., Shigenaga M. K., and Park J-W. (1990) Oxidative damage to DNA during aging: 8-hydroxy-2′ deoxyguanosine in rat organ DNA and urine.Proc. Natl. Acad. Sci. USA 87, 4533–4537.

    Article  PubMed  CAS  Google Scholar 

  • Gabuzda D., Busciglio J., Chen L. B., Matsudaira C., and Yankner B. A. (1994) Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative.J. Biol. Chem. 6, 13,623–13,628.

    Google Scholar 

  • Ghosh C., Dick R. M., and Ali S. F. (1993) Iron/ascorbate-induced lipid peroxidation changes membrane fluidity and muscarinic cholinergic receptor binding in rat frontal cortex.Neurochem. Int. 23, 479–484.

    Article  PubMed  CAS  Google Scholar 

  • Hajimohammadreza I. and Brammer M. (1990) Brain membrane fluidity and lipid peroxidation in Alzheimer’s disease.Neurosci. Lett. 112, 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Hamm M. W., Winick M., and Schachter D. (1985) Macrophage phagocytosis and membrane fluidity in mice: the effect of age and dietary protein.Mech. Age Dev. 32, 11–20.

    Article  CAS  Google Scholar 

  • Hayakawa M., Torii K., and Sugiyama S. (1991) Age-associated accumulation of 8-hydroxy-2′-deoxyguanosine in mitochondrial DNA of human diaphragm.Biochem. Biophys. Res. Commun. 179, 1023–1029.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa M., Hattori K., Sugiyama S., and Ozawa T. (1992) Age-associated oxygen damage and mutations in mitochondrial DNA of human hearts.Biochem. Biophys. Res. Commun. 189, 979–985.

    Article  PubMed  CAS  Google Scholar 

  • Hruszkewycz A. M. (1992) Lipid peroxidation and mtDNA degeneration. A hypothesis.Mutat. Res. 275, 243–248.

    PubMed  CAS  Google Scholar 

  • Hruszkewycz A. M. and Bergtold D. S. (1990) The 8-hydroxyguanine content of isolated mitochondria increases with lipid peroxidation.Mutat. Res. 244, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Irazu C. E., Rajagopalan P. R., Orak J. K., Fitts C. T., and Singh I. (1990) Mitochondrial membrane fluidity changes in renal ischemia.J. Exp. Pathol. 5, 1–6.

    PubMed  CAS  Google Scholar 

  • Kasai H. and Nashimura S. (1984) Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents.Nucleic Acids Res. 12, 2137–2145.

    Article  PubMed  CAS  Google Scholar 

  • Kish S. J., Bergeron C., Rajput A., Doric S., Mastrogiacomo F., Chang L. J., Wilson D. M., Di Stefano L. M., and Nobrega J. N. (1992) Brain cytochrome oxidase in Alzheimer’s disease.J. Neurochem. 59, 776–779.

    Article  PubMed  CAS  Google Scholar 

  • Mecocci P., MacGarvey U., Kaufaman A. E., Koontz D., Shoffner J. M., Wallace D., and Beal M. F. (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain.Ann. Neurol. 34, 609–616.

    Article  PubMed  CAS  Google Scholar 

  • Mecocci P., MacGarvey U., and Beal M. F. (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease.Ann. Neurol. 36, 747–751.

    Article  PubMed  CAS  Google Scholar 

  • Mehrotra S., Kakkar P., and Viswanathan P. N. (1991) Mitochondrial damage by active oxygen species in vitro.Free Radical Biol. Med. 10, 277–285.

    Article  CAS  Google Scholar 

  • Miquel J. (1991) An integrated theory as the result of mitochondrial DNA mutation in differentiated cells.Arch. Gerontol. Geriatr. 12, 99–117.

    Article  PubMed  CAS  Google Scholar 

  • Mutisya E. M., Bowling A. C., and Beal M. F. (1994) Cortical cytochrome activity is reduced in Alzheimer’s disease.J. Neurochem. 63, 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  • Nohl H. (1986) Oxygen radical release in mitochondria: influence of age, inFree Radicals, Aging and Degenerative Diseases. (Johnson J. E., Jr. Walford R., Harman D., and Miquel J., eds.), Alan R. Liss, New York, pp. 77–97.

    Google Scholar 

  • Nohl H. and Hegner D. (1978) Do mitochondria produce oxygen radicals in vivo?Eur. J. Biochem. 82, 563–567.

    Article  PubMed  CAS  Google Scholar 

  • Orr W. C. and Sohal R. S. (1994) Extension of life-span by overexpression of superoxide dismutase and catalase inDrosophila melanogaster.Science 263, 1128–1130.

    Article  PubMed  CAS  Google Scholar 

  • Palmer A. M. and Burns M. A. (1994) Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer diseases.Brain Res. 645, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Paker W. D., Jr. Filley C. M., and Parks J. K. (1990) Cytochrome oxidase deficiency in Alzheimer’s disease.Neurology 40, 1302, 1303.

