Skip to main content
Log in

Advances in the study of lunar opposition effect

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

Photometry is one of the main methods of planetary remote sensing. The opposition effect is a sharp surge in brightness around zero phase angles. Research on opposition effect is an important branch of photometry and also is an important tool in remote sensing of the Moon. In this paper, we reviewed the main laboratory experiments, which depend on simulate samples, lunar soil samples, telescope observations and spacecraft data, performed by all kinds of work on the lunar opposition effect. And we also reviewed the theoretical development of the lunar opposition effect (i.e., the major causes of the lunar opposition effect): the shadow hiding mechanism causes the lunar opposition effect, which includes the famous models (Hapke model and Lumme & Bowell model); then, the coherent backscatter mechanism; and now, the model combining the shadow hiding and coherent backscatter. China has sponsored the Chang’ e plan of lunar exploration, and the plan along with the SMART-1 gives a good chance to lunar opposition effect research when the data on the opposition surge at very small phase angles are obtained by the spacecrafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimov L. A. and Shkuratov Yu. G. (1981) Phase-ratio distributions of the lunar surface in two spectral ranges [J].Preliminary Studies. In Astronomicheskii Circular.1167, 3–6 (in Russian).

    Google Scholar 

  • Ångström K. (1885) Ueber diffusion der strahlenden Warme von ebenen Flachen [J].Ann. Phys. Chem. 26, 264.

    Google Scholar 

  • Barabashov N. P. and Chekirda A. T. (1945) On light reflection by the surfaces of the Moon and Mars [J].Astron. J. 22, 11–22 (in Russian).

    Google Scholar 

  • Bowell E., Hapke B., Domingue D., Lumme K., Peltoniemi J., and Harris A. W. (1989) Application if photometric models to asteroids [M].Asteroids II. p. 524–556. Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Buratti B. (1985) Application of radiative transfer model to bright icy satellites [J].Icarus.61, 208–217.

    Article  Google Scholar 

  • Buratti B. J., Hillier J. K., and Wang M. (1996) The lunar opposition surge; Observation by Clementine [J].Icarus.124, 490–499.

    Article  Google Scholar 

  • Diggelen van J. (1964) The radiance of lunar objects near opposition [J].Planet. Space Science.13, 271–279.

    Article  Google Scholar 

  • Gehrels T., Coffeen T., and Owings D. (1964) Wavelength dependence of polarization. III. The lunar surface [J].Astron. J. 69, 826–852.

    Article  Google Scholar 

  • Hapke B. and van Horn H. (1963) Photometric studies of complex surface, with application to the Moon [J].J. Geophys. Res. 68, 4545–4570.

    Google Scholar 

  • Hapke B. (1981) Bidirectional reflectance spectroscopy, 1. Theory [J].J. Geophys. Res. 86, 3039–3054.

    Article  Google Scholar 

  • Hapke B. (1986) Bidirectional reflectance spectroscopy, 4. The extinction coefficient and the opposition effect [J].Icarus.67, 264–280.

    Article  Google Scholar 

  • Hapke B., Nelson R., and Smith W. (1993) The opposition effect of the Moon: The contribution of coherent backscatter [J].Science.260, 509–511.

    Article  Google Scholar 

  • Hapke B., Nelson R., and Smith W. (1998) The opposition effect of the Moon: Coherent backscatter and shadow hiding [J].Icarus.133, 89–97.

    Article  Google Scholar 

  • Hapke B. (2002) Bidirectional reflectance spectroscopy, 5. The coherent backscatter opposition effect and anisotropic scattering [J].Icarus.157, 523–534

    Article  Google Scholar 

  • Hartman B. and Domingue D. (1998) Scattering of light by individual particles and the implications for models of planetary surfaces [J].Icarus.131, 421–448.

    Article  Google Scholar 

  • Helfenstein P., Veverka J., and Hillier J. (1997) The lunar opposition effect; A test of alternative models [J].Icarus.128, 2–14.

    Article  Google Scholar 

  • Hillier J. K. (1997) Shadow-hiding opposition surge for a two-layer surface [J].Icarus.128, 15–27.

    Article  Google Scholar 

  • Irvine W. M. (1966) The shadowing effect in diffuse reflection [J].J. Geophys. Res. 71, 2931–2937.

    Google Scholar 

  • Kuga Y. and Ishimaru A. (1984) Retroreflectance from a dense distribution of spherical particles [J].J. Opt. Soc. Am. A1, 831–835.

    Article  Google Scholar 

  • Lagerkvist C. -I. and Magnusson P. (1990) Analysis of asteroid Light-curves, II. Absolute magnitudes and slope parameters in a generalized HG-System. Astron [J].Astrophys.86 (sup), 119–165.

    Google Scholar 

  • Lumme K. and Bowell E. (1981a) Radiative transfer in the surfaces of atmosphereless bodies, I. Theory [J].Astron. J. 86, 1694–1704.

    Article  Google Scholar 

  • Lumme K. and Bowell E. (1981b) Radiative transfer in the surfaces of atmosphereless bodies, II. Interpretation of phase curves [J].Astron. J. 86, 1705–1721.

    Article  Google Scholar 

  • Mallama A., Wang D., and Howard R. A. (2002) Photometry of mercury from SOHO/LASCO and earth. [J].Icarus.155, 253–264.

    Article  Google Scholar 

  • Mishchenko M. I. and Dlugach J. M. (1992) Can weak localization of photons explain the opposition effect of Saturn’s rings? [J].Mon. Not. R. Astr. Soc. 254, 15–18.

