Skip to main content
Log in

Anoxia-induced production of methylated and free fatty acids in retina, cerebral cortex, and white matter

Comparison with triglycerides and with other tissues

  • Published:
Neurochemical Pathology

Abstract

The content and composition of retinal free fatty acids (FFA)† was determined during in vitro anoxia. Anoxia induced a fourfold increase in FFA production, but these lipids were modified only slightly after aerobic incubation. An even greater increase in FFA occurred when BSA was present during anoxia. In the presence of BSA, the FFA pool remaining in the anoxic tissue was larger than that observed under aerobiosis. The addition of glucose during aerobic incubation yielded even higher levels of FFA, and free docosahexaenoic acid was released rapidly and displaced into the medium during aerobic incubation. Anoxia promoted an increased release of polyenoic FFA, notably of docosahexaenoic acid. Similar FFA profiles were found in slices of cerebral cortex and white matter. Negligible amounts of endogenous longchain fatty acid methyl esters (FAME) were observed in the neural tissues after aerobiosis. However, a remarkable increase in FAME occurred during anoxia. This phenomenon was reversed by aerobic reincubation. Glucose enhanced the triacylglycerol content in anoxic brain slices. During anoxia, retina and gray matter slices generated predominantly docosahexaenoate, arachidonate, stearate, and palmitate methyl esters, whereas white matter slices yielded other FAME. FAME that were present in liver and heart were not altered by anoxic incubation, even when FFA increased. It is concluded that FFA are derived from phospholipid deacylation, and that the in vitro retina is a more suitable CNS model for membrane lipid studies than brain slices, because it can maintain an almost constant FFA pool during short-term incubations under aerobic conditions. Also, the formation of FAME in the nervous system may be a defense mechanism aimed at lowering FFA levels when neurons are exposed to extreme oxygen deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FFA:

free fatty acids

BSA:

bovine serum albumin

FAME:

fatty acid methyl esters

References

  • Ames A. III and Hastings A. B. (1956) Studies on water and electrolytes in nervous tissues.J. Neurophysiol. 19, 201–212.

    PubMed  CAS  Google Scholar 

  • Ames A. III and Gurian B. S. (1963) Effects of glucose and oxygen deprivation on function of isolated mammalian retina.J. Neurophysiol. 26, 617–634.

    PubMed  Google Scholar 

  • Ames, A. III and Nesbett F. B. (1981) In vitro retina as an experimental model of the central nervous system.J. Neurochem. 37, 867–877.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. E. (1970) Lipids of ocular tissues IV. A comparison of the phospholipids from the retina of six mammalian species.Exp. Eye Res. 10, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Aveldano M. I. and Bazan N. G. (1974a) Displacement into incubation medium by albumin of highly unsaturated retina free fatty acids arising from membrane lipids.FEBS Lett. 40, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Aveldano M. I. and Bazan N. G. (1974b) Free fatty acids, diacyl- and triacylglycerols and total phospholipids in vertebrate retina. Comparison with brain choroid and plasma.J. Neurochem. 23, 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  • Aveldano M. I. and Bazan N. G. (1975a) Differential lipid deacylation during brain ischemia in a homeotherm and a poikilotherm. Content and composition of free fatty acids and triacylglycerols.Brain Res. 100, 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Aveldano M. I. and Bazan N. G. (1975b) Rapid production of diacylglycerols enriched in arachidonate and stearate during early brain ischemia.J. Neurochem. 25, 919–920.

    Article  PubMed  CAS  Google Scholar 

  • Banschbach M. W. and Geison R. L. (1974) Postmortem increase in rat cerebral hemisphere diglyceride pool size.J. Neurochem. 23, 875–877.

    Article  PubMed  CAS  Google Scholar 

  • Bazan H. E. P. and Bazan N. G. (1975a) Incorporation of3H-arachidonic acid into cattle retina lipids: high uptake in triacylglycerols, diacylglycerols, phosphatidylcholine and phosphatidylinositol.Life Sci. 17, 1671–1678.

    Article  PubMed  Google Scholar 

  • Bazan N. G. and Bazan H. E. P. (1975) Analysis of free and esterified fatty acids in neural tissues using gradient-thickness thin-layer chromatography, inResearch Methods in Neurochemistry, Vol. III (Marks N. and Rodnight R., eds.), pp. 309–324. Plenum Press, New York.

    Google Scholar 

  • Bazan, H. E. P. and Bazan N. G. (1976) Phospholipid composition and (14C)-glycerol incorporation in acylglycerides and phosphoglycerides of toad retina and brain.J. Neurochem. 27, 1051–1057.

