Skip to main content
Log in

Chaos in mechanical systems — A review

  • Advances in nonlinear structural dynamics
  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

In this paper, a review of the various developments in the field of chaotic dynamics with specific emphasis on chaos in structural and mechanical systems is presented. The paper discusses some known chaotic systems such as the Lorenz, Rössler, Ueda and Henon attractors as well as chaos in Duffing and Van der Pol oscillators. The paper also covers chaos in piecewise linear systems, impacting oscillators and flow induced vibrating systems. Topics such as bifurcations and routes to chaos, different ways of characterising chaos, domains of attraction and control of chaos are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander N A 1989 Production of computational portraits of bounded invariant manifolds.J. Sound Vib. 117: 219–232

    Google Scholar 

  • Andronov A A, Vitt A A, Khaikin S C 1966Theory of oscillators (Oxford: Pergamon)

    MATH  Google Scholar 

  • Aprille T J, Trick T N 1972 A computer algorithm to determine the steadystate responses of nonlinear oscillatorsIEEE Trans. Circuit Theory 19: 354–360

    MathSciNet  Google Scholar 

  • Argyris J H 1991 An adventure in chaos.Comput. Methods Appl. Mech. Eng. 91: 997–1091

    MathSciNet  Google Scholar 

  • Arnold V I 1983Geometrical methods in the theory of ordinary differential equations (Berlin: Springer-Verlag)

    MATH  Google Scholar 

  • Atadan A S, Huseyin K 1984 An intrinsic method of harmonic analysis of nonlinear oscillators.J. Sound Vib. 95: 525–530

    MATH  MathSciNet  Google Scholar 

  • Auerbach D, Cvitanovic’ P, Eckmann J P, Gunaratne G 1987 Exploring chaotic motion through periodic orbits.Phys. Rev. Lett. 58: 2387–2389

    MathSciNet  Google Scholar 

  • Awrejcewicz J 1989 Two kinds of evolution of strange attractors for the example of a particular nonlinear oscillator.J. Appl. Math. Phys. 40: 375–386

    MATH  MathSciNet  Google Scholar 

  • Awrejcewicz J 1991 Three routes to chaos in simple sinusoidally driven oscillators.Z. Angew. Math. Mech. 71: 71–79

    MATH  MathSciNet  Google Scholar 

  • Awrejcewicz J, Mrozowski 1989 Bifurcations and chaos of a particular van der Pol Duffing oscillator.J. Sound Vib. 132: 897–100

  • Bajaj A K 1991 Examples of boundary crises phenomenon in structural dynamics.Int. Ser. Numer. Math. 97: 27–36

    MathSciNet  Google Scholar 

  • Bajaj A K, Sethna P R 1982 Bifurcations in three dimensional motion of articulated tubes. Part 2. Nonlinear analysis.ASME J. Appl. Mech. 49: 612–618

    MATH  MathSciNet  Google Scholar 

  • Bajaj A K, Sethna P R 1984 Flow induced bifurcations in three-dimensional oscillatory motions of continuous tubes.SIAM J. Appl. Math. 44: 270–286

    MATH  MathSciNet  Google Scholar 

  • Bajaj A K, Sethna P R and Lundgren T S 1980 Hopf bifurcation phenomenon in tubes carrying fluid.SIAM J. Appl. Math. 39: 213–230

    MATH  MathSciNet  Google Scholar 

  • Bajkowski J, Szemplinska-Stupnicka W 1975 Domains of attraction of the secondary periodic and combination resonances in nonlinear two-degree of freedom system.VII Internationale Konferenz über Nichtilineare Schwingungen vol. 1.1, pp. 55–69 (Berlin: Akademic-Verlag)

    Google Scholar 

  • Baker G L, Gollub J P 1990Chaotic dynamics: an introduction

  • Bandyopadhyay J, Ravi Kumar V, Kulkarni B D, Deshpande P B 1992 On dynamic control of chaos: A study with reference to a reacting system.Phys. Lett. A166: 197–204

    Google Scholar 

  • Barber T T, Wen Y K 1981 Random vibration of hysteretic degrading systems.ASCE J. Eng. Mech. 107: 1069–1087

    Google Scholar 

  • Baren D D 1994 Mathematical models used in studying chaotic vibration of buckled beams.Mech. Res. Commun. 21: 184–196

    Google Scholar 

  • Belogortsev A B 1992 Analytical approach to the torus bifurcation in quasiperiodically forced van der Pol oscillator.Phys. Lett. A61: 352–356

    MathSciNet  Google Scholar 

  • Berge P, Pomeau Y, Vidal Ch 1984Order within chaos (New York: John Wiley & Sons)

    MATH  Google Scholar 

  • Berger B S, Rokni M 1987 Lyapunov exponents and continuum kinematicsInt. J. Eng. Sci. 25: 1079–1089

    MATH  MathSciNet  Google Scholar 

  • Bestle D, Kreuzer E 1986 An efficient algorithm for global analysis of nonlinear systems.Comput. Methods Appl. Mech. Eng. 59: 1–9

    MATH  MathSciNet  Google Scholar 

  • Birkhoff G G 1927Dynamical systems (Providence, RI: Am. Math. Soc.)

    MATH  Google Scholar 

  • Blazejczyk B, Kapitaniak T, Wojewoda J, Brindley J 1993 Controlling chaos in mechanical systems.Appl. Mech. Rev. 46(7): 385–391

    Google Scholar 

  • Blevins R D 1977Flow induced vibrations (New York: Von-Nostrand Reinhold)

    Google Scholar 

  • Bouc R, Defilippi M 1987 A Galerkin multiharmonic procedure for nonlinear multidimensional random vibration.Int. J. Eng. Sci. 25: 723–733

    MATH  MathSciNet  Google Scholar 

  • Braiman Y, Goldhirsch I 1991 Taming chaotic dynamics with weak periodic perturbations.Phys. Rev. Lett. 66: 2545–2548

    MATH  MathSciNet  Google Scholar 

  • Brindley J, Kapitaniak T, El Naschie M S 1991 Analytical conditions for strange chaotic and nonchaotic attractors of the quasiperiodically forced Van der Pol equation.Physica D51: 28–38

    Google Scholar 

  • Broomhead D S, King G P 1986 Extracting qualitative dynamics from experimental data.Physica D20: 217–236

    MathSciNet  Google Scholar 

  • Brunsden V, Cortell J, Holmes P J 1989 Power spectra of chaotic vibrations of a buckled beam.J. Sound Vib. 130: 1–25

    MathSciNet  Google Scholar 

  • Buonomo A 1992 A collocation algorithm for calculating the periodic solutions of nonlinear oscillators.Int. J. Circuits Theory Appl. 20: 107–116

    Google Scholar 

  • Bursal E H, Tongue B H 1992 A hybrid symbolic-numerical method for integrating ordinary differential equations.J. Sound Vib. 152: 295–304

    MATH  MathSciNet  Google Scholar 

  • Butenin I W, Neimark I I, Fufai N A 1976Introduction into nonlinear oscillations (Moskwa: Nauka) (in Russian)

    Google Scholar 

  • Cameron T M, Griffin J H 1989 An alternating frequency/time domain method for calculating the steadystate response of nonlinear dynamic systems.ASME J. Appl. Mech. 56: 149–154

    MATH  MathSciNet  Google Scholar 

  • Cardona A, Coune T, Lerusse A, Geradin M 1994 A multiharmonic method for nonlinear vibration analysis.Int. J. Numer. Methods Eng. 37: 1593–1608

    MATH  Google Scholar 

  • Cartwright M L, Littlewood J E 1945 On nonlinear differential equations of the second order I. The equation is\(\ddot y + k(1 - y^2 )\dot y + y = b\lambda k cos(\lambda t + a)\).J. London Math. Soc. 20: 180–189

    MATH  MathSciNet  Google Scholar 

  • Cesari L 1963 Functional analysis and periodic solutions of nonlinear differential equations.Contrib. Differ. Equ. 1: 149–187

    MathSciNet  Google Scholar 

  • Chen G, Dong X 1992 On feedback control of chaotic dynamical systems.Int. J. Bifurcation Chaos 2: 407–411

    MATH  MathSciNet  Google Scholar 

  • Chen G, Dong X 1993 On feedback control of chaotic continuous-time systems.IEEE Trans. Circuits Syst. 40: 591–601

    MATH  MathSciNet  Google Scholar 

  • Chen S S 1987 A general theory for dynamic instability of tube arrays in cross flow.J. Fluids Struct. 1: 35–53

    MATH  Google Scholar 

  • Cheng C 1991 Invariant torus bifurcation series and evolution of chaos exhibited by a forced nonlinear vibration system.Int. J. Non-Linear Mech. 26: 105–116

    MATH  Google Scholar 

  • Cheung Y K, Chen S H, Lau S L 1990 Application of the incremental harmonic balance method to cubic nonlinear systems.J. Sound Vib. 140: 273–286

    MathSciNet  Google Scholar 

  • Choi Y S, Noah S T 1988 Forced periodic vibration of unsymmetric piece-wise linear systems.J. Sound Vib. 121: 117–126

    MathSciNet  Google Scholar 

  • Choi H S, Lou J Y K 1991 Nonlinear behavior and chaotic motions of an SDOF system with piece-wise nonlinear stiffness.Int. J. Non-Linear Mech. 26: 461–473

