Skip to main content
Log in

Sterile insect release method as a control measure of insect pests: A mathematical model

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Recently non-conventional approaches of pest control are getting much more importance in different parts of the world. The main reason behind this is the long list of side effects of conventional approaches (use of pesticides etc.). The present paper focuses on one such extremely useful method of insect pest control, namely the Sterile Insect Release Method (SIRM), by using a mathematical model. A blend of dynamical behaviours of the model is studied critically, which, in turn, indicates the relevance of the method. The effect of uncertain environmental fluctuations on both fertile and sterile insects is also investigated. Our analytical findings are verified through computer simulation. Some important restrictions on the parameters of the system are mentioned, which may be implemented for a better performance of SIRM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. T. Ariaratnam and D. S. M. Tam,Stability of weakly stochastic linear systems, in Symposium on Stochastic Problems in Mechanics (No. 10) (edited by S. T. Ariaratnam and H. Leipholz), University of Waterloo Press, Waterloo, 1974, 183–192.

    Google Scholar 

  2. F. H. Arthur and K. C. Hoernemann,Impact of physical and biological factors on susceptibility of Tribolium castaneum and Tribolium confusum ( Coleoptera: Tenebrionidae) to new formulations of hydroprene, L. Stored Products Res.40 (2004), 251–268.

    Article  Google Scholar 

  3. M. C. Baishya and C. G. Chakrabarti,Non-equilibrium fluctuation in Volterra-Lotka systems, Bull. Math. Biol.49 (1987), 125–131.

    MATH  MathSciNet  Google Scholar 

  4. M. Bandyopadhyay and C. G. Chakrabarti,Deterministic and stochastic analysis of a nonlinear prey-predator system, J. Biol. Syst.11 (2003), 161–172.

    Article  MATH  Google Scholar 

  5. G. A. Bécus,Stochastic prey-predator relationships: a random differential equation approach, Bull. Math. Biol.41 (1979), 91–100.

    MATH  MathSciNet  Google Scholar 

  6. R. Bhattacharya, M. Bandyopadhyay and S. Bannerjee,Stability and bifurcation in a diffusive prey-predator system: non-linear bifurcation analysis, J. Appl. Math. & Computing10(1-2) (2002), 17–26.

    Article  MATH  Google Scholar 

  7. G. Birkhoff and G. C. Rota,Ordinary Differential Equations, Ginn, Boston, 1982.

  8. Ehrlich and Birch,The “balance of nature” and “population control”, Am. Nat.101 (1967), 97–107.

    Article  Google Scholar 

  9. J. Hendrichs,Use of the sterile insect technique against key insect pests, Sustainable Development International2 (2000), 75–79.

    Google Scholar 

  10. J. Hendrichs, A. S. Robinson, J. P. Cayol and W. Enkerlin,Medfly areawide sterile insect technique programmes for prevention, suppression or eradiction: the importance of mating behaviour studies, Florida Entomol.85 (2002), 1–13.

    Article  Google Scholar 

  11. Y. M. van Houten and M. M. van Lier,Influence of temperature and humidity on the survival of eggs of the thrips predator Amblyseius cucumeris, Med. Fac. Landbouww. Rajksuniv. Gent60 (1995), 879–884.

    Google Scholar 

  12. Huafeng, L. F. Meizhen, L. Zengzhi and H. Cui,Pathogenic effect of Beauveria bassiana infected on Dendrolimus punctatus under different temperature and humidity, Chin. J. Appl. Ecol.9 (1998), 195–200.

    Google Scholar 

  13. K. ItÔ,On stochastic differential equations, Memoirs of the American Mathematical Society.4 (1951), 151.

    Google Scholar 

  14. S. E. Kabir,Non-conventional methods of pest control in tea (Camellia sinensis L.), in Recent Advances in Animal Science Research (vol. I) (edited by S. K. Ghosal and D. Ray), Orion Press International, West Bengal, 2001, 163–167.

    Google Scholar 

  15. D. Kesh, D. Mukherjee, A. K. Sarkar and A. B. Roy,Ratio dependent predation: a bifurcation analysis, J. Appl. Math. & Computing. (old: KJCAM)5 (2) (1998), 295–306.