    Article  PubMed  Google Scholar 

  • Bazan, N. G. (1970) Effects of ischemia and electroconvulsive shock on the brain free fatty acid pool.Biochim. Biophys. Acta 218, 1–10.

    PubMed  CAS  Google Scholar 

  • Bazan N. G. (1971a) Free fatty acids production in cerebral white and grey matter of a squirrel monkey.Lipids 6, 211–212.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G. (1971b) Phospholipases A1 and A2 in subcellular fractions.Acta Physiol. Latinoamericana 21, 15–20.

    Google Scholar 

  • Bazan N. G. (1971c) The effect of anaesthetics and of convulsions produced by drugs and electroshock on the brain free fatty acid pool.J. Neurochem. 18, 1379–1385.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G. (1976) Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock.Adv. Exp. Med. Biol. 83, 317–335.

    Google Scholar 

  • Bazan N. G., Aveldano M. I., Bazan H. E. P., and Giusto N. M. (1976) Metabolism of retina acylglycerides and arachidonic acid, inLipids, Vol. I (Paoletti R. and Jacini G., eds.), pp. 89–97. Raven Press, New York.

    Google Scholar 

  • Bazan N. G., Bazan H. E. P., Kennedy W. P., and Joel C. D. (1971) Regional distribution and rate of productions of free fatty acids in rat brain.J. Neurochem. 18, 1387–1393.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G. and Aveldano de Caldironi M. I., and Rodriguez de Turco E. B. (1982) Rapid release of free arachidonic acid in the central nervous system due to stimulation.Progr. Lipid Res. 20, 523–529.

    Google Scholar 

  • Cabot M. C. and Gatt S. (1977) Hydrolysis of endogenous diacylglycerol and monoacylglycerol by lipases in rat brain microsomes.Biochemistry 16, 2330–2334.

    Article  CAS  Google Scholar 

  • Cabot M. C. and Gatt S. (1978) The hydrolysis of triacylglycerol and diacylglycerol by a rat brain microsomal lipase with an acidic pH.Biochim. Biophys. Acta 530, 508–512.

    PubMed  CAS  Google Scholar 

  • Cenedella R. J. and Galli C., and Paoletti R. (1975) Brain free fatty acid levels in rats sacrificed by decapitation versus focused microwave irradiation.Lipids 10, 290–293.

    Article  PubMed  CAS  Google Scholar 

  • Cotman C. and Blank M. L. and Moehl A., and Snyder F. (1969) Lipid composition of synaptic membranes isolated from rat brain by zonal centrifugation.Biochemistry 8, 4606–4612.

    Article  PubMed  CAS  Google Scholar 

  • Dhopeshwarkar G. A. and Mead J. F. (1962) Evidence for occurrence of methyl esters in body and blood lipids.Proc. Soc. Exp. Biol. Med. 109, 425–429.

    PubMed  CAS  Google Scholar 

  • Dirksen T. R. (1971) In vitro bone lipid synthesis in air and nitrogen.Biochim. Biophys. Acta 231, 458–464.

    PubMed  CAS  Google Scholar 

  • Drewes L. R. and Gilboe D. D. and Betz A. L., and Wis M. (1973) Metabolic alterations in brain during anoxic-anoxia and subsequent recovery.Arch. Neurol. 29, 385–390.

    PubMed  CAS  Google Scholar 

  • Engelsen S. J. and Zatz M. (1982) Stimulation of fatty acid methylation in human red cell membranes by phospholipase A2 activation.Biochim. Biophys. Acta 711, 515–520.

    PubMed  CAS  Google Scholar 

  • Estable-Puig R. F. de and Estable-Puig J. F. (1973) Intraneuronal lipid droplets in irradiated nervous tissue.Virchows Arch Abt. B. Zellpath 14, 117–125.

    Google Scholar 

  • Fukuda J. I. and Mizukami E., and Imaichi K. (1967) Production of methyl esters of fatty acids as artifacts during the concentration of methanolic extracts of serum or plasma lipids.J. Biochem. 61, 657–658.

    PubMed  CAS  Google Scholar 

  • Ghosh S. K. and Cohen M. M. (1974) Effects of oxygen deprivation on incorporation of (U-14C)-glucose into macromolecules of guinea pig cerebral cortex slices.Exp. Neurol. 43, 570–579.

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson, J. R. and Karnovsky M. L. (1963) Nonphosphatide fatty acyl esters of alkenyl and alkyl ethers of glycerol.J. Biol. Chem. 238, 893–897.