    MATH  MathSciNet  Google Scholar 

  • Chow S N, Shaw S W 1986 Bifurcations of subharmonics.J. Differ. Equ. 65: 304–320

    MATH  MathSciNet  Google Scholar 

  • Chua L O, Lin P M 1975Computer-aided analysis of electronic circuits. Algorithm and computational techniques (EngleWood Cliffs, NJ: Prentice-Hall)

    Google Scholar 

  • Civitanovic’ P 1989Universality in chaos 2nd edn (New York: Adams Hilger)

    Google Scholar 

  • Curry L O 1978 A generalised Lorenz system.Commun. Math. Phys. 60: 193–204

    MATH  MathSciNet  Google Scholar 

  • Curry J M, Yorke J A 1977The structure of attractors in dynamical systems: Springer Notes in Mathematics 668. A transition from Hopf bifurcation to chaos (Berlin: Springer Verlag)

    Google Scholar 

  • D’Humieres D, Beasley M R, Huberman B A, Libchaber A 1982 Choatic states and routes to chaos in the forced pendulum.Phys. Rev. A26: 3483–3496

    Google Scholar 

  • Devaney R L 1987Introduction to chaotic dynamical systems (New York: Addison-Wesley)

    Google Scholar 

  • Ditto W L, Rauseo S N, Spano M L 1990 Experimental control of chaos.Phys. Rev. Lett. 65: 3211–3214

    Google Scholar 

  • Doedel E 1986 AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Report, Department of Applied Mathematics. California Institute of Technology

  • Dowell E H 1982 Flutter of buckled plate as an example of chaotic motion of a deterministic autonomous system.J. Sound Vib. 85: 333–344

    MathSciNet  Google Scholar 

  • Dowell E H 1988a Chaotic oscillations in mechanical systems.Comput. Mech. 1: 199–216

    Google Scholar 

  • Dowell E H 1988b Chaotic oscillations in mechanical systems.Comput. Struct. 30: 171–184

    MathSciNet  Google Scholar 

  • Dowell E H 1991 A chaotic scenario.J. Sound Vib. 144: 179–180

    MathSciNet  Google Scholar 

  • Dowell E H, Pezeshki C 1986 On the understanding of chaos in Duffing equation including a comparison with experiment.ASME J. Appl. Mech. 53: 5–9

    MATH  MathSciNet  Google Scholar 

  • Dowell E H, Pezeshki C 1988 On necessary and sufficient conditions for chaos to occur in Duffing’s equation: An heuristic approach.J. Sound Vib. 121: 195–200

    MathSciNet  Google Scholar 

  • Dressler U, Nitsche G 1992 Controlling chaos using time delay coordinates.Phys. Rev. Lett. 68: 1–4

    Google Scholar 

  • Duffing G 1918Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz und ihre technische Bedeutung. Ph D thesis Sammlung Vieweg, Braunschweig

  • Eckmann J P, Ruelle D 1985 Ergodic theory of chaos and strange attractors.Rev. Mod. Phys. 57: 617–656

    MathSciNet  Google Scholar 

  • Ehrich F 1992 Observations of subcritical superharmonic and chaotic response in rotordynamics.ASME J. Vib. Acoust. 114: 93–100

    Google Scholar 

  • Eschenazi E, Solari H G, Gilmore R 1989 Basin of attraction in driven dynamical systems.Phys. Rev. A39: 2609–2627

    MathSciNet  Google Scholar 

  • Fang T, Dowell E H 1987 Numerical simulations of periodic and chaotic responses in a stable Duffing system.Int. J. Non-Linear Mech. 22: 401–425

    MATH  MathSciNet  Google Scholar 

  • Farmer J D, Ott E, Yorke J A 1983 The dimension of chaotic attractors.Physica D7: 153–180

    MathSciNet  Google Scholar 

  • Feeny B F, Moon F C 1989 Autocorrelation on symbol dynamics for a chaotic dry-friction oscillator.Phys. Lett. A141: 397–400

    MathSciNet  Google Scholar 

  • Feigenbaum M J 1978 Quantitative universality for a class of nonlinear transformations.J. Stat. Phys. 19: 25–52

    MATH  MathSciNet  Google Scholar 

  • Fein A P, Heutmaker M S, Gollub J P 1985 Scaling and transition from quasi-periodicity to chaos in hydrodynamic systems.Phys. Scr. T9: 79–84

    Google Scholar 

  • Ferri A A 1986 On the equivalence of the incremental harmonic balance method and the harmonic balance — Newton-Raphson method.ASME J. Appl. Mech. 53: 455–457

    MathSciNet  Google Scholar 

  • Flashner H, Guttalu R S 1988 A computational approach for studying domain of attraction.Int. J. Non-Linear Mech. 23: 279–295

    MATH  MathSciNet  Google Scholar 

  • Flashner H, Hsu C S 1983 A study of nonlinear periodic systems via the point mapping method.Int. J. Numer. Meth. Eng. 19: 185–215

    MATH  MathSciNet  Google Scholar 

  • Flowers G T, Tongue B H 1992 Chaotic dynamical behaviour in a simplified rotor blade lag model.J. Sound Vib. 156: 17–26

    MATH  Google Scholar 

  • Foale S, Thompson J M T 1991 Geometrical concepts and computational techniques of nonlinear dynamics.Comput. Methods Appl. Mech. Eng. 89: 381–394

    MathSciNet  Google Scholar 

  • Frederickson P, Kaplan J L, Yorke E D, Yorke J A 1983 The Lyapunov dimension of strange attractors.J. Differ. Equ. 49: 185–207

    MATH  MathSciNet  Google Scholar 

  • Gollub J P, Benson S V 1979Phase locking in the oscillations leading to turbulence in pattern formation (ed.) H Haken (Berlin: Springer Verlag)

    Google Scholar 

  • Gollub J P, Benson S V 1980 Many routes to turbulent convection.J. Fluid Mech. 100: 449–470

    Google Scholar 

  • Gottwald J A, Virgin L N, Dowell E H 1992 Experimental mimicry of Duffing’s equation.J. Sound Vib. 158: 447–467

    MathSciNet  Google Scholar 

  • Grabec I 1986 Chaos generated by the cutting process.Phys. Lett. A117: 384–386

    MathSciNet  Google Scholar 

  • Grassberger P, Procaccia I 1983a Measuring the strangeness of strange attractors.Physica D9: 189–208

    MathSciNet  Google Scholar 

  • Grassberger P, Procaccia I 1983b Characterisation of strange attractors.Phys. Rev. Lett. 50: 346–349

    MathSciNet  Google Scholar 

  • Grebogi C, Ott E, Yorke J A 1982 Chaotic attractors in crisis.Phys. Rev. Lett. 48: 1507–1510

    MathSciNet  Google Scholar 

  • Grebogi C, Ott E, Yorke J A 1983a Crises, sudden changes in chaotic attractors and transientchaos.Physica D7: 181–200

    MathSciNet  Google Scholar 

  • Grebogi C, Ott E, Yorke J A 1983b Are three frequency quasiperiodic orbit to be expected in typical dynamical systems?Phys. Rev. Lett. 51: 339–342

    MathSciNet  Google Scholar 

  • Grebogi C, Ott E, Yorke J A 1987 Basin boundary metamorphoses: changes in accessible boundary orbits.Physica D24: 243–262

    MathSciNet  Google Scholar 

  • Guckenheimer J, Holmes P J 1983Non-linear oscillations, dynamical systems and bifurcations of vector fields (New York: Springer Verlag)

    Google Scholar 

  • Gudmundson P 1989 On the accuracy of the harmonic balance method concerning vibrations of beams with nonlinear supports.Ing. Archiv. 59: 333–344

    MATH  Google Scholar 

  • Gwinn E G, Westervelt R M 1986 Scaling structure of attractors at the transition from quasi-periodicity to chaos in electronic transport in Ge.Phys. Rev. Lett. 59: 157–160

    Google Scholar 

  • Hanagud S, Abhyankar N S, Chander R 1989 Studies in chaotic vibrations of buckled beams.Appl. Mech. Rev. 42: S100-S107

    MathSciNet  Google Scholar 

  • Hao Bai-Lin (ed.) 1984Chaos (Singapore: World Scientific)

    MATH  Google Scholar 

  • Hartlen R J, Currie I G 1970 Lift oscillator model of vortex induced vibrations.ASCE J. Eng. Mech. 96: 577–591

    Google Scholar 

  • Hatwal H, Mallik A K, Ghosh A 1983 Forced nonlinear oscillations of an autoparametric systems. Part II — Chaotic response.ASME J. Appl. Mech. 50: 663–668

    MATH  Google Scholar 

  • Hayashi C 1964Nonlinear oscillations in physical systems (New York: McGraw Hill)

    MATH  Google Scholar 

  • Hayashi C, Ueda Y, Kawakami H 1969 Transformation theory as applied to the solutions of nonlinear differential equations of the second order.Int. J. Non-Linear Mech. 4: 235–255

    MATH  MathSciNet  Google Scholar 

  • Heiman M S, Bajaj A K, Sherman P J 1988 Periodic motions and bifurcations in dynamics of an inclined pair.J. Sound Vib. 124: 55–78

