Skip to main content
Log in

Fatigue crack propagation in Ni-base superalloy single crystals under multiaxial cyclic loads

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effects of crystallographic orientation and stress state on the multiaxial fatigue behavior of MAR-M200* single crystals were examined. Using notched tubular specimens subjected to combined tension/torsion cyclic loads, crack growth rates were determined at ambient temperature as functions of stress intensity range, the shear stress range-to-normal stress range ratio, and crystallographic orientation. Comparison of crack growth data at the same effective ΔK reveals a weak dependence of the crack growth rate on both the tube axis and the notch orientation. For a given set of tube axis and notch orientation, the crack growth rate might or might not vary with the applied stress state, depending on whether roughness-induced crack closure is present. In most cases, subcritical cracking occurs either along a single 111 slip plane or on ridges formed with two 111 slip planes. Neither fracture mode is altered by a change in the applied stress state. This complex crack growth behavior will be discussed in terms of the crack-tip stress field, slip morphology, and crack closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gell and G.R. Leverant:Trans. AIME, 1968, vol. 242, pp. 1869–79.

    Google Scholar 

  2. G.R. Leverant and M. Gell:Trans. AIME, 1969, vol. 245, pp. 1167–73.

    CAS  Google Scholar 

  3. G.R. Leverant and M. Gell:Metall. Trans. A, 1975, vol. 6A, pp. 367–71.

    CAS  Google Scholar 

  4. D.L. Anton:Acta Metall., 1984, vol. 32, pp. 1669–79.

    Article  CAS  Google Scholar 

  5. P. J. E. Forsyth:Proc. of the Crack Propagation Symposium, Cranfield, 1961, vol. 1, pp. 76–94.

  6. M. Nageswararao and V. Gerold:Metall. Trans. A, 1976, vol. 7A, pp. 1847–55.

    CAS  Google Scholar 

  7. M. Wilhelm, M. Nageswararao, and R. MeyerFatigue Mechanisms, J.T. Fong, ed., ASTM STP 675, ASTM, Philadelphia, PA, 1979, pp. 214–33.

    Google Scholar 

  8. G. P. Vander Velde and D. A. Koss:Fatigue 84, C. J. Beevers, ed., EMAS Ltd., West Midlands, U.K., 1984, vol. 1, pp. 411–21.

    Google Scholar 

  9. J. R. Wilcox and D. A. Koss:Hydrogen Effects in Metals, TMS-AIME, Warrendale, PA, 1981, pp. 745–52.

    Google Scholar 

  10. D. A. Koss and K. S. Chan:Acta Metall., 1980, vol. 28, pp. 1245–52.

    Article  CAS  Google Scholar 

  11. D.A. Koss and K.S. Chan:Dislocation Modeling of Physical Systems, Pergamon Press, Oxford, U.K., 1981, pp. 18–22.

    Google Scholar 

  12. G.R. Leverant, T. E. Strangman, and B.S. LangerSuperalloys: Metallurgy and Manufacture, Claitor’s Publishing Division, Baton Rouge, LA, 1976, pp. 285–95.

    Google Scholar 

  13. J. S. Crompton and J. W. Martin:Metall. Trans. A, 1984, vol. 15A, pp. 1711–19.

    CAS  Google Scholar 

  14. ASTM E-647:Annual Book of ASTM Standard, ASTM, Philadelphia, PA, 1983, pp. 710–30.

    Google Scholar 

  15. S. G. Leknitskii:Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco, CA, 1963, p. 3.

    Google Scholar 

  16. P.C. Paris and G.C. Sih:Fracture Toughness Testing and Its Application, ASTM STP 381, ASTM, Philadelphia, PA, 1965, pp. 30–83.

    Google Scholar 

  17. G. C. Sih and H. Liebowitz:Fracture, H. Liebowitz, ed., Academic Press, New York, NY, 1968, vol. 2, pp. 67–190.

    Google Scholar 

  18. K. S. Chan and T. A. Cruse:Engineering Fracture Mechanics, 1986, vol. 23, pp. 863–74.

    Article  Google Scholar 

  19. F. Erdogan and M. Ratwani:Nuclear Engineering and Design, 1972, vol. 20, pp. 265–86.

    Article  Google Scholar 

  20. H. Kitagawa, R. Yuuki, and T. Ohira:Eng. Fract. Mech., 1975, vol. 7, pp. 515–29.

    Article  Google Scholar 

  21. M. D. Peach and J. S. KoehlerJ. Rev., 1950, vol. 80, pp. 436–39.

    Article  Google Scholar 

  22. K. S. Chan:Acta Metall., 1986, in press.

  23. S. Suresh:Metall. Trans. A, 1985, vol. 16A, pp. 249–60.

    CAS  Google Scholar 

  24. S. Suresh and R.O. Ritchie:Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

  25. H.V. Lakshminarayana and M.V. V. Murthy:Int. J. of Fracture, 1976, vol. 12, pp. 547–66.

    Google Scholar 

  26. H. Tada, P. C. Paris, and G. R. Irwin:The Stress Analysis of Cracks Handbook, Del Research, Hellertown, PA, 1973, pp. 2.1–2.9.

    Google Scholar 

  27. G. P. Cherepanov:Mechanics of Brittle Fracture, McGraw-Hill, New York, NY, 1979, pp. 71–78.

    Google Scholar 

  28. J. P. Hirth and J. Lothe:Theory of Dislocations, McGraw-Hill, New York, NY, 1968, pp. 399–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with Southwest Research Institute

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S., Hack, J.E. & Leverant, G.R. Fatigue crack propagation in Ni-base superalloy single crystals under multiaxial cyclic loads. Metall Trans A 17, 1739–1750 (1986). https://doi.org/10.1007/BF02817272

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817272

Keywords

Navigation