    Google Scholar 

  • Mishchenko M. I., Luck J. -M., and Nieuwenhuizen T. M. (2000) Full angular profile of the coherent polarization opposition effect [J].J. Opt. Soc. Am. A5, 888–891.

    Article  Google Scholar 

  • Muinonen K. (1989) Electromagnetic scattering by two interacting dipoles. InProceedings of the 1989URSI Electromag. Theory Symposium, Stockholm, p. 428–430.

  • Muinonen K. (1990) Light scattering by inhomogeneous media: backward enhancement and reversal of linear polarization [D].Ph. D. Thesis, Univ. of Helsinki.

  • Muinonen K. (2002) Coherent backscattering by absorbing and scattering media. In6th Conference on Electromagnetic and Light Scattering by Nonspherical Particles. p. 223–226. Adelphi, MD.

  • Muinonen K., Videen G., Zubko E., and Shkuratov Yu. (2002a) Numerical techniques for backscattering by random media [M].Optics of Cosmic Dust. p. 261–282, Kluwer Academic publishers, Dodrecht.

    Google Scholar 

  • Muinonen K., Shkuratov Yu., Ovcharenko A. et al. (2002b) The SMART-1 AMIE experiment: implication to the lunar opposition effect [J].Planetary and Space Science.50, 1339–1344.

    Article  Google Scholar 

  • Nelson R. M., Hapke B. W., Smythe W. D., and Horn L. J. (1998) Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge [J].Icarus.131, 223–230.

    Article  Google Scholar 

  • Nozette S. and 33 Colleagues (1994) The Clementine mission to the Moon: Scientific overview [J].Science.266, 1835–1839.

    Article  Google Scholar 

  • Oetking P. (1966) Photometric studies of diffusely reflecting surface with application to the brightness of the Moon [J].J. Geophys. Research. 71, 2505–2513.

    Google Scholar 

  • Pohn H. A., Radin H. W., and Wildey R. L. (1969) The Moon’ s photometric function near zero phase angle from Apollo 8 photography [J].Astrophys. J. 157, 193–195.

    Article  Google Scholar 

  • Rosenbush V. K., Avramchuk V. V., Rosenbush A. E., and Mishchenko M. I. (1997) Polarization properties of the Galilean satellites of Jupiter; observations and preliminary analysis [J]Astrophys. J. 487, 402–414.

    Article  Google Scholar 

  • Seeliger H. (1887) Zur Theorie der Beleuchtung der grossen Planeten Insbesondere des Saturn [J].Abhandl. Bayer. Akad. Wiss. Math. -Naturw. 16, 405–516.

    Google Scholar 

  • Shkuratov Yu. (1988) A diffraction mechanism of brightness opposition effect of surface with complicated structure [J].Kinemat. Fiz. Nebesnykh Tel. 4, 33–39 (in Russian).

    Google Scholar 

  • Shkuratov Yu. G. (1989) A new mechanism for the negative polarization of light scattered by the solid surfaces of cosmic bodies [J].Astron.23, 176–180. (In Russian.)

    Google Scholar 

  • Shkuratov Yu. G. and Muinonen K. (1991) Interpreting asteroid photometry and polarimetry using a model of shadowing and coherent backscatter [M].Asteroids, Comets, Meteors, p. 549–552.

  • Shkuratov Yu., Starukhina L., Kreslavsky M., Opanasenko N. V., Stankevich D. G., and Shevchenko V. G. (1994) Principle of perturbation invariance in photometry of atmosphereless celestial bodies [J] —Icarus.109, 168–190.

    Article  Google Scholar 

  • Shkuratov Yu. G. and Stankevich D. G. (1995) Can lunar opposition spike measured by Clementine exist? InLunar Planet. Science. 26 th.p. 1295–1296. LPI, Houston.

    Google Scholar 

  • Shkutatov Yu. G., Ovcharenko A. A., Gstankevich D., and Korokhin V. V. (1997) A study of light backscattering from planetary-regolith-type surfaces at phase angles 0. 2 – 3.5 degrees [J].Sol. Syst. Res. 31, 56–63.

    Google Scholar 

  • Shkuratov Yu., Kreslavsky M., Ovcharenko A., Stankevich D., Zubko E., Pieters C., and Arnold G. (1999) Opposition effect from Clementine data and mechanisms of backscatter [J].Icarus.141, 132–155.

    Article  Google Scholar 

  • Shkuratov Yu., Ovcharenko A., Zubko E., Miloslavskaya O., Muinonen K., Piironen J., Nelson R., Smythe W., Rosenbush V., and Helfenstein P. (2002) The opposition effect and negative polarization of structural analogs for planetary regoliths [J].Icarus.159, 396–416.

    Article  Google Scholar 

  • Verbiscer A. and Veverka J. (1990) Scattering properties of natural snow and frost: comparison with icy satellite photometry [J].Icarus.88, 418–428.

    Article  Google Scholar 

  • Whitaker E. A. (1969) An investigation of the lunar heiligenschein. InApollo 11Preliminary Science Report. NASA SP.201, 38–39.

    Google Scholar 

  • Wildey R. L. (1978) The Moon in heiligenschein [J].Science.200, 1265–1267.

    Article  Google Scholar 

  • Xu Tao, Ouyang Ziyuan, Ii Chunlai, and Xu Lin. (2005) Advances in lunar exploration detectors [J].Chinese Journal of Geochemistry.24, 95–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 40373037).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jian, L., Ziyuan, O., Chunlai, L. et al. Advances in the study of lunar opposition effect. Chin. J. Geochem. 24, 173–178 (2005). https://doi.org/10.1007/BF02841162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02841162

Key words

Navigation