    MathSciNet  Google Scholar 

  • Heiman M S, Sherman P J, Bajaj A K 1987 On the dynamics and stability of an inclined impact pair.J. Sound Vib. 114: 535–547

    Google Scholar 

  • Henon M 1976 A two-dimensional mapping with a strange attractor.Commun. Math. Phys. 50: 69–77

    MATH  MathSciNet  Google Scholar 

  • Henon M 1982 On the numerical computation of Poincaré maps.Physica D5: 412–414

    MathSciNet  Google Scholar 

  • Higuchi K, Dowell E H 1991 Effect of constant transverse force on chaotic oscillations of sinusoidally excited buckled beam.Int. J. Non-Linear Mech. 26: 419–426

    MathSciNet  Google Scholar 

  • Holmes P 1990a Nonlinear dynamics, chaos, and mechanics.ASME Appl. Mech. Rev. 43: Part 2. S23-S39

    Google Scholar 

  • Holmes P 1990b Poincaré, celestial mechanics, dynamical systems theory and chaos.Phys. Rep. 193: 137–163

    MathSciNet  Google Scholar 

  • Holmes P J 1977 Bifurcations to divergence and flutter in flow induced oscillations: A finite dimensional analysis.J. Sound Vib. 53: 471–503

    MATH  Google Scholar 

  • Holmes P J 1980 Averaging and chaotic motions in forced oscillations.SIAM J. Appl. Math. 38: 65–80. Errata and addendaSIAM J. Appl. Math, 40: 167–168

    MATH  MathSciNet  Google Scholar 

  • Holmes P J, Rand D A 1980 Phase portraits and bifurcations of the nonlinear oscillator:\(\ddot x + (\alpha + \gamma x^2 )\dot x + \beta x + \delta x^3 = 0\).Int. J. Non-Linear Mech. 15: 449–458

    MATH  MathSciNet  Google Scholar 

  • Holmes P J, Moon F C 1983 Strange attractors and chaos in nonlinear mechanics.J. Appl. Mech. 50: 1021–1032

    MathSciNet  Google Scholar 

  • Holmes P J 1979 A nonlinear oscillator with a strange attractor.Philos. Trans. R. Soc. London 292: 419–448

    MATH  Google Scholar 

  • Holmes P J 1982 The dynamics of repeated impacts with a sinusoidally vibrating table.J. Sound Vib. 84: 173–189

    MATH  Google Scholar 

  • Holmes P J 1984 Bifurcation sequences in horseshoe maps: Infinitely many routes to chaos.Phys. Lett. A104: 299–302

    Google Scholar 

  • Holmes P J, Marsden J 1978 Bifurcation to divergence and flutter in flow induced oscillations: An infinite dimensional analysis.Automatika 14: 367–384

    MATH  MathSciNet  Google Scholar 

  • Hsu C S 1974 On approximating a general linear periodic system.J. Math. Anal. Appl. 45: 234–251

    MATH  MathSciNet  Google Scholar 

  • Hsu C S 1977 On nonlinear parametric excitation problems.Adv. Appl. Mech. 17: 245–301

    MATH  Google Scholar 

  • Hsu C S 1980 A theory of cell-to-cell mapping dynamical systems.ASME J. Appl. Mech. 48: 931–939

    Google Scholar 

  • Hsu C S 1982 A probabilistic theory of nonlinear dynamical systems based on the cell state space concept.ASME J. Appl. Mech. 49: 895–902

    MATH  Google Scholar 

  • Hsu C S 1987Cell-to-cell mapping: A method of global analysis for nonlinear systems (Berlin: Springer-Verlag)

    MATH  Google Scholar 

  • Hsu C S, Guttalu R S 1980 An unravelling algorithm for global analysis of dynamical systems.ASME J. Appl. Mech. 48: 940–948

    MathSciNet  Google Scholar 

  • Hsu C S, Yee H C, Cheng W H 1977 Determination of global regions of asymptotic stability for difference dynamical systems.ASME J. Appl. Mech. 44: 147–153

    MathSciNet  Google Scholar 

  • Hsu C S, Guttalu R S, Zhu W H 1982 A method of analysing generalised cell mapping.ASME J. Appl. Mech. 48: 885–894

    MathSciNet  Google Scholar 

  • Huang Y M, Bajaj A K, Krousgrill C M 1990 Complex inline and whirling response of structures to oscillating flow.J. Sound Vib. 136: 491–505

    Google Scholar 

  • Huberman B, Crutchfield J P 1979 Chaotic states of anharmonic systems in periodic fields.Phys. Rev. Lett. 43: 1743–1747

    Google Scholar 

  • Huberman B, Crutchfield J P, Packard N 1980 Noise phenomena in Josephson junctions.Appl. Phys. Lett. 37: 750–752

    Google Scholar 

  • Hübler A 1989Helv. Phys. Acta 62 291

    Google Scholar 

  • Hunt E R 1991 Stabilizing high period orbits in a chaotic system: The diode resonator.Phys. Rev. Lett. 67: 1953–1955

    Google Scholar 

  • Huseyin K, Lin R 1991 An intrinsic multiple scale harmonic balance method for nonlinear vibration and bifurcation problems.Int. J. Non-Linear Mech. 26: 727–740

    MATH  MathSciNet  Google Scholar 

  • Huseyin K, Wang S 1991 An extension of the intrinsic harmonic balancing method to the analysis of forced vibration.J. Sound Vib. 148: 361–363

    MathSciNet  Google Scholar 

  • Ide K, Wiggins S 1989 The bifurcation to homoclinic tori in the quasiperiodically forced Duffing oscillator.Physica D34: 169–182

    MathSciNet  Google Scholar 

  • Iooss G, Joseph D D 1980Elementary stability and bifurcation theory (New York: Springer-Verlag)

    MATH  Google Scholar 

  • Isomäki H M, J von Boehm, Räty R 1988 Fractal basin boundaries of an impacting particle.Phys. Lett. A126: 484–490

    Google Scholar 

  • Ivanov A P 1993 Stabilisation of an impact oscillator near grazing incidence owing to resonance.J. Sound Vib. 162: 562–565

    MATH  Google Scholar 

  • Iwan W D, Blevins R D 1974 A model for vortex induced oscillations of structures.ASME J. Appl. Mech. 41: 581–586

    Google Scholar 

  • Iyengar R N 1992 Stochastic characterization of chaos in a nonlinear system.Phys. Lett. A154: 357–360

    Google Scholar 

  • Jackson E A 1990 On the control of complex dynamical systems.Physica D50: 341–366

    Google Scholar 

  • Jayaraman K 1991Chaotic vibrations of some nonlinear mechanical systems. Ph D thesis, Indian Institute of Technology, Madras

    Google Scholar 

  • Jayaraman K, Narayanan S, 1990a Interpolated cell mapping for nonlinear dynamical systems.National Conference on Computational Techniques in Continuum Mechanics, Madras

  • Jayaraman K, Narayanan S 1990b Chaotic oscillations of pipes conveying pulsating fluid.Proc. of International Conference on Advances in Structural Testing, Analysis and Design, India, Vol II: 966–971

    Google Scholar 

  • Jayaraman K, Narayanan S 1990c Periodic and chaotic oscillations of a harmonically excited square prism in fluid flow.Proc. of National Seminar on Aerospace Structures, India pp. 181–191

  • Jayaraman K, Narayanan S 1993 Chaotic oscillations in pipes conveying pulsating fluids Part I: Numerical simulation of multi periodic and chaotic motions, Part II — Stability analysis by multiple time scale and harmonic balancing.Nonlinear Dynamics (communicated)

  • Johnson J M, Bajaj A K 1989 Amplitude modulated and chaotic dynamics in resonant motion of strings.J. Sound. Vib. 128: 87–107

    MathSciNet  Google Scholar 

  • Kaas-Petersen C 1987a Path User’s Guide Report May 1987 Leeds University Centre for nonlinear studies

  • Kaas-Petersen C 1987b Computation, continuation and bifurcation of torus solutions for dissipative maps and ordinary differential equations.Physica D25: 288–306

    MathSciNet  Google Scholar 

  • Kaas-Petersen C, True H 1985 Periodic, bi-periodic and chaotic dynamical behaviour of railway vehicles.Proc. 9th IAVSD Symposium Linkoping, 208–221

  • Kahraman A, Singh R 1990a Nonlinear dynamics of a spur gear pairJ. Sound Vib. 142: 49–75

    Google Scholar 

  • Kahraman A, Singh R 1990b Nonlinear dynamics of a gear rotor system with multiple clearances.J. Sound Vib. 144: 469–506

    Google Scholar 

  • Kahraman A, Singh 1992 Dynamics of an oscillator with both clearance and continuous nonlinearities.J. Sound Vib. 151: 180–185

    Google Scholar 

  • Kan M, Taguchi H 1993 Chaos and fractals in nonlinear roll and capsize of a damaged ship.International Workshop on Physical and Mathematical Modelling of Vessel’s stability in a seaway. OTRADNOYE’93, Kalingrad, Russia

  • Kanarachos A E, Spentzas C N 1992 A Galerkin method for the steadystate analysis of harmonically excited nonlinear system.Mech. Mach. Theory 27: 661–671

