Skip to main content
Log in

Optimized conditions for rapd analysis inPinus radiata

  • Genetic Transformation/Somatic Cell Genetics
  • Technical Note
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Pinus radiata is the most important softwood plantation species in Australia and New Zealand. The improtance of this species in forestry has led to an increasing demand to improve the efficiency of selection time of the production population, which currently takes 13 yr by traditional methods. With the application of molecular biology techniques such as random amplified polymorphic DNA (RAPD) the selection period can be reduced to 6 yr. In this study, the conditions for RAPD were optimized and the feasibility of this marker system was investigated with different families ofPinus radiata from Tasmania and South Australia. Best concentrations of Taq-polymerase (1 U), magnesium chloride (2 mM), and template DNA (20 ng) were selected to test different polymerase chain reaction (PCR) thermocycler profiles. Devey's et al. (1996) program was the most effective for production of clear RAPD bands. Best conditions were investigated to screen 10–12 bp arbitrary Breasatec and Operon primers. Both types were found useful at detecting genetic variation between families. Seventy percent and thirty percent of the selected Bresatec and Operon primers, respectively, produced polymorphic bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlson, J. E.; Tulsieram, L. K.; Glaubitz, J. C., et al. Segregation of random amplified DNA markers in F1 progeny of conifers.Theor. Appl. Genet. 83:194–200; 1991.

    Article  Google Scholar 

  2. Devey, M. E.; Bell, J. C.; Smith, D. N., et al. A genetic linkage map forPinus radiata based on RFLP, RAPD, and microsatellite markers.Theor. Appl. Genet. 92:673–679; 1996.

    Article  CAS  Google Scholar 

  3. Devey, M. E.; Delfino-Mix, A.; Kinloch, B. B., et al. Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine.Proc. Natl. Acad. Sci. USA 92:2066–2070; 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Erlich, H. A.; Kazarian, H. H., Jr.; Gibbs, R. A., Introduction—Polymerase chain reaction. Erlich, H. A.; Gibbs, R.; Kazarian, H. H., Jr., eds. Current communications in molecular biology. Plainview, NY: Cold Spring Harbor Laboratory Press; 1989:1–4.

    Google Scholar 

  5. Jobes, D. V.; Hurley, D. L.; Thien, L. B. Plant DNA isolation: method to efficiently remove polyphenolics, polysaccharides and RNA.Taxon 44:379–389; 1995.

    Article  Google Scholar 

  6. Keller, G. H.; Manak, M. M. DNA probes, background, application, procedures. 2nd ed. Macmillan Publishers; 1993:1–288.

  7. Landry, B. S. DNA mapping in plants. Glick, B. R.; Thompson, J. E., eds.Methods in plant molecular biology and biotechnology. London, England: CRC Press; 1993:269–283.

    Google Scholar 

  8. Lu, M. Z.; Szmidt, A. E.; Wang, X. R. Inheritance of RAPD fragments in haploid and diploid tissues ofPinus sylvestris (L.).Heredity 74:582–589; 1995.

    Google Scholar 

  9. Mosseler, A.; Egger, K. N.; Hughes, G. A. Low levels of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers.Can. J. For. Res. 22:1332–1337; 1972.

    Article  Google Scholar 

  10. Muralitharan, M. S.; Stuart, S.; Graham, M. (1994)Methods in Plant Molecular Biology Techniques. Proceedings of Molecular Biology Workshop. July 14–16, 1994, Launceston, Tasmania. Available from: Applied Biology, University of Tasmania; pp. 1–98), Launceston.

  11. Neale, D. B.; Williams, C. G. Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement.Can. J. For. Res. 21:545–554; 1991.

    Article  CAS  Google Scholar 

  12. Nelson, C. D.; Kubisiak, T. L.; Stine, M., et al. A genetic linkage map of longleaf pine (Pinus palustris Mill.) based on random amplified polymorphic DNAs.J. Hered. 85:433–439; 1994.

    CAS  Google Scholar 

  13. Nybom, H. DNA fingerprinting—a useful tool in fruit breeding.Euphytica 77:59–64; 1994.

    Article  Google Scholar 

  14. Plomion, C.; Bahrman, N.; Durel, C. E., et al. Genomic mapping inPinus pinaster (maritime pine) using RAPD and protein markers.Heredity 74:661–668; 1994.

    Google Scholar 

  15. Plomion, C.; O'Malley, D. M.; Dure, C. E. Genomic analysis in maritime pine (Pinus pinaster): comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual.Theor. Appl. Genet. 90:1028–1034; 1995.

    Article  CAS  Google Scholar 

  16. Sambrook, J.; Fritsch, E. F.; Maniatis, T.Molecular cloning: a laboratory manual, Plainview, NY: Cold Spring Harbor Laboratory Press; 1989:5.3–6.6.

    Google Scholar 

  17. Smith, D. N.; Devey, M. E. Occurrence and inheritance of microsatellites inPinus radiata.Genome 37:977–983; 1994.

    PubMed  CAS  Google Scholar 

  18. White, T.L. A conceptual framework for tree improvement programs.New For. 4:325–342; 1987.

    Google Scholar 

  19. Wilhelmina, T. G.; McNicol, R. The use of RAPD markers for the identification of Sitka spruce (Picea sitchensis) clones.Heredity 75:126–132; 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrowska, E., Muralitharan, M., Chandler, S. et al. Optimized conditions for rapd analysis inPinus radiata . In Vitro Cell.Dev.Biol.-Plant 34, 225–230 (1998). https://doi.org/10.1007/BF02822712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02822712

Key words

Navigation