    PubMed  CAS  Google Scholar 

  • Giusto N. M. and Bazan N. G. (1973) High increment of triglycerides with ether linkages in the retina during anoxia.Biochem. Biophys. Res. Commun. 55, 515–521.

    Article  PubMed  CAS  Google Scholar 

  • Giusto N. M. and Bazan N. G. (1979) Phospholipids and acylglycerols biosynthesis and14CO2 production from (14C)-glycerol, in the bovine retina: The effects of incubation time, oxygen and glucose.Exp. Eye Res. 29, 155–168.

    Article  PubMed  CAS  Google Scholar 

  • Gloster J. and Harris P. (1972) Effect of anaerobiosis on the incorporation of (14C)-acetate into lipid in the perfused rat heart.J. Mol. Cellular Cardiol. 4, 213–228.

    Article  CAS  Google Scholar 

  • Horrocks, L. A. (1968) The alk-1-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thin-layer chromatography.J. Lipid Res. 9, 469–472.

    PubMed  CAS  Google Scholar 

  • Howard Jr. C. F. (1972) Aortic lipogenesis during aerobic and hypoxic incubation.Atherosclerosis 15, 359–369.

    Article  PubMed  CAS  Google Scholar 

  • Jato-Rodriguez J. J., Hudson A. J., and Strickland K. P. (1974) Triglyceride metabolism in skeletal muscle from normal and dystrophic mice.Biochim. Biophys. Acta 348, 1–13.

    PubMed  CAS  Google Scholar 

  • Kleihues P., Kobayashi K., and Hossman K. A. (1974) Purine nucleotide metabolism in the cat brain after one hour of complete ischemia.J. Neurochem. 23, 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Kloog Y., Zatz M., Rivnay B., Dudley P. A., and Markey S. P. (1982) Nonpolar lipid methylation—identification of nonpolar methylated products synthesized by rat basophilic leukemia cells, retina and parotid.Biochem. Pharmacol. 31, 753–759.

    Article  PubMed  CAS  Google Scholar 

  • Kresse H., Filipovic, I., and Buddecke E. (1969) Gesteigerte14C-Inkorporation in die Triacylglycerine (Triglyceride) des Arteriengewebes bei Sauerstoffmangel.Hoppe-Seyler’s Z. Physiol. Chem. 350, 1611–1618.

    PubMed  CAS  Google Scholar 

  • Kuwashima J., Fujitani B., Nakamura K., Kadokawa T., Yoshida K., and Shimizu M. (1976) Biochemical changes in unilateral brain injury in the rat: a possible role of free fatty acid accumulation.Brain Res. 110, 547–557.

    Article  PubMed  CAS  Google Scholar 

  • Lazarewicz J. W., Strosznajder J., and Gromek A. (1972) Effects of ischemia and exogeneous fatty acids on the energy metabolism in brain mitochondria.Bull. Acad. Pol. Sci. 20, 599–606.

    CAS  Google Scholar 

  • Marion J. and Wolfe L. S. (1979) Origin of the arachidonic acid released postmortem in rat forebrain.Biochim. Biophys. Acta 574, 25–32.

    PubMed  CAS  Google Scholar 

  • McIlwain H. and Rodnight R. (1972)Practical Neurochemistry, pp. 109–133. Churchill, London.

    Google Scholar 

  • Mueller E. and Kabara J. J. (1970) The effect of temperature on the in vitro formation of methyl esters in mouse liverLipids 5, 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S. and Tigges J. (1970) Lipid droplets in the lateral terminal nucleus of the accessory optic system in galago (primates).Z. Zellforsch. 106, 550–555.

    Article  PubMed  CAS  Google Scholar 

  • Oberhoff P. and Hockwin O. (1969) The ATP content of the retina in relation to the blood circulation.Albrecht v. Graefes Arch. klin. exp. Opthal. 178, 329–332.

    Article  CAS  Google Scholar 

  • Piantadosi C. and Snyder F. (1970) A review of plasmalogens and related derivatives: their chemistry and metabolism.J. Pharm. Sci. 59, 283–313.

    Article  PubMed  CAS  Google Scholar 

  • Porcellati G., De Medio G. E., Fini C., Floridi A., Goracci G., Horrocks L. A., Lazarewicz J. W., Palmerini C. A., Strosznajder J., and Trovarelli G. (1978) Phospholipid and its metabolism in ischemia, inProceedings of the European Society for Neurochemistry, Vol. 1, (Neuhoff V., ed), pp. 285–302. Verlag Chemie, Weinheim.