    Google Scholar 

  • Kapitaniak T 1991Chaotic oscillations in mechanical systems (Manchester: University Press)

    MATH  Google Scholar 

  • Kapitaniak T 1993 Analytical method of controlling chaos in Duffing’s oscillator.J. Sound Vib. 163: 182–187

    MATH  MathSciNet  Google Scholar 

  • Kapitaniak T, Ponce E, Wojewoda J 1990 Route to chaos via strange nonchaotic attractors.J. Phys. A23: L383-L387

    MathSciNet  Google Scholar 

  • Kapitaniak T, Wojewoda J 1990 Strange nonchaotic attractors of a quasiperiodically forced van der Pol’s oscillator.J. Sound Vib. 138: 162–169

    MathSciNet  Google Scholar 

  • Karyeaclis M P, Caughey T K 1989 Stability of a semi-active impact damper: Part I — Global behavior 930–940. Part-II-Periodic solutions.ASME J. Appl. Mech. 56: 926–929

    MATH  MathSciNet  Google Scholar 

  • Kim M C, Hsu C S 1986 Computation of the largest Lyapunov exponent by the generalised cell mapping.J. Stat. Phys. 45: 49–61

    MATH  MathSciNet  Google Scholar 

  • Kim Y B, Noah S T 1991 Stability and bifurcation analysis of oscillators with piece-wise linear characteristics: A general approach.ASME J. Appl. Mech. 58: 545–553

    MATH  MathSciNet  Google Scholar 

  • Kleczka M, Kleczka W, Kreuzer E 1990 Bifurcation analysis: A combined numerical and analytical approach.Continuation and bifurcations: Numerical techniques and applications (eds) D Rooseet al (Amsterdam: Kluwer) pp. 123–137

    Google Scholar 

  • Kleczka M, Kreuzer E, Wilmers C 1989 Crisis in mechanical systems.Proc. of IUTAM Symposium on Nonlinear Dynamics and Engineering Systems (ed.) W Schiehlen pp 141–148 (Berlin: Springer Verlag)

    Google Scholar 

  • Kleczka M, Kreuzer E, Wilmers C 1991 Combined analytical-numerical analysis of nonlinear dynamical systems.Int. Ser. of Numer. Math. 97: 199–203

    MathSciNet  Google Scholar 

  • Koch B P, Leven R W 1985 Subharmonic and homoclinic bifurcations in a parametrically forced pendulum.Physica D15: 1–13

    MathSciNet  Google Scholar 

  • Kondou T, Tamura H, Sueoka A 1986 On a method of higher approximation and determination of stability criterion for steady oscillations in nonlinear systems.Bull. JSME 29: 525–532

    Google Scholar 

  • Kotera T, Yamanashi H 1986 Chaotic behavior in an impact vibration system 2nd Report: Influence of damping coefficient and coefficient of restitution.Trans. JSME 52: 1883–1886

    Google Scholar 

  • Kozol J E, Brach R M 1991 Two-dimensional vibratory impact with chaos.J. Sound Vib. 148: 319–327

    Google Scholar 

  • Kreuzer E 1985 Analysis of chaotic systems using the cell mapping approach.Ing.-Archiv. 55: 285–294

    MATH  Google Scholar 

  • Kubiček M, Marek M 1983Computational methods in bifurcation theory and dissipative structures (New York: Springer-Verlag)

    Google Scholar 

  • Kunert A, Pfeiffer F 1989 Stochastic models for rattling in gearboxes.Proc. of IUT AM Symposium on Nonlinear Dynamics and Engineering Systems (ed.) W Schiehlen (Berlin: Springer Verlag) pp. 173–180

    Google Scholar 

  • Kunert A, Pfeiffer F 1991 Description of chaotic motion by an invariant distribution as the example of driven Duffing oscillator.Int. Ser. Numer. Math. 97: 225–230

    MathSciNet  Google Scholar 

  • Lam K Y, Liaw C Y, Chan E S 1992 Parallel determination of basins of attraction.Computa-tional methods in engineering: advances and applications (Singapore: World Scientific) pp. 1223–1227

    Google Scholar 

  • Landau L, Lipschitz E 1971Mechanics of fluids (Moscow: Mir Publications)

    Google Scholar 

  • Lansbury A N, Thompson J M T 1990 Incursive fractals: a robust mechanism of basin erosion preceding the optimal escape from a potential well.Phys. Lett. A150: 355–361

    MathSciNet  Google Scholar 

  • Lathrop D P, Kostelich E J 1989 Characterisation of an experimental strange attractor by periodic attractors.Phys. Rev. A40: 4028–4031

    MathSciNet  Google Scholar 

  • Lau S L, Cheung Y K, Wu S Y 1981 Amplitude incremental variation principle for nonlinear vibration of elastic systems.ASME J. Appl. Mech. 48: 959–964

    MATH  Google Scholar 

  • Lau S L, Cheung Y K, Wu S Y 1982 A variable parameter incrementation method for dynamic stability of linear and nonlinear elastic system.ASME J. Appl. Mech. 49: 849–853

    MATH  Google Scholar 

  • Lau S L, Cheung Y K, Wu S Y 1983 Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems.ASME J. Appl. Mech. 50: 871–876

    MATH  MathSciNet  Google Scholar 

  • Lau S L, Yeun S W 1991 Hopf bifurcation and limit cycle analysis by incremental harmonic balance methodComput.Methods Appl. Mech. Eng. 91: 1109–1121

    Google Scholar 

  • Lau S L, Zhang W S 1992 Nonlinear vibrations of piecewise linear systems by incremental harmonic balance method.Trans. ASME J. Appl. Mech. 59: 153–160

    MATH  MathSciNet  Google Scholar 

  • Leung A Y T 1989 Nonlinear natural vibration of beams by selective coefficient increment.Comput. Mech. 5: 73–80

    MATH  Google Scholar 

  • Leung A Y T, Fung F C 1989a Construction of chaotic regions.J. Sound Vib. 131: 445–455

    MathSciNet  Google Scholar 

  • Leung A Y T, Fung F C 1989b Nonlinear steadystate vibration of frames by finite element method.Int. J. Numer. Meth. Eng. 28: 1599–1618

    MATH  Google Scholar 

  • Leung A Y T, Fung F C 1990a Nonlinear steadystate vibration and dynamic snap through of shallow arch beams.Earthquake Eng. Struct. Dyn. 19: 409–430

    Google Scholar 

  • Leung A Y T, Fung F C 1990b Geometrical nonlinear vibration of spinning structures.J. Sound Vib. 139: 43–62

    Google Scholar 

  • Leven R W, Pompe B, Wilke C and Koch B P 1985 Experiments on periodic and chaotic motions of parametrically forced pendulum.Physica D16: 371–384

    MathSciNet  Google Scholar 

  • Levinson N 1944 Transformation theory of nonlinear differential equations of the second order.Ann. Math. 45: 723–737

    MathSciNet  Google Scholar 

  • Levinson N 1949 A second order differential equation with singular solution.Ann. Math. 50: 127–153

    MathSciNet  Google Scholar 

  • Levitas J, Weller J T, Singer J 1992 Poincaré-like simple cell mapping for global analysis of nonlinear dynamical systems.Comput. Meth. Eng.: Advances and Applications (Singapore: World Scientific) pp 909–914

    Google Scholar 

  • Lewandowski R 1992 Nonlinear steadystate vibration of structures by harmonic balance/finite element method.Comput. Struct. 44: 287–296

    Google Scholar 

  • Li G X, Moon F C 1990 Criteria for chaos of a three well potential oscillator with homoclinic and hetroclinic orbits.J. Sound Vib. 136: 17–34

    MathSciNet  Google Scholar 

  • Li G X, Rand R H, Moon F C 1990 Bifurcations and chaos in a forced zero-stiffness impact oscillator.Int. J. Non-Linear Mech. 25: 417–432

    MATH  MathSciNet  Google Scholar 

  • Liaw C Y 1988 Bifurcations of subharmonics and chaotic motions of articulated towers.Eng. Struct. 10: 117–124

    Google Scholar 

  • Lichtenberg A J, Lieberman M A 1983Regular and stochastic motion (New York: Springer Verlag)

    MATH  Google Scholar 

  • Liebovitch L S, Toth T 1989 A fast algorithm to determine fractal dimensions by box counting.Phys. Lett. A141: 386–390

    MathSciNet  Google Scholar 

  • Ling F H 1986 A numerical study of the applicability of the Melnikov’s method.Phys. Lett. A119: 447–452

    Google Scholar 

  • Ling F H 1990 An alternating frequency/time domain method for calculating the steadystate response of nonlinear dynamical systems — Discussion/Authors closure.ASME J. Appl. Mech. 57: 251–252

    Google Scholar 

  • Ling F H, Wu X X 1987 Fast Galerkin method and its application to determine periodic solutions of nonlinear oscillators.Int. J. Non-Linear Mech. 22: 89–98

    MATH  Google Scholar 

  • Lorentz E N 1963 Deterministic nonperiodic flow.J. Atmos. Sci. 20: 130–141

    Google Scholar 

  • Lyapunov A M 1949Problème Général de la Stabilité du mouvement (Princeton: University Press)