    Google Scholar 

  • Parker Jr. W. D., Mahr N. J., Filley C. M., Parks J. K., Hughes D., Young D. A., and Cullum C. A. (1994a) Reduced platelet cytochrome C oxidase activity in Alzheimer’s disease.Neurology 44, 1086–1090.

    PubMed  Google Scholar 

  • Parker W. D., Jr., Parks J., Filley C. M., and Kleinschmidt-De Masters B. K. (1994b) Electron transport chain defects in Alzheimer disease brain.Neurology 44, 1090–1996.

    PubMed  Google Scholar 

  • Partridge R. S., Monroe S. M., Parks J. K., Johnson K., Parker W. D., Eaton G. R., and Eaton S. S. (1994) Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles.Arch. Biochem. Biophys. 310, 210–217.

    Article  PubMed  CAS  Google Scholar 

  • Pryor W. A. (1986) Oxy-radicals and related species: their formation, lifetimes and reactions.Annu. Rev. Physiol. 48, 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Richter C., Park L-W., and Ames B. N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive.Proc. Natl. Acad. Sci. USA 85, 6465–6467.

    Article  PubMed  CAS  Google Scholar 

  • Saido T. C., Yokota M., Maruyama K., Yamao-Harigaya W., Tani E., Ihara Y., and Kawashima S. (1994) Spatial resolution of the primary β-amyloidogenic process induced in postischemic hippocampus.J. Biol. Chem. 269, 15,253–15,257.

    CAS  Google Scholar 

  • Saraiva A. A., Borges M. M., Madeira M. D., Tavares M. A., and Paula-Barbosa M. M. (1985) Mitochondrial abnormalities in cortical dendrites from patients with Alzheimer’s disease.J. Submicrosc. Cytol. 17, 459–464.

    PubMed  CAS  Google Scholar 

  • Shinitzky M. and Barenholz Y. (1978) Fluidity parameters of lipid regions determined by fluorescence polarization.Biochim. Biophys. Acta 515, 367–394.

    PubMed  CAS  Google Scholar 

  • Smith C. D., Carney J. M., Starke-Reed P. E., Oliver C. N., Stadtman E. R., Floyd R. A., and Markesbery W. R. (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and Alzheimer’s disease.Proc. Natl. Acad. Sci. USA 88, 10,540–10,543.

    CAS  Google Scholar 

  • Sohal R. S. (1993) Aging, cytochrome oxidase activity and hydrogen peroxide release by mitochondria.Free Radical Biol. Med. 14, 583–588.

    Article  CAS  Google Scholar 

  • Sohal R. S., Arnold L. A., and Sohal B. H. (1990) Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species.Free Radical Biol. Med. 10, 495–500.

    Article  Google Scholar 

  • Sohal R. S., Ku H-H., Agarwal S., Forster M. J., and Lal H. (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse.Mech. Age Dev. 74, 121–133.

    Article  CAS  Google Scholar 

  • Subbarao K. V., Richardson J. S., and Ang L. C. (1990) Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro.J. Neurochem. 55, 342–345.

    Article  PubMed  CAS  Google Scholar 

  • Tappel A. L. and Zalkin H. (1959) Lipid peroxidation in isolated mitochondria.Arch. Biochem. Biophys. 80, 326–332.

    Article  CAS  Google Scholar 

  • Troncoso J. C., Costello A., Watson A. L., Jr., and Johnson G. V. W. (1993) In vitro polymerization of oxidazed tau into filaments.Brain Res. 613, 313–316.

    Article  PubMed  CAS  Google Scholar 

  • Wahnon R., Mokady S., and Cogan U. (1989) Age and membrane fluidity.Mech. Age Dev. 50, 249–255.

    Article  CAS  Google Scholar 

  • Wells K., Farooqui A. A., Liss L., and Horrocks L. A. (1995) Neural membrane phospholipids in Alzheimer disease.Neurochem. Res. 20, 1329–1333.

    Article  PubMed  CAS  Google Scholar 

  • Yu B. P. (1993) Oxidative damage by free radicals and lipid peroxidation in aging, inFree Radicals in Aging (Yu B. P., ed.), CRC, Boca Raton, FL, pp. 57–88.

    Google Scholar 

  • Yu B. P., Suescon E. A., and Yang S. Y. (1992) Effect of age-related lipid peroxidation on membrane fluidity and phospholipase A2: modulation by dietary restriction.Mech. Age Dev. 65, 17–33.

    Article  CAS  Google Scholar 

  • Zhang J-R., Andrus P. K., and Hall E. D. (1991) Age-related phospholipid hydroperoxide levels in gerbil brain measured by HPLC-chemiluminescence and their relation to hydroxyl radical stress.Brain Res. 639, 275–282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mecocci, P., Beal, M.F., Cecchetti, R. et al. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Molecular and Chemical Neuropathology 31, 53–64 (1997). https://doi.org/10.1007/BF02815160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815160

Index Entries

Navigation