    Google Scholar 

  • Rehncrona S., Westerberg E., Akesson B., and Siesjo B. K. (1982) Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia.J. Neurochem. 38, 84–93.

    Article  PubMed  CAS  Google Scholar 

  • Rouser G. and Yamamoto A. (1969) Lipids, inChemical Architecture of the Nervous System, Handbook of Neurochemistry, Vol. 1 (Lajtha A., ed.), pp. 121–169. Plenum Press, New York.

    Google Scholar 

  • Rowe C. E. (1969) The measurement of triglyceride in brain and the metabolism of brain triglyceride in vitro.J. Neurochem. 16, 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger E. E., Lynch R. D., and Geyer R. P. (1971) Formation and disappearance of triglyceride droplets in strain L fibroblast.Exp. Cell Res. 69, 193–206.

    Article  PubMed  CAS  Google Scholar 

  • Snyder F. and Blank M. L. (1969) Relationships of chain lengths and double bond locations in O-alkyl, O-alk-1-enyl, acyl and fatty alcohol moieties in preputial glands of mice.Arch. Biochem. Biophys. 130, 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Snyder F. (1971) The chemistry, physical properties, and chromatography of lipids containing ether bonds, inProgress in Thin-Layer Chromatography and Related Methods, Vol. 2 (Niederwieser A. and Pataki G., eds.), pp. 105–141. Ann Arbor, Michigan.

  • Spector A. A. and Soboroff J. M. (1972) Long chain fatty acid methyl ester hydrolase activity in mammalian cells.Lipids 7, 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Sun G. Y. and Horrocks L. A. (1969) The metabolism of palmitic acid in the phospholipids, neutral glycerides and galactolipids of mouse brain.J. Neurochem. 16, 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M., Kobayashi M. and Kekawa N. I. (1970) Variation of triglycerides and fatty acid methyl esters in silkworm eggs during embryonic development.Lipids 5, 539–544.

    Article  CAS  Google Scholar 

  • Swartz J. G. and Mitchell J. E. (1973) Phospholipase activity of retina and pigment epithelium.Biochemistry 12, 5273–5378.

    Article  PubMed  CAS  Google Scholar 

  • Swartz J. G. and Mitchell J. E. (1974) Acyl transfer reactions of retina.Biochemistry 13, 5053–5059.

    Article  PubMed  CAS  Google Scholar 

  • Tazawa Y. and Seaman A. J. (1972) The electroretinogram of the living extracorporeal bovine eye. The influence of anoxia, and hypothermia.Invest. Ophthal. 11, 691–698.

    PubMed  CAS  Google Scholar 

  • Webster G. R and Thompson R. H. S. (1965) Accumulation of lysolecithin in rat brain on incubation in vitro.Nature 206, 296–297.

    Article  PubMed  CAS  Google Scholar 

  • Webster H. de F. and Ames A. III (1965) Reversible and irreversible changes in the fine structure of nervous tissue during oxygen and glucose deprivation.J. Cell Biol. 26, 885–909.

    Article  Google Scholar 

  • Woelk H. and Porcellati G. (1973) Subcellular distribution and kinetic properties of rat brain phospholipases A1 and A2.Hoppe-Seyler’s Z. Physiol. Chem. 354, 90–100.

    PubMed  CAS  Google Scholar 

  • Wood J. M., Hutchings A. E., and Brachfeld N. (1972) Lipid metabolism in myocardial cell-free homogenates.J. Mol. Cellular Cardiol. 4, 97–111.

    Article  CAS  Google Scholar 

  • Yatsu F. M. (1975) Brain phospholipid metabolism during ischemia.Stroke 6, 72–76.

    PubMed  CAS  Google Scholar 

  • Yavin E. and Menkes J. H. (1973) Glyceride metabolism in cultured cells dissociated from rat cerebral cortex.J. Neurochem. 21, 901–912.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S., Inoh S., Asano T., Sano K., Kubota M., Shimazaki H., and Ueta N. (1980) Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain. Lipid peroxidation as possible cause of postischemic injury.J. Neurosurg. 53, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Zatz M., Dudley P. A., Kloog Y., and Markey S. P. (1981) Nonpolar lipid methylation. Biosynthesis of fatty acid methyl esters by rat lung membranes using S-adenosylmethionine.J. Biol. Chem. 256, 10028–10032.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giusto, N.M., Bazan, N.G. Anoxia-induced production of methylated and free fatty acids in retina, cerebral cortex, and white matter. Neurochemical Pathology 1, 17–41 (1983). https://doi.org/10.1007/BF02834130

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02834130

Index Entries

Navigation