    Google Scholar 

  • Maezawa S 1961 Steady forced vibration of unsymmetrical piece-wise linear system.Bull. JSME 4: 201–229

    MathSciNet  Google Scholar 

  • Maezawa S, Furukawa S 1973 Superharmonic resonance in piecewise linear oscillator.Bull. Jpn. Soc. Mech. Eng. 16: 931–941

    Google Scholar 

  • Maezawa S, Kumano H, Minakuchi Y 1980 Forced vibrations in an unsymmetrical piece-wise linear system excited by general periodic force function.Jpn. Soc. Mech. Eng. 23: 68–75

    Google Scholar 

  • Mahfouz I A, Badrakhan F 1990 Chaotic behaviour of some piecewise linear systems. Part I. Systems with setup spring or with unsymmetric elasticity. 289–328, Part II — Systems with clearance.J. Sound Vib. 143: 253–288

    Google Scholar 

  • Makrides G A, Edelstein W S 1992 Some numerical studies of chaotic motions in tubes conveying fluid.J. Sound Vib. 152: 517–530

    MATH  Google Scholar 

  • Manneville P, Pomeau Y 1980 Different ways to turbulence in dissipative dynamical systems.Physica D1: 219–226

    MathSciNet  Google Scholar 

  • Matsumoto T 1984 A chaotic attractor from Chua’s circuit.IEEE Trans. Circuits Sys. 33: 1055–1058

    Google Scholar 

  • McLaughlin J B 1981 Period doubling bifurcations and chaotic motion for a parametrically forced pendulumJ. Stat. Phys. 24: 375–388

    MathSciNet  Google Scholar 

  • McRobie F A 1992 Bifurcational precedences in the braids of periodic orbits of spiral 3-shoes in driven oscillators.Proc. R. Soc. London A438: 545–569

    MathSciNet  Google Scholar 

  • Mees A, Sparrow C 1987 Some tools for analysis chaos.Proc. IEEE 75: 1058–1070

    Google Scholar 

  • Mehta N J, Henderson R M 1991 Controlling chaos to generate aperiodic orbits.Phys. Rev. A44: 4861–4865

    MathSciNet  Google Scholar 

  • Meijaard J P 1991 Direct determination of periodic solutions of the dynamical equations of flexible mechanisms and manipulators.Int. J. Numer. Meth. Eng. 32: 1691–1710

    MATH  Google Scholar 

  • Meijaard J P, De Pater A D 1989 Railway vehicle systems dynamics and chaotic vibrations.Int. J. Non-Linear Mech. 24: 1–17

    MATH  Google Scholar 

  • Melnikov V K 1963 On the stability of the center for time periodic perturbations.Trans. Moscow Math. Soc. 12: 1–57

    Google Scholar 

  • Mevel B, Guyader J L 1993 Routes to chaos in ball bearings.J. Sound Vib. 162: 471–487

    MATH  Google Scholar 

  • Mickens R E 1988 Bounds on the coefficients for the periodic solutions of nonlinear oscillator equations.J. Sound Vib. 124: 199–203

    MathSciNet  Google Scholar 

  • Miles J 1988 Resonance and symmetry breaking for the pendulum.Physica D31: 252–268

    MathSciNet  Google Scholar 

  • Molteno T C A, Tufillaro N B 1990 Torus doubling and chaotic string vibrations.J. Sound Vib. 137: 327–330

    Google Scholar 

  • Moon F C 1980 Experiments on chaotic motions of a forced nonlinear oscillator: Strange attractors.ASME J. Appl. Mech. 47: 638–644

    Google Scholar 

  • Moon F C 1992Chaotic and fractal dynamics (New York: Wiley)

    Google Scholar 

  • Moon F C, Broschart T 1991 Chaotic sources of noise in machine acoustics.Arch. Appl. Mech. 61: 438–448

    Google Scholar 

  • Moon F C, Holmes P J 1979 A magneto elastic strange attractor.J. Sound Vib. 65: 275–296

    MATH  Google Scholar 

  • Moon F C, Li G X 1985a Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential.Phys. Rev. Lett. 55: 1439–1443

    MathSciNet  Google Scholar 

  • Moon F C, Li G X 1985b The fractal dimension of two well potential strange attractors.Physica D17: 99–108

    MathSciNet  Google Scholar 

  • Moon F C, Li G X 1990 Experimental study of chaotic vibrations in a pin jointed space truss structure.Am. Inst. Aeronaut. Astronaut. J. 28: 915–921

    Google Scholar 

  • Moon F C, Shaw S W 1983 Chaotic vibrations of a beam with nonlinear boundary conditions.Int. J. Non-Linear Mech. 18: 465–477

    MathSciNet  Google Scholar 

  • Moore D B, Shaw S W 1990 The experimental response of an impacting pendulum system.Int. J. Non-Linear Mech. 25: 1–16

    Google Scholar 

  • Narayanan S, Jayaraman K 1989a Chaotic motions in nonlinear systems with Coulomb damping.Proc. of IUTAM Symp. on Nonlinear Dyn. Eng. Sys. (ed.) W Schiehlen (Berlin: Springer Verlag) 217–224

    Google Scholar 

  • Narayanan S, Jayaraman K 1989b Control of chaotic oscillation by vibration absorber.ASME Design Technical Conference — 12th Biennial Conference on Mechanical Vibration and Noise DE-18.5, 391–394

    Google Scholar 

  • Narayanan S, Jayaraman K 1991 Chaotic vibration in nonlinear oscillator with Coulomb damping.J. Sound Vib. 146: 1–17

    Google Scholar 

  • Narayanan S, Jayaraman K 1993 Chaotic oscillations of a square prism in fluid flow.J. Sound Vib. 166: 87–101

    MATH  Google Scholar 

  • Narayanan S, Sekar P 1993 Bifurcation and chaos of coupled systems by fast incremental harmonic balancing.IUTAM Symposium in Nonlinearity and Chaos in Engineering Dynamics, London.

  • Narayanan S, Sekar P 1994Nonlinearity and chaos in engineering dynamics (eds) J M T Thompson, S R Bishop 29: 365–375

    MathSciNet  Google Scholar 

  • Narayanan S, Sekar P 1995 Periodic and chaotic responses of a sdf system with piecewise linear stiffness subjected to combined harmonic and flow induced excitations.J. Sound Vib. 26: 281–298

    Google Scholar 

  • Natsiavas S 1991 Dynamics of piece-wise linear oscillator with van der Pol type damping.Int. J. Non-Linear Mech. 26: 349–366

    Google Scholar 

  • Natsiavas S, Babcock C D 1988 Behaviour of unanchored fluid filled tanks subjected to ground excitation.Trans. ASME J. Appl. Mech. 55: 654–659

    Google Scholar 

  • Nayfeh A H, Khdeir A A 1986 Nonlinear rolling of ships in regular beam seas.Int. Shipbuild. Prog. 33: 40–49

    Google Scholar 

  • Nayfeh A H, Sanchez N E 1988 Chaos and dynamic instability in the rolling motion of ships.Proceedings of the 17th Symposium on Naval Hydrodynamics, The Hague

  • Nayfeh A H, Sanchez N E 1989 Bifurcations in a forced softening Duffing oscillator.Int. J. Non-Linear Mech. 24: 483–497

    MATH  MathSciNet  Google Scholar 

  • Neuman C P, Sen A 1972 Galerkin procedure, quasi-linearisation and nonlinear boundary value problems.J. Optim. Theory Appl. 9: 433–437

    MATH  MathSciNet  Google Scholar 

  • Newhouse S, Ruelle D, Takens T 1978 Occurrence of strange axiom A attractor near quasiperiodic flows onT m,m ≥ 3.Commun. Math. Phys. 64: 35–40

    MATH  MathSciNet  Google Scholar 

  • Nitsche G, Dressler U 1992 Controlling chaotic dynamical systems using time delay coordinates.Physica D58: 153–164

    MathSciNet  Google Scholar 

  • Nordmark A B 1991 Non-periodic motion caused by grazing incidence in an impact oscillator.J. Sound Vib. 145: 279–297

    Google Scholar 

  • Nordmark A B 1993 A computer implementation for the interactive study of dynamical systems by cell mappings.IUTAM Symposium on Nonlinearity and Chaos in Engineering Dynamics, London (ed.) J M T Thompson

  • Novak S, Frehlich R G 1982 Transition to chaos in the Duffing oscillator.Phys. Rev. A26: 3660–3663

    MathSciNet  Google Scholar 

  • O’Reilly O, Holmes P J 1992 Nonlinear, nonplanar and nonperiodic vibrations of a string.J. Sound Vib. 153: 413–435

    MATH  Google Scholar 

  • Oravsky V 1990 Determination of periodic solutions and their stability for nonlinear systems by a new matrix method.XII International Conference on Nonlinear Oscillations

  • Oseledec V I 1968 A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems.Trans. Moscow Math. Soc. 12: 1–57

    Google Scholar 

  • Ostlund S, Rand D, Sethna J, Sigga E 1983 Universal properties of the transition from quasi-periodicity to chaos in dissipative systems.Physica D8: 303–342

    Google Scholar 

  • Ott E 1981 Part-I. Strange attractors and chaotic motions of dynamical systems.Rev. Mod. Phys. 53: 655–672

