Skip to main content
Log in

A geometrical model for nonhadrons and its implications for hadrons

Геометрическая модель для неадронов и ее применение к случаю адронов

  • Published:
Il Nuovo Cimento A (1965-1970)

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

With the aid of the ideas suggested by the string model, the possibility of describing nonhadrons by a geometrical approach is studied. It is shown how it is possible to construct a Lagrangian which contains a fundamental length, by selecting a class of motions of the string. The quantization of the model gives rise to a spin tower of zeromass particles. The interaction among these states is realized in analogy with the theory of Mandelstam for the interacting strings. The vertices for the lower spin states are studied in some detail. It is shown that in order to get the correct electromagnetic and gravitational interactions the fundamental length √α′ must be of the order of 10−33 cm. This choice of √α′ gives a very great value for the three-scalar coupling constant. This fact allows some speculation on the possibility to interpret these scalars as the constituents of the hadrons.

Riassunto

Seguendo le idee suggerite dal modello della corda relativistica, viene studiata la possibilità di descrivere i nonadroni usando un approccio geometrico. Si mostra come sia possibile costruire una lagrangiana contenente una lunghezza fondamentale, scegliendo una classe di moti della corda. La quantizzazione del modello dà luogo ad una torre di spin di particelle a massa zero. L’interazione tra queste particelle è realizzata in analogia alla teoria di Mandelstam delle corde interagenti. I vertici per gli stati di spin più basso sono studiati in dettaglio. È mostrato che per riprodurre le interazioni elettromagnetiche e gravitazionali la lunghezza fondamentale √α′ deve essere dell’ordine di 10−33 cm. Questa scelta per √α′ produce un valore molto grande per la costante di accoppiamento fra tre scalari. Questo ci permette di fare alcune speculazioni sulla possibilità di interpretare tali scalari come i costituenti degli adroni.

Реэюме

Испольэуя идеи модели струны, исследуется воэможность описания неадронов с помошью геометрического подхода. Выбирая некоторый класс движений струны, покаэывается воэможность конструирования Лагранжиана, который содержит фундаментальную длину. Квантование зтой модели приводит к спиновой бащне частиц с нулевой массой. Вэаимодействие между зтими состояниями реалиэуется по аналогии с теорией Манделстама для вэаимодействуюших струн. Подробно исследуются верщины для ниэщих спиновых состояний. Покаэывается, что для получения правильных злектромагнитного и гравитационного вэаимодействий фундаментальная длина √α′ должна быть порядка 10−33 см. Этот выбор √α′ приводит к очень больщой величине для константы свяэи трех скаляров. Этот факт поэволяет интерпретировать зти скаляры как составные части адронов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. A. Neveu andJ. Scherk:Nucl. Phys.,36 B, 155 (1972);J. L. Gervais andA. Neveu:Nucl. Phys.,46 B, 381 (1972);T. Yoneya:Lett. Nuovo Cimento,8, 951 (1973);Progr. Theor. Phys.,51, 1907 (1974);J. Scherk andJ. H. Schwarz: CALT-68-444 preprint (1974).

    Article  ADS  Google Scholar 

  2. P. Goddard, J. Goldstone, C. Rebbi andC. B. Thorn:Nucl. Phys.,56 B, 109 (1973); for general references seeC. Rebbi: CERN preprint TH-1785 (1974).

    Article  ADS  MATH  Google Scholar 

  3. P. A. M. Dirac:Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University (New York, N. Y., 1964).

  4. S. Mandelstam:Nucl. Phys.,64 B, 205 (1973).

    Article  ADS  Google Scholar 

  5. R. Casalbuoni, J. Gomis andG. Longhi:Nuovo Cimento,24 A, 249 (1974), here referred as I.

    Article  ADS  Google Scholar 

  6. R. P. Feynman:Phys. Rev.,80, 440 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. B. Sakita andM. A. Virasoro:Phys. Rev. Lett.,24, 1146 (1970);H. B. Nielsen andP. Olesen:Phys. Lett.,32 B, 203 (1970).

    Article  ADS  Google Scholar 

  8. E. Del Giudice, P. Di Vecchia, S. Fubini andR. Musto:Nuovo Cimento,12 A, 813 (1972).

    Article  ADS  Google Scholar 

  9. This value is different from that given byScherk andSchwarz (1)

    Article  ADS  Google Scholar 

  10. J. Kogut andL. Susskind:Phys. Report C,8, 76 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casalbuoni, R., Longhi, G. A geometrical model for nonhadrons and its implications for hadrons. Nuov Cim A 25, 482–502 (1975). https://doi.org/10.1007/BF02820860

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02820860

Navigation