    MATH  MathSciNet  Google Scholar 

  16. E. F. Knipling,The basic principles of insect population suppression management, U.S.D.A. Agriculture Handbook No.512, Washington D.C., 1979, 659.

  17. E. F. Knipling,Sterile insect technique as a screwworm control measure: the concept and its development, in Symposium on Eradication of the Screwworm from the United States and Mexico (edited by O. H. Graham), Misc. Publ. Entomol. Soc. America, 62, College Park, MD, 1985, 4–7.

    Google Scholar 

  18. H. J. Kushner,Stochastic Stability and Control, Academic Press, New York, 1967.

    MATH  Google Scholar 

  19. E. N. Lorenz,Deterministic nonperiodic flow, J. Atmos. Sci.20 (1963), 130–141.

    Article  Google Scholar 

  20. A. Maiti and G. P. Samanta,Deterministic and stochastic analysis of a prey-dependent predator-prey system, Int. J. Math. Educ. Sci. Technol.36 (2005), 65–83.

    Article  MathSciNet  Google Scholar 

  21. K. Matsumoto,Studies on the environmental factors for the breeding of grain mites. 10. Effect of the temperature and relative humidity on the breeding and hypopus formation in Lardoglyphus konoi, Jap. J. Sanit. Zool.21 (1970), 213–219.

    Google Scholar 

  22. R. M. May,Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1974.

    Google Scholar 

  23. R. M. May,Simple mathematical models with very complicated dynamics, Nature261 (1976), 459–467.

    Article  Google Scholar 

  24. G. N. Mbata,Some physical and biological factors affecting oviposition by Plodia interpunctella (Hubner) (Lepidoptera: Phycitidae), Insect Sci. Appl.6 (1985), 597–604.

    Google Scholar 

  25. A. Meats,Demographic analysis of sterile insect trials with the Queensland fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), Gen. Appl. Entomol.27 (1996), 2–12.

    Google Scholar 

  26. S. Moriya and T. Miyatake,Eradication programs of two sweetpotato pests, Cylas formicarius and Euscepes postfasciatus in Japan with special reference to their dispersal ability, J. Agric. Res. Quaterly34 (2001), 227–234.

    Google Scholar 

  27. J. D. Murray,Mathematical Biology, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  28. S. Navarro and M. Calderon,Mode of action of low atmospheric pressure on Ephestia cautella (Wlk.) pupae, Experientia35 (1979), 620–621.

    Article  Google Scholar 

  29. Prajneshu,A stochastic model for two interacting species, Stochastic Processes and their applications4 (1976), 271–282.

    Article  MATH  MathSciNet  Google Scholar 

  30. E. Renshaw,Modelling Biological Population in Space and Time, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  31. G. P. Samanta,Stochastic analysis of a prey-predator system, Int. J. Math. Educ. Sci. Technol.25 (1994), 797–803.

    Article  MATH  MathSciNet  Google Scholar 

  32. G. P. Samanta,Influence of environmental noises on Gomatam model of interacting species, Ecol. Model.91 (1996), 283–291.

    Article  Google Scholar 

  33. G. P. Samanta and A. Maiti,Stochastic Gomatam model of interacting species: nonequilibrium fluctuation and stability, Syst. Anal. Mod. Simul.43 (2003), 683–692.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. L. Stratonovich,Conditional Markov Processes and their application to the theory of optimal control, American Elsevier, New York, 1968.

    MATH  Google Scholar 

  35. D. M. Suckling, J. Hackett and J. Daly,Sterilisation of painted apple moth Teia anortoides (Lepidoptera: Lymantriidae) by irradiation, N. Z. Plant Prot.55 (2002), 7–11.

    Google Scholar 

  36. Y. M. Svirezhev and D. O. Logofet,Stability of Biological Communities, Mir Publishers, Moscow, 1978.

    Google Scholar 

  37. E. Wentzel and L. Ovacharov,Applied Problems in Probability Theory, Mir Publishers, Moscow, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Samanta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiti, A., Patra, B. & Samanta, G.P. Sterile insect release method as a control measure of insect pests: A mathematical model. J. Appl. Math. Comput. 22, 71–86 (2006). https://doi.org/10.1007/BF02832038

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02832038

AMS Mathematics Subject Classification

Key words and phrases

Navigation