    MATH  MathSciNet  Google Scholar 

  • Ott E, Grebogi C, Yorke J A 1990 Controlling chaos.Phys. Rev. Lett. 64: 1196–1199

    MATH  MathSciNet  Google Scholar 

  • Packard N H, Crutchfield J P, Farmer J D, Shaw R S 1980 Geometry from a time series.Phys. Rev. Lett. 45: 712–715

    Google Scholar 

  • Païdoussis M P 1987 Flow induced instabilities of cylindrical structures.Appl. Mech. Rev. 40: 163–175

    Google Scholar 

  • Païdoussis M P, Li G X 1992 Dynamics of cross flow induced vibrations of heat exchanger tubes impacting on loose supports.J. Sound. Vib. 152: 305–326

    MATH  Google Scholar 

  • Païdoussis M P, Li G X 1993 Pipes conveying fluid. A model dynamical problem.J. Fluids Struct. 7: 137–204

    Google Scholar 

  • Païdoussis M P, Moon F C 1988a Nonlinear and chaotic fluid elastic vibrations of a flexible pipe conveying fluid.J. Fluids Struct. 2: 567–591

    Google Scholar 

  • Païdoussis M P, Moon F C 1988 b Nonlinear and chaotic fluid elastic vibrations of a flexible pipe conveying fluid.Proc. Int. Symp. on Flow induced vibration and noise, ASME Nonlinear Interaction Effects and Chaotic motions (eds) M M M P Paidousis, R J Hansen pp. 107–133

  • Païdoussis M P, Cusumano J P, Copeland G S 1992 Low dimensional chaos in a flexible tube conveying fluid.Trans. ASME J. Appl. Mech. 59: 196–205

    Google Scholar 

  • Païdoussis M P, Li G X, Rand R H 1991 Chaotic motions of a constrained pipe conveying fluid: Comparison between simulation, analysis and experiment.Trans. ASME J. Appl. Mech. 58: 559–565

    Google Scholar 

  • Païdoussis M P, Price S J, Mureithi 1993 Nonlinear and chaotic dynamics of a two-degree of freedom analytical model for a rotated triangular array in cross flowJ. Fluids Struct. 7: 497–520

    Google Scholar 

  • Palkovics L, Venhovens P J Th 1992 Investigation on stability and possible chaotic motions in the controlled wheel suspension system.Veh. Syst. Dyn. 21: 269–296

    Google Scholar 

  • Parker T S, Chua L O 1989Practical numerical algorithms for chaotic systems (New York: Springer-Verlag)

    MATH  Google Scholar 

  • Parthasarathy S 1992 Homoclinic bifurcation sets of the parametrically driven Duffing oscillator.Phys. Rev. A46: 2147–2150

    MathSciNet  Google Scholar 

  • Pawelzik K 1991 Unstable periodic orbits and prediction.Phys. Rev. A43: 1808–1812

    Google Scholar 

  • Pederson N F, Davidson A 1981 Chaos and noise rise in Josephson junctions.Appl. Phys. Lett. 39: 830–832

    Google Scholar 

  • Perkins N C 1992 Modal interactions in the nonlinear response of elastic cables under parametric/external excitation.Int. J. Non-Linear Mech. 27: 233–250

    MATH  Google Scholar 

  • Peterka F, Vacik J 1992 Transition to chaotic motion in mechanical systems with impacts.J. Sound Vib. 154: 95–115

    MATH  MathSciNet  Google Scholar 

  • Peurach J, Tongue B H 1991 Chaotic response of a slider crank mechanism.ASME J. Vib. Acoust. 113: 69–73

    Google Scholar 

  • Pezeshki C, Dowell E H 1987 An examination of initial condition maps for the sinusoidally excited buckled beam modelled by the Duffing’s equation.J. Sound Vib. 117: 219–232

    MathSciNet  Google Scholar 

  • Pezeshki C, Elgar S, Krishna R C 1991 An examination of multi frequency excitation of the buckled beam.J. Sound Vib. 148: 1–9

    Google Scholar 

  • Pierre C, Dowell E H 1985 A study of dynamic instability of plates by extended incremental harmonic balance method.ASME J. Appl. Mech. 52: 693–697

    MATH  Google Scholar 

  • Pierre C, Ferri A A, Dowell E H 1985 Multiharmonic analysis of dry friction damped systems using incremental harmonic balance method.ASME J. Appl. Mech. 52: 958–964

    MATH  Google Scholar 

  • Plaut R H, Hsieh J C 1987 Chaos in mechanism with time delays under parametric and external excitation.J. Sound Vib. 114: 73–90

    MathSciNet  Google Scholar 

  • Poincaré H 1921The foundation of science: Science and method (New York: The Science Press)

    Google Scholar 

  • Popp K, Stelter P 1989 Nonlinear oscillations of structures induced by dry friction.Proc. of IUTAM Symposium on Nonlinear Dynamics and Engineering Systems (ed.) W Schiehlen (Berlin: Springer Verlag) pp 233–240

    Google Scholar 

  • Qin G R, Gong D C, Li R, Wen X D 1989 Rich bifurcation behaviors of the driven van der Pol oscillator.Phys. Lett. A141: 412–416

    Google Scholar 

  • Raghothama A 1993Bifurcation and chaos in gear and cam mechanisms with clearance type nonlinearities. MS thesis, Indian Institute of Technology, Madras

    Google Scholar 

  • Räty R, Isomaki H M, von Boehm J 1984a Chaotic motion of a classical anharmonic oscillator.Acta Polytech. Scand. 85: 1–30

    Google Scholar 

  • Räty R, von Boehm J, Isomaki H M 1984b Absence of inversion symmetric limit cycles of even periods and chaotic motion of Duffing oscillator.Phys. Rev. Lett. A103: 289–291

    Google Scholar 

  • Reinhall P J, Caughey T K, Storti D W 1989 Order and chaos in a discrete Duffing oscillator: Implications on numerical integration.Trans. ASME J. Appl. Mech. 56: 162–167

    MATH  MathSciNet  Google Scholar 

  • Rokni M, Berger B S 1991 Chaotic motion of a two link mechanism.J. Sound Vib. 147: 349–351

    Google Scholar 

  • Romeiras F J, Grebogi C, Ott E 1992 Controlling chaotic dynamical systems.Physica D58: 165–192

    MathSciNet  Google Scholar 

  • Rössler O E 1976 Different types of chaos in two simple differential equations.Z. Naturforsch. A31: 1664–1670

    Google Scholar 

  • Rudowski J, Szemplinska-Stupnicka W 1987 On an approximate criterion for chaotic motion in a model of a buckled beam.Ingen.-Arch. 57: 243–255

    MATH  Google Scholar 

  • Ruelle D, Takens F 1971 On the nature of turbulence.Commun. Math. Phys. 20: 167–192

    MATH  MathSciNet  Google Scholar 

  • Salam F M A, Marsden J E, Varaiya P P 1983 Chaos and Arnold diffusion in dynamical systems.IEEE Trans. Circuits Syst. CAS 30: 697–708

    MATH  MathSciNet  Google Scholar 

  • Samoilenko A M, Ronto N I 1979Numeric-analytic methods of investigating periodic solutions

  • Sano M, Sawada Y 1983 Transition from quasi-periodicity to chaos in a system of coupled nonlinear oscillators.Phys. Lett. A97: 73–76

    MathSciNet  Google Scholar 

  • Sato S, Sano M, Sawada Y 1983 Universal scaling property in bifurcation structure of Duffing’s and of generalised Duffing’s equation.Phys. Rev. A28: 1654–1658

    MathSciNet  Google Scholar 

  • Sato K, Yamamoto S, Fujishiro S 1989 On the dynamic response of the hysteretic system.Comput. Mech. 5: 241–254

    MATH  Google Scholar 

  • Sato K, Yamamoto S, Kawakami T 1991 Bifurcation sets and chaotic states of a gear system subjected to harmonic excitation.Comput. Mech. 7: 173–182

    MATH  Google Scholar 

  • Schichtel T, Beckmann P E 1991 The use of first return maps in the computation of basin boundaries in three dimensional phase space.Phys. Lett. A156: 163–168

    MathSciNet  Google Scholar 

  • Schmidt G, Tondl A 1986Nonlinear vibrations (Cambridge: University Press)

    MATH  Google Scholar 

  • Schwartz I B 1983 Estimating regions of existence of unstable periodic orbits using computer based techniques.SIAM J. Numer. Anal. 20: 106–120

    MATH  MathSciNet  Google Scholar 

  • Schwartz I B, Triandaf I 1992 Tracking unstable orbits in experiments.Phys. Rev. A46: 7439–7444

    Google Scholar 

  • Sekar P, Narayanan S 1994 Periodic and chaotic motions of a square prism in cross flow.J. Sound Vib. 170: 1–24

    MATH  Google Scholar 

  • Seydel R 1988From equilibrium to chaos: Practical bifurcation and stability analysis (New York: Elsevier)

    MATH  Google Scholar 

  • Sharif-Bakhtiar M, Shaw S W 1988 The dynamic response of a centrifugal pendulum vibration absorber with motion limiting stops.J. Sound Vib. 126: 221–235

    Google Scholar 

  • Shaw R 1981 Strange attractors, chaotic behaviour and information flow.Z. Naturforsch. A36: 80–112

