Skip to main content
Log in

Sulfur isotope fractionation in magmatic systems: Models of Rayleigh distillation and selective flux

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

The effect of Rayleigh distillation by outgassing of SO2 and H2S on the isotopic composition of sulfur remaining in silicate melts is quantitatively modelled. A threshold mole fraction of sulfur in sulfide component of the melts is reckoned to be of critical importance in shifting the δ34S of the melts mith respect to the original magmas. The partial equilibrium fractionation in a magmatic system is evaluated by assuming that a non-equilibrium flux of sulfur occurs between magmatic volatiles and the melts, while an equilibrium fractionation is approached between sulfate and sulfide within the melts.

The results show that under high\(f_{O_2 } \) conditions, the sulfate/sulfide ratio in a melt tends to increase, and the δ34 S value of sulfur in a solidified rock might then be shifted in the positive direction. This may either be due to Rayleigh outgassing in case the mole fraction of sulfide is less than the threshold, or due to a unidirectional increase in δ34S value of the sulfate with decreasing temperature. Conversely, at low\(f_{O_2 } \), the sulfate/sulfide ratio tends to decrease and the δ34S value of total sulfur could be driven in the negative direction, either because of the Rayleigh outgassing in case the mole fraction of sulfide is greater than the threshold, or because of a unidirectional decrease in δ34S value of the sulfide.

To establish isotopic equilibrium between sulfate and sulfide, the HM, QFM or WM buffers in the magmatic system are suggested to provide the redox couple that could simultaneously reduce the sulfate and oxidize the sulfide. CaO present in the silicate melts is also called upon to participate in the chemical equilibrium between sulfate and sulfide. Consequently, the δ34S value of an igneous rock could considerably deviate from that of its original magma due to the influence of oxygen fugacity and temperature at the time of magma solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson A. T. (1975) Some basaltic and andesitic gases.Rev. Geophys. Space Phys. 13, 37–55.

    Article  Google Scholar 

  • Briqueu L. and Lancelot J. R. (1979) Rb-Sr. systematics and crostal contamination models for calcalkaline igneous rocks.Earth Planet. Sci. Lett. 43, 385–396.

    Article  Google Scholar 

  • Carroll M. R. and Rutherford M. J. (1985) Sulfide and sulfate saturation in hydrous silicate melts.J. Geophys. Res. 90, C601–612.

    Google Scholar 

  • Chaussidon M., Albaréde F. and Sheppard S. M. F. (1987) Sulphur isotope heterogeneity in the mantle from ion microprobe measurements of sulfide inclusions in diamonds.Nature 330, 242–244.

    Article  Google Scholar 

  • Cheney E.S. and Lange I. M. (1967) Evidence for sulfurization and the origin of some Sudbury-type ore.Mineral. Deposita 2, 80–94.

    Article  Google Scholar 

  • Coleman M. L. (1977) Sulfur isotopes in petrology.J. Geol. Soc. Lond. 133, 593–608.

    Article  Google Scholar 

  • Coleman M. L.(1979) Isotopic analyses of trace sulfur from some S-and I-type granites: heredity or environment? In Origin of Granite Batholiths—Geochemical Evidence (eds. M. P. Atherton and J. Tarney), pp.129–133, Shiva Pub. Co.

  • Dansgaard W. (1964) Stable isotopes in precipitation.Tellus 16, 436–468.

    Article  Google Scholar 

  • Faure G.(1986) Principles of Isotope Geology. 2nd. edn. John Wiley and Sons, 589p.

  • Faure G., Hoefs J. and Mensing T. M. (1984) Effect of oxygen fugacity on sulfur isotope compositions and magnetite concentrations in the Kirkpatrick Basalt, Mount Falla, Queen Alexandra Range, Antarctica.Isot. Geosci. 2, 301–311.

    Google Scholar 

  • Fincham C. J. B. and Richardson F. D. (1954) The behavior of sulfur in silicate and aluminosilicate melts.Proc. Roc. Soc. Lond. Ser. A 223, 40–62.

    Article  Google Scholar 

  • Gorbachev N. S. and Grinenko L. N. (1973) Origin of the October sulfide ore deposits, Noril’sk region, in the light of sulide and sulfate sulfur isotope composition.Geochem. Intern. 12, 132–137.

    Google Scholar 

  • Grinenko V. A., Dmitriev L. V., Migdisov A. A. and Sharas’kin A.Y. (1975) Sulfur contents and isotope composition for igneous and metamorphic rocks from Mid-Ocean Ridges.Geochem. Intern. 12, 132–137.

    Google Scholar 

  • Grinenko L. I. (1985) sources of sulfur of the nickeliferous and barren gabbrodolerite intrusions of the Northwest Siberian platform.Intern. Geol. Rev. 27, 685–705.

    Google Scholar 

  • Hattori K. and Cameron M. (1986) Archaean magmatic sulphate.Nature 319, 45–47.

    Article  Google Scholar 

  • Ishihara S., Matsuhisa Y., Sasaki A. and Ferashima S. (1985) Wall rock assimilation by magnetite-series granitoids at the Miyako pluton, Kitakami, Northeastern Japan.J. Geol.Soc. Japan 91, 679–690.

    Google Scholar 

  • Katsura T. and Nagashima S. (1974) Solubility of sulfur in some magmas at 1 atmosphere.Geochim. Cosmochim. Acta 38, 517–531.

