Skip to main content
Log in

Continuous measurement of cardiac output with the use of stochastic system identification techniques

  • Algorithm
  • Published:
Journal of Clinical Monitoring Aims and scope Submit manuscript

Abstract

The limitations of developing a technique to measure cardiac output continuously are given. Logical explanations are provided for the economic, technical, and physiologic benefits of a stochastic system identification technique for measuring cardiac output. Heat is supplied by a cathetermounted filament driven according to a pseudorandom binarsequence. Volumetric fluid flow is derived by a crosscorrelation algorithm written in the C language. In vitro validation is performed with water in a flow bench. The computed flow (y) compared with the in-line-measured flow (x) yields the linear regression y = 1.024x-0.157 (r = 0.99). The average coefficient of variation is less than 2% over a volumetric fluid flow range of 2 to 10 L/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yelderman M. Method and apparatus for measuring flow. U.S. Patent No. 4507974

  2. Segal J, Pearl RG, Ford AJ, et al. Instantaneous and continuous cardiac output using a Doppler pulmonary artery catheter. J Am Coll Cardiol 1989;13:1382–1392

    Article  PubMed  CAS  Google Scholar 

  3. Abrams JH, Weber RE, Holmen KD. Transtracheal Doppler: a new procedure for continuous cardiac output measurement. Anesthesiology 1989;70(1):134–138

    Article  PubMed  CAS  Google Scholar 

  4. Roy R. Apparatus and method for measuring cardiac output. U.S. Patent No. 4542748

  5. Sekii S, Tanabe S. Cardiac output measurement system and method. U.S. Patent No. 4685470

  6. Robson SC, Murray A, Pearl I, et al. Reproducibility of cardiac output measurement by cross sectional and Doppler echocardiography. Br Heart J 1988;59:680–684

    Article  PubMed  CAS  Google Scholar 

  7. Evans JM, Skidmore R, Luckman NP, Wells PNT. A new approach to the noninvasive measurement of cardiac output using an annular array Doppler technique—I. Theoretical considerations and ultrasonic fields. Ultrasound Med Biol 1989;15(3):169–178

    CAS  Google Scholar 

  8. Sorensen MB, Bille-Brahe NE, Engel HC. Cardiac output measurement by thermal dilution: reproducibility and comparison with the dye-dilution technique. Ann Surg 1976;183:67

    Article  PubMed  CAS  Google Scholar 

  9. Stewart GN. Researches on the circulation time and on the influences which affect it IV: the output of the heart. J Physiol (Lond) 1897;22:159–183

    CAS  Google Scholar 

  10. Stewart GN. The output of the heart in dogs. Am J Physiol 1921;57:27–50

    Google Scholar 

  11. Hamilton WF, Moore JW. Simultaneous determination of the pulmonary and systemic circulation times in man and of a figure related to the cardiac output. Am J Physiol 1928;84:338

    CAS  Google Scholar 

  12. Hamilton WF, Moore JW, Kinsman JM, Spurling RG. Studies on the circulation: IV. Further analysis of the injection method, and of changes in hemodynamics under physiological and pathological conditions. Am J Physiol 1932