    Google Scholar 

  • Shaw S W, Holmes P J 1983a A periodically forced piece-wise linear oscillator.J. Sound Vib. 90: 129–155

    MATH  MathSciNet  Google Scholar 

  • Shaw S W, Holmes P J 1983b A periodically forced impact oscillator with large dissipation.ASME J. Appl. Mech. 50: 849–857

    MATH  Google Scholar 

  • Shaw S W 1985 The dynamics of a harmonically excited system having rigid amplitude constraints. Part-I: Subharmonic motions and local bifurcations 459–464 Part-2: Chaotic motions and global bifurcations.ASME J. Appl. Mech. 52: 453–458

    Google Scholar 

  • Shaw S W 1986 On the dynamic response of a system with dry friction.J. Sound Vib. 108: 305–325

    Google Scholar 

  • Shaw S W, Rand R H 1989 The transition to chaos in a simple mechanical system.Int. J. Non-Linear Mech. 24: 41–56

    MATH  MathSciNet  Google Scholar 

  • Shaw J, Shaw S W 1989 The onset of chaos in a two degree of freedom impacting system.Trans. ASME J. Appl. Mech. 56: 168–174

    MATH  MathSciNet  Google Scholar 

  • Shaw S W, Tung P C 1988 The dynamic response of a system with preloaded compliance.ASME J. Dyn. Sys. Control. 110: 278–283

    Google Scholar 

  • Shilnikov L P 1970 A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type.Math. USSR Sbornik. 10: 91–102

    Google Scholar 

  • Shimada I, Nagashima T 1979 A numerical approach to ergodic problem of dissipative dynamical systems.Prog. Theor. Phys. 61: 1605–1615

    MATH  MathSciNet  Google Scholar 

  • Shinbrot T 1993 Using small perturbations to control chaos.Nature (London) 363: 411–417

    Google Scholar 

  • Simiu E, Cook G R 1991 Chaotic motions of self-excited forced and autonomous square prisms.ASCE J. Eng. Mech. 117: 241–259

    Google Scholar 

  • Simiu E, Cook G R 1992 Empirical fluid-elastic models and chaotic galloping: a case study.J. Sound Vib. 154: 45–66

    MATH  Google Scholar 

  • Singer J, Wang Y Z, Bau H H 1991 Controlling a chaotic system.Phys. Rev. Lett. 66: 1123–1125

    Google Scholar 

  • Soliman M S 1993 Jumps to resonance: Long chaotic transients, unpredictable outcome and the probability of restabilisation.ASME J. Appl. Mech. 60: 669–676

    MATH  MathSciNet  Google Scholar 

  • Soliman M S, Thompson J M T 1989 Integrity measures quantifying the erosion of smooth and fractal basins of attraction.J. Sound Vib. 135: 453–475

    MathSciNet  Google Scholar 

  • Soliman M S, Thompson J M T 1992a Indeterminate subcritical bifurcations in parametric resonance.Proc. R. Soc. London A438: 511–518

    MathSciNet  Google Scholar 

  • Soliman M S, Thompson J M T 1992b Indeterminate transcritical bifurcations in parametrically excited systems.Proc. R. Soc. London A439: 601–610

    MathSciNet  Google Scholar 

  • Sozen M A 1974 Hysteresis structural elements.Proc. Conf. Appl. Mech. Earthquake Sys. ASME Annu, Meeting AMD. 8: 66–98

    Google Scholar 

  • Sparrow C 1982The Lorenz equations (New York: Springer-Verlag)

    MATH  Google Scholar 

  • Sri Namachchivaya N 1989 Nonlinear dynamics of supported pipe conveying pulsating fluid. Part I: Subharmonic resonance.Int. J. Non-Linear Mech. 24: 185–196

    Google Scholar 

  • Sri Namachchivaya N, Tien W M 1989 Nonlinear dynamics of supported pipe conveying pulsating fluid. Part II: Combination resonance.Int. J. Non-Linear Mech. 24: 197–208

    Google Scholar 

  • Stavens J, Heslot F, Libchaber A 1985 Fixed winding number of the quasiperiodic route to chaos in a convective fluid.Phys. Rev. Lett. 55: 596–599

    Google Scholar 

  • Steeb W H, Erig W, Kunik A 1983 Chaotic behaviour and limit cycle behaviour of anharmonic systems with periodic external perturbations.Phys. Lett. A93: 267–270

    Google Scholar 

  • Steeb W H, Kunik A 1987 Chaos in limit cycle systems with external periodic excitations.Int. J. Non-Linear Mech. 22: 349–361

    MATH  Google Scholar 

  • Steeb W H, Louw J A, Kapitaniak T 1986 Chaotic behaviour of an anharmonic oscillator with two external periodic forces.J. Phys. Soc. Jpn. 55: 3279–3280

    Google Scholar 

  • Stewart H B, Ueda Y 1991 Catastrophes with indeterminate outcome.Proc. R. Soc. London 432: 113–123

    MATH  MathSciNet  Google Scholar 

  • Sun J Q, Hsu C S 1990 Global analysis of nonlinear dynamical systems with fuzzy uncertainties by the cell mapping method.Comput. Methods Appl. Mech. Eng. 83: 109–120

    MATH  MathSciNet  Google Scholar 

  • Szemplinska-Stupnicka W 1986 The 1/2 subharmonic resonance and its transition to chaotic motion in a nonlinear oscillator.Int. J. Non-Linear Mech. 21: 401–409

    MATH  MathSciNet  Google Scholar 

  • Szemplinska-Stupnicka W 1987 Secondary resonances and approximate models of routes to chaotic motion in nonlinear oscillators.J. Sound Vib. 113: 155–172

    MathSciNet  Google Scholar 

  • Szemplinska-Stupnicka W 1988a The refined approximate criterion for chaos in a two state mechanical system.Ing.-Archiv. 58: 354–366

    MATH  Google Scholar 

  • Szemplinska-Stupnicka W 1988b Bifurcations of harmonic solution leading to chaotic motion in the softening type Duffing’s oscillator.Int. J. Non-Linear Mech. 23: 257–277

    MATH  MathSciNet  Google Scholar 

  • Szemplinska-Stupnicka W 1989 The approximate criteria for chaos in multi well potential vibrating systems.Proc. of IUTAM Symp. on Nonlinear Dyn. and Eng. Sys. (ed.) W Schiehlen (Berlin: Springer-Verlag)

    Google Scholar 

  • Szemplinska-Stupnicka W 1992 A discussion on necessary and sufficient conditions for steady-state chaos.J. Sound Vib. 152: 369–372

    MATH  MathSciNet  Google Scholar 

  • Szemplinska-Stupnicka W 1993 On analytical estimate of safe impulsive velocity in the driven escape oscillator.IUT AM Symposium on Nonlinearity and Chaos in Engineering Dynamics (ed.) J M T Thompson

  • Szemplinska-Stupnicka W, Plaut R H, Hsieh J C 1989 Period doubling and chaos in unsymmetric structures under parametric excitationASME J. Appl. Mech. 56: 947–952

    MathSciNet  Google Scholar 

  • Szemplinska-Stupnicka W, Rudowski J 1992 Local methods in predicting occurrence of chaos in two-well potential systems: superharmonic frequency region.J. Sound Vib. 152: 57–72

    MATH  MathSciNet  Google Scholar 

  • Takens F 1980 Detecting strange attractors in turbulence. InLecture notes in mathematics (eds) D A Rand, L S Young (Berlin: Springer)

    Google Scholar 

  • Tamura H, Tsuda Y, Sueoka A 1981 Higher approximation of steady oscillations in nonlinear systems with single degree of freedom (suggested multi-harmonic balance method).Bull. JSME. 24: 1616–1625

    MathSciNet  Google Scholar 

  • Tang D M, Dowell E H 1988a On the threshold force for chaotic motions for a forced buckled beam.ASME J. Appl. Mech. 55: 190–196

    Google Scholar 

  • Tang D M, Dowell E H 1988b Chaotic oscillations of a cantilevered pipe conveying fluid.J. Fluids Struct. 2: 263–283

    Google Scholar 

  • Tél T 1991 Controlling transient chaos.J. Phys. A24: L1359-L1368

    Google Scholar 

  • Theocaris P S, Panagiotopoulos P D 1993 Cracks of fractal geometry with unilateral contact and friction interface conditions.Int. J. Fract. 60: 293–310

    Google Scholar 

  • Thomsen J J 1992 Chaotic vibrations of non-shallow arches.J. Sound Vib. 153: 239–258

    MATH  Google Scholar 

  • Thompson J M T 1989 Chaotic phenomena triggering the escape from a potential well.Proc. R. Soc. London A421: 195–225

    Google Scholar 

  • Thompson J M T 1992 Global unpredictability in nonlinear dynamics, capture, dispersal and indeterminate bifurcations.Physica D58: 260–272

    Google Scholar 

  • Thompson J M T, Bishop S R, Leung L M 1987 Fractal basins and chaotic bifurcations prior to escape from a potential well.Phys. Lett. A121: 116–120

    MathSciNet  Google Scholar 

  • Thompson J M T, Bokaian A R, Ghaffari R 1983 Subharmonic resonances and chaotic motions of a bilinear oscillator.IMA J. Appl. Math. 31: 207–234

