Skip to main content
Log in

Strain Hardening of Hadfield Manganese Steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The plastic flow behavior of Hadfield manganese steel in uniaxial tension and compression is shown to be greatly influenced by transformation plasticity phenomena. Changes in the stress-strain (σ−ε) curves with temperature correlate with the observed extent of deformation twinning, consistent with a softening effect of twinning as a deformation mechanism and a hardening effect of the twinned microstructure. The combined effects give upward curvature to the σ−ε curve over extensive ranges of plastic strain. A higher strain hardening in compression compared with tension appears to be consistent with the observed texture development. The composition dependence of stacking fault energy computed using a thermodynamic model suggests that the Hadfield composition is optimum for a maximum rate of deformation twinning. Comparisons of the Hadfield steel with a Co-33Ni alloy exhibiting similar twinning kinetics, and an Fe-21Ni-lC alloy deforming by slip indicate no unusual strain hardening at low strains where deformation is controlled by slip, but an unusual amount of structural hardening associated with the twin formation in the Hadfield steel. A possible mechanism of anomalous twin hardening is discussed in terms of modified twinning behavior (pseudotwinning) in nonrandom solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hadfields Ltd:Manganese Steel, Oliver and Boyd, Edinburgh, 1956, p. 2.

    Google Scholar 

  2. G. Collette, C. Crussard, A. Kohn, J. Plateau, G. Pomey, and M. Weisz:Rev. Metall., 1957, vol. 54, p. 433.

    CAS  Google Scholar 

  3. J. Spreadborough:Acta Cryst., 1960, vol. 13, p. 603.

    Article  CAS  Google Scholar 

  4. C. White and R. W. K. Honeycombe:J. Iron Steel Inst., 1962, vol. 200, p. 457.

    Google Scholar 

  5. W. N. Roberts:Trans. TMS-AIME, 1964, vol. 230, p. 372.

    CAS  Google Scholar 

  6. Z. Nishiyama, M. Oka, and H. Nakagawa:Trans. Jpn. Inst. Met., 1965, vol. 6, p. 88.

    CAS  Google Scholar 

  7. K. S. Raghavan, A. S. Sastri, and M. J. Marcinkowski:Trans. TMS-AIME, 1969, vol. 245, p. 1569.

    CAS  Google Scholar 

  8. N. P. Goss:Trans. ASM, 1945, vol. 34, p. 630.

    Google Scholar 

  9. L. Remy:Acta Metall., 1978, vol. 26, p. 443.

    Article  CAS  Google Scholar 

  10. Y. N. Dastur and W.C. Leslie:Metall. Trans. A, 1981, vol. 12A, p. 749.

    Google Scholar 

  11. T. Narutani, G. B. Olson, and M. Cohen:J. de Phys., 1982, vol. 43, p. C4–429.

    Google Scholar 

  12. D. Lee and E. W. Hart:Metall. Trans., 1971, vol. 2, p. 1245.

    Article  Google Scholar 

  13. H. C. Doepken:Trans. TMS-AIME, 1952, vol. 194, p. 166.

    Google Scholar 

  14. G.B. Olson and M. Cohen:Metall. Trans. A, 1982, vol. 13A, p. 1907.

    Google Scholar 

  15. J.F.W. Bishop:J. Mech. Phys. Solids, 1954, vol. 3, p. 130.

    Article  Google Scholar 

  16. C. S. Barrett and L. H. Levenson:Trans. TMS-AIME, 1940, vol. 137, p. 112.

    Google Scholar 

  17. G.Y. Chin, W. L. Mammel, and M.T. Dolan:Trans. TMS-AIME, 1969, vol. 245, p. 383.

    CAS  Google Scholar 

  18. L. Remy:Metall. Trans. A, 1981, vol. 12A, p. 387.

    Google Scholar 

  19. G. B. Olson and M. Cohen:Metall. Trans. A, 1976, vol. 7A, p. 1897.

    CAS  Google Scholar 

  20. A. P. Miodownik:CALPHAD, 1978, vol. 2, p. 207.

    Article  CAS  Google Scholar 

  21. L. Remy and A. Pineau:Mater. Sci. Eng., 1976, vol. 26, p. 123.

    Article  CAS  Google Scholar 

  22. J. F. Breedis and L. Kaufman:Metall. Trans. A, 1971, vol. 2A, p. 2359.

    Google Scholar 

  23. K. Ishida and T. Nishiyawa:Trans. Jpn. Inst. Met., 1974, vol. 15, p. 225.

    Google Scholar 

  24. R.L. Fullman:Trans. TMS-AIME, 1953, vol. 197, p. 447.

    CAS  Google Scholar 

  25. F. Laves:Naturwissenschaften, 1952, vol. 39, p. 546.

    Google Scholar 

  26. J. W. Cahn:Acta Metall., 1977, vol. 25, p. 1021.

    Article  CAS  Google Scholar 

  27. M. L. Green and M. Cohen:Acta Metall., 1979, vol. 27, p. 1523.

    Article  CAS  Google Scholar 

  28. W. K. Choo and R. Kaplow:Acta Metall., 1973, vol. 21, p. 725.

    Article  CAS  Google Scholar 

  29. H.K.D.H. Bhadeshia:Met. Sci., 1981, vol. 15, p. 477.

    Article  CAS  Google Scholar 

  30. A.S. Sastri and R. Ray:Metall. Trans., 1974, vol. 5, p. 1501.

    Article  CAS  Google Scholar 

  31. G.B. Olson and M. Cohen:Metall. Trans. A, 1983, vol. 14A, p. 1057.

    Google Scholar 

  32. H.K.D.H. Bhadeshia:Met. Sci., 1981, vol. 15, p. 175.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student at Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, P.H., Olson, G.B. & Owen, W.S. Strain Hardening of Hadfield Manganese Steel. Metall Trans A 17, 1725–1737 (1986). https://doi.org/10.1007/BF02817271

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817271

Keywords

Navigation