Skip to main content
Log in

Fatigue crack deflection and fracture surface contact: Micromechanical models

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The variation of cyclic crack propagation rates, under thecombined influence of crack kinking (deflection) and fracture surface contact (closure), is estimated from simple linear elastic analyses of tilted cracks. The predictions of the models are consistent with the experimental results of linear and kinked crack advance in high strength aluminum alloys testedin vacuo. Examples of crack deflection in various engineering alloy systems and some generalizations ofaverage deflection parameters based on microstructural and mechanical factors are discussed. The individual contributions to overall growth rates from deflection and closure processes are evaluated for different mechanical and metallurgical conditions. The significance, implications, and limitations of the models are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh:Metall. Trans. A, 1983, vol. 14A, p. 2375.

    Google Scholar 

  2. B.A. Bilby, G.E. Cardew, and I.C. Howard: inFracture 1977, D.M.R. Taplin, ed., University of Waterloo Press, 1977, vol. 3, p. 197.

  3. H. Kitagawa, R. Yuuki, and T. Ohira:Eng. Fract. Mech., 1975, vol. 7, p. 515.

    Article  Google Scholar 

  4. B. Cotterell and J. R. Rice:Int. J. Fract., 1980, vol. 16, p. 155.

    Article  Google Scholar 

  5. K.T. Faber and A.G. Evans:Acta Metall., 1983, vol. 31, p. 565.

    Article  Google Scholar 

  6. A.K. Vasudevan and S. Suresh:Mater. Sci. Eng., 1985, in press.

  7. S. Suresh:Eng. Fract. Mech., 1983, vol. 18, p. 577.

    Article  Google Scholar 

  8. S. Suresh and A. K. Vasudévan: inFatigue Crack Growth Threshold Concepts, D. L. Davidson and S. Suresh, eds., TMS-AIME, War- rendale, PA, 1984, p. 361.

    Google Scholar 

  9. K. Sadananda: in Proc. ICF6, P. Rama Rao and K.N. Raju, eds., Pergamon Press, New Delhi, 1984, in press.

    Google Scholar 

  10. N. Walker and C. J. Beevers:Fat. Eng. Mater. Struct., 1979, vol. 1, p. 135.

    Article  CAS  Google Scholar 

  11. K. Schulte, H. Nowack, and K. H. Trautmann:Z. Werkstofftech, 1980, vol. 11, p. 287.

    Article  CAS  Google Scholar 

  12. R. J. Asaro, L. Hermann, and J. M. Baik:Metall. Trans. A, 1981, vol. 12A, p. 1133.

    Google Scholar 

  13. K. Minakawaand A.J. McEvily:Scripta Met., 1981, vol. 15, p. 633.

    Article  Google Scholar 

  14. S. Suresh and R. O. Ritchie:Metall. Trans. A, 1982, vol. 13A, p. 1627.

    Google Scholar 

  15. S. Suresh and R.O. Ritchie: inFatigue Crack Growth Threshold Concepts, D.L. Davidson and S. Suresh, eds., TMS-AIME, War- rendale, PA, 1984, p. 227.

    Google Scholar 

  16. S. Suresh, A. K. Vasudévan, and P. E. Bretz:Metall. Trans. A, 1984, vol. 15A, p. 369.

    CAS  Google Scholar 

  17. R. D. Carter, E. W. Lee, E. A. Starke, Jr., and C. J. Beevers:Metall. Trans. A, 1984, vol. 15A, p. 555.

    CAS  Google Scholar 

  18. B. R. Kirby and C. J. Beevers:Fat. Eng. Mater. Struct., 1979, vol. 1, p. 203.

    Article  CAS  Google Scholar 

  19. M.C. Lafarie-Frenot and G. Gase:Fat. Eng. Mater. Struct., 1983, vol. 6, p. 329.

    Article  CAS  Google Scholar 

  20. J. Pettit: inFatigue Crack Growth Threshold Concepts, D. L. Davidson and S. Suresh, eds., TMS-AIME, Warrendale, PA, 1984, p. 3.

    Google Scholar 

  21. D. L. Davidson and J. Lankford:Crack-tip Plasticity Associated with Corrosion Assisted Fatigue, A Collection of Reprints from ONR Con- tract N0O014-75-C1O33 and unpublished related work, Southwest Research Institute, San Antonio, TX, 1983.

    Google Scholar 

  22. S. Suresh: unpublished results, Brown University, Providence, RI, 1984.

  23. H. Suzuki and A. J. McEvily, Jr.:Metall. Trans. A, 1979, vol. 10A, p. 475.

    CAS  Google Scholar 

  24. V.B. Dutta, S. Suresh, and R.O. Ritchie:Metall. Trans. A, 1984, vol. 15A, p. 1193.

    CAS  Google Scholar 

  25. W. J. Evans: inThe Practical Implications of Fracture Mechanisms, Ser. 2, No. 10, 604-73-Y, The Institution of Metallurgists, London, 1973, p. 153.

    Google Scholar 

  26. A.K. Vasudévan and S. Suresh:Metall. Trans. A, 1985, vol. 16A, in press.

  27. E. P. Louwaard: Delft Univ. of Tech., Dept. of Aero Eng., Report LR-243, Delft, The Netherlands, 1977.

    Google Scholar 

  28. E. J. Coyne, Jr., T. H. Sanders, Jr., and E. A. Starke, Jr.: inProc. 1st Int. Aluminum-Lithium Conf., T. H. Sanders, Jr. and E. A. Starke, Jr., eds., TMS-AIME, Warrendale, PA, 1981, p. 293.

    Google Scholar 

  29. A. K. Vasudévan, P. E. Bretz, A. C. Miller, and S. Suresh:Mater. Sci. Eng., 1984, vol. 64, p. 113.

    Article  Google Scholar 

  30. J. Lankford and D. L. Davidson: inAdvances in Fracture Research, D. Francois, ed., Pergamon Press, Oxford, 1981, vol. 2, p. 899.

    Google Scholar 

  31. C.F. Shih: Ph.D. Thesis, Harvard University, 1973.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh, S. Fatigue crack deflection and fracture surface contact: Micromechanical models. Metall Trans A 16, 249–260 (1985). https://doi.org/10.1007/BF02816051

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816051

Keywords

Navigation