    MATH  MathSciNet  Google Scholar 

  • Thompson J M T, Lunn T S 1981 Static elastic formulations of a pipe conveying fluid.J. Sound Vib. 77: 127–132

    Google Scholar 

  • Thompson J M T, Rainey R C T, Soliman M S 1990 Ship stability criteria based on chaotic transients from incursive fractals.Philos. Trans. R. Soc. London A332: 149–167

    MathSciNet  Google Scholar 

  • Thompson J M T, Soliman M S 1990 Fractal control boundaries of driven oscillators and their relevance to safe engineering design.Proc. R. Soc. London A428: 1–13

    Google Scholar 

  • Thompson J M T, Soliman M S 1991 Indeterminate jumps to resonance from a tangled saddle-node bifurcation.Proc. R. Soc. London A432: 101–111

    MathSciNet  Google Scholar 

  • Thompson J M T, Stewart H B 1986Non-linear dynamics and chaos (New York: John Wiley & Sons)

    Google Scholar 

  • Tondl A 1985 Analysis of a self excited system with a dry friction.Int. J. Non-Linear Mech. 20: 471–479

    Google Scholar 

  • Tongue B H 1986 Existence of chaos in a one degree of freedom system.J. Sound Vib. 110: 69–78

    MathSciNet  Google Scholar 

  • Tongue B H 1987a Characteristics of numerical simulations of chaotic systems.ASME J. Appl. Mech. 54: 695–699

    MathSciNet  Google Scholar 

  • Tongue B H 1987b On obtaining global nonlinear system characteristics through interpolated cell mapping.Physica D28: 401–408

    MathSciNet  Google Scholar 

  • Tongue B H, Gu K 1988a Interpolated cell mapping of dynamical systems.ASME J. Appl. Mech. 55: 461–466

    MATH  MathSciNet  Google Scholar 

  • Tongue B H, Gu K 1988b A theoretical basis for interpolated cell mapping.SIAM J. Appl. Math. 18: 1206–1214

    MathSciNet  Google Scholar 

  • Tongue B H, Gu K 1988c A higher order method of interpolated cell mapping.J. Sound Vib. 125: 169–179

    MathSciNet  Google Scholar 

  • Tongue B H, Smith D 1989 Lyapunov exponents by means of interpolated cell mapping.ASME J. Appl. Mech. 56: 691–696

    MATH  MathSciNet  Google Scholar 

  • Tousi S, Bajaj A K 1985 Period doubling bifurcations and modulated motion in forced mechanical systems.ASME J. Appl. Mech. 52: 446–452

    MathSciNet  Google Scholar 

  • Troger H 1979 On point mappings for mechanical systems possessing homoclinic and hetroclinic points.ASME J. Appl. Mech. 46: 468–469

    MATH  Google Scholar 

  • Tseng W Y, Dugundji J 1971 Nonlinear vibrations of a buckled beam under harmonic excitation.ASME J. Appl. Mech. 56: 691–696

    Google Scholar 

  • Tsuda Y, Tamura H, Seouka A, Fujji T 1992 Chaotic behavior of a nonlinear vibrating system with a retarded argument.JSME Int. Ser. III 35: 259–267

    Google Scholar 

  • Tufillaro N B, Abano A M 1986 Chaotic dynamics of a bouncing ball.Am. J. Phys. 54: 939–944

    Google Scholar 

  • Turcher H 1982 Bistability and Feigenbaum bifurcation of driven anharmonic oscillator.Phys. Lett. A30: 385–388

    Google Scholar 

  • Ueda Y 1979 Randomly transitional phenomena in the system governed by Duffing’s equation.J. Stat. Phys. 20: 181–196

    MathSciNet  Google Scholar 

  • Ueda Y 1980 Steady motions exhibited by Duffing’s equation.Picture book of regular and chaotic motions, new approaches to nonlinear dynamics (ed) P J Holmes (SIAM) pp 311–322

  • Ueda Y 1985 Random phenomena resulting from nonlinearity in the system described by Duffings equation.Int. J. Non-Linear Mech. 20: 481–491

    Google Scholar 

  • Ueda Y, Akamatsu N 1981 Chaotically transitional phenomena in the forced negative resistance oscillator.IEEE Trans. Circuits Syst. 28: 217–223

    MathSciNet  Google Scholar 

  • Urabe M 1965 Galerkin’s procedure for nonlinear periodic systems.Arch. Ration. Mech. Anal. 20: 120–152

    MATH  MathSciNet  Google Scholar 

  • Urabe M, Reiter 1966 Numerical computation of nonlinear forced oscillations by Galerkin’s procedure.J. Math. Anal. Appl. 14: 107–140

    MathSciNet  Google Scholar 

  • Vaishali A G 1994 Bifurcation and chaos in a rotor-bearing system with clearance. M. Tech. Thesis, Indian Institute of Technology, Madras

    Google Scholar 

  • Van der Pol B, Van der Mark J 1927 Frequency demultiplication.Nature (London) 120: 363–364

    Google Scholar 

  • Van Dooren R 1973 Differential tones in a damped mechanical system with quadratic and cubic nonlinearities.Int. J. Non-Linear Mech. 8: 575–583

    Google Scholar 

  • Van Dooren R 1988 On the transition from regular to chaotic behaviour in the Duffing’s oscillator.J. Sound Vib. 123: 327–339

    Google Scholar 

  • Varosi F, Grebogi C, Yorke J A 1987 Simplical approximation of Poincaré maps of differential equations.Phys. Lett. A124: 59–64

    MathSciNet  Google Scholar 

  • Virgin L N 1987 The nonlinear rolling response of a vessel including chaotic motions leading to capsize in regular waves.Appl. Ocean Res. 9: 89–95

    Google Scholar 

  • Virgin L N 1988 On the harmonic response of an oscillator with unsymmetric restoring force.J. Sound Vib. 126: 157–165

    MathSciNet  Google Scholar 

  • Virgin L N, Cartee L A 1991 A note on the escape from a potential well.Int. J. Non-Linear Mech. 26: 449–452

    MathSciNet  Google Scholar 

  • Wei S T, Pierre C 1989 Effects of dry friction damping on the occurrence of localized forced vibration in nearly periodic structures.J. Sound Vib. 129: 397–416

    Google Scholar 

  • Wen Y K 1989 Methods of random vibration for inelastic structures.Appl. Mech. Rev. 42: 39–52

    Google Scholar 

  • Whiston G S 1987a The vibro-impact response of a harmonically excited and preloaded one dimensional linear oscillator.J. Sound Vib. 115: 303–319

    MathSciNet  Google Scholar 

  • Whiston G S 1987b Global dynamics of a vibro impacting linear oscillator.J. Sound Vib. 118: 395–424

    MathSciNet  Google Scholar 

  • Whiston G S 1992 Singularities in vibroimpact dynamics.J. Sound Vib. 152: 427–460

    MATH  MathSciNet  Google Scholar 

  • Wiggins S 1987 Chaos in the quasiperiodically forced Duffing oscillator.Phys. Lett. A124: 138–142

    MathSciNet  Google Scholar 

  • Wiggins S 1990Introduction to applied nonlinear dynamical and chaos. (New York: Springer Verlag)

    MATH  Google Scholar 

  • Wolf A, Swift J B, Swinney H L, Vastano A 1985 Determining Lyapunov exponents from a time series.Physica D16: 285–317

    MathSciNet  Google Scholar 

  • Wong C W, Zhang W S, Lau S L 1991 Periodic forced vibration of unsymmetrical piece-wise linear systems by incremental harmonic balance method.J. Sound Vib. 149: 91–105

    Google Scholar 

  • Xu J X, Guttalu R S, Hsu C S 1985 Domains of attraction for multiple limit cycles of coupled van der Pol equations by simple cell mapping.Int. J. Non-Linear Mech. 20: 507–517

    MATH  Google Scholar 

  • Yagasaki K 1990 Second order averaging and chaos in quasiperiodically forced weakly nonlinear oscillators.Physica D44: 445–458

    MathSciNet  Google Scholar 

  • Yagasaki K 1991 Chaos in a weakly nonlinear oscillator with parameteric and external resonances.ASME J. Appl. Mech. 58: 244–250

    MATH  MathSciNet  Google Scholar 

  • Yagasaki K, Sakata M, Kimura K 1990 Dynamics of a weakly nonlinear system subjected to combined parametric and external excitation.ASME J. Appl. Mech. 57: 209–217

    MATH  MathSciNet  Google Scholar 

  • Yang C Y, Chang A H D, Roy R V 1991 Chaotic and stochastic dynamics for a nonlinear structural system with hysteresis and degradation.Probab. Eng. Mech. 6: 193–203

    Google Scholar 

  • Zadeh L A 1965 Fuzzy sets.Inf. Control 8: 338–353

    MATH  MathSciNet  Google Scholar 

  • Zhao L C, Yang Z C 1990 Chaotic motions of an airfoil with nonlinear stiffness in incompressible flow.J. Sound Vib. 138: 245–254

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekar, P., Narayanan, S. Chaos in mechanical systems — A review. Sadhana 20, 529–582 (1995). https://doi.org/10.1007/BF02823207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823207

Keywords

Navigation