    Article  Google Scholar 

  • Lancelot J. R. and Allégre C. J. (1974) Origin of carbonatitic magma in the light of the Pb-U-Th isotopic system.Earth Planet. Sci. Lett. 22, 233–238.

    Article  Google Scholar 

  • Miyoshi T., Sakai H. and Chiba H. (1984) Experimental study of sulfur isotope fractionation factors between sulfate and sulfide in high temperature melts.Geochem. J. 18, 75–84.

    Google Scholar 

  • Moore J. G. and Faddi B. P. (1971) An estimate of the juvenile sulfur content of basalt.Contrib. Mineral. Petrol. 33, 118–127.

    Article  Google Scholar 

  • Moore J. G. and Schilling J. G. (1973) Vesicles, water and sulfur in Reykjanes basalts.Contrib. Mineral. Petrol. 41 105–118.

    Article  Google Scholar 

  • Mysen B.O. and Popp R. K. (1980) Solubility of sulfur in CaMgSi2O6 and NaAlSi3O8 melts at high temperature which controlled\(f_{O_2 } \) and\(f_{S_2 } \).Am. J. Sci. 280, 78–92.

    Article  Google Scholar 

  • Nielsen H. (1979) Sulfur isotopes. In Lectures in Isotope Geology (ed. E. Jager and J. Hunziker). pp. 283–312, Springer-Verlag.

  • Ohmoto H. (1986) Stable isotope geochemistry of ore deposits.Rev. Mineral. 16, 491–560.

    Google Scholar 

  • Ohmoto H.and Rye R. O. (1979)Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd edn. (ed. H. L. Barnes), pp. 509–567, Wiley Interscience.

  • O’Neil J. R. (1986) Terminology and standards.Rev. Mineral. 16, 561–570.

    Google Scholar 

  • Rayleigh J. W. S. (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes.Philos. Mag. 42, 493–498.

    Google Scholar 

  • Riche W. (1960) Ein Beitrag zur Geochemie des Schwefels.Geochim. Cosmochim. Acta 21, 35–80.

    Google Scholar 

  • Ripley E. M. (1981) Sulfur isotopic studies of the Dunka Road Cu-Ni deposit, Diluth complex, Minnesota.Econ. Geo. 76, 610–620.

    Google Scholar 

  • Rye R. O., Luhr J. F. and Wasserman M. D. (1984) Sulfur and oxygen isotopic systematics of the 1982 eruptions of El Chichon Volcano, Chiapas Mexico.J. Volcanol. Geotherm. Res. 23 109–123.

    Article  Google Scholar 

  • Sakai, H., Ueda A. and Field C. W. (1978) δ34 S and concentration of sulfide and sulfate sulfurs in some ocean-floor basalts and serpentinites. In Short Papers of the Fourth International Conference on Geochronology, Cosmochronology and Isotope Geology (ed. R. E. Zartman), pp, 372–374, U. S. Geol. Surv. Open-File Rept.78-701.

  • Sakai H., Casadevall T. J. and Moore J. G. (1982) Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea Volcano, Hawaii.Geochim. Cosmochim. Acta 46, 929–938.

    Article  Google Scholar 

  • Sakai H., Desmarais D. J., Ueda A. and Moore J. G. (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalt.Geochim. Cosmochim. Acta 48, 2433–2441.

    Article  Google Scholar 

  • Sasaki A. and Ishihara S. (1979) Sulfur isotopic composition of the magnetite-series and ilmeniteseries granitoids in Japan.Contrib. Mineral. Petrol. 68, 107–115.

    Article  Google Scholar 

  • Schneider A. (1970) The sulfur isotope composition of basaltic rocks.Contrib. Mineral. Petrol. 25, 95–124.

    Article  Google Scholar 

  • Shima M., Gross W. H. and Thode H. G. (1963) Sulfur isotope abundances in basic sills, differentiated granites, and meteorites.J. Goeophys. Res. 68, 2835–2847.

    Article  Google Scholar 

  • Smitheringale W. G. and Jensen M. L. (1963) Sulfur isotope composition of the Triassic igneous rocks of eastern United States.Geochim. Cosmochim. Acta 27, 1183–1207.

    Article  Google Scholar 

  • Taylor B. E. (1986) Magmatic volatiles: isotopic variation of C., H and S.Rev. Mineral. 16, 185–225.

    Google Scholar 

  • Tudge A. P. and Thode H. G. (1950) Thermodynamic properties of isotopic compounds of sulfur.Canad. J. Res. 28B, 567–578.

    Google Scholar 

  • Ueda A. and Sakai H. (1984) Sulfur isotope study of Quaternary volcanic rocks from the Japanese Islands Arc.Geochim. Cosmochim. Acta 48, 1837–1848.

    Article  Google Scholar 

  • Urey H.C. (1947) The thermodynamic properties of isotopic substances.J. Chem. Soc. 562–581.

  • Wendlandt R. F. (1981) sulfide saturation of silicate melts (abstr.).Geol. Soc. Am. 13, 578.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yongfei, Z. Sulfur isotope fractionation in magmatic systems: Models of Rayleigh distillation and selective flux. Chin. J. of Geochem. 9, 27–45 (1990). https://doi.org/10.1007/BF02837946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02837946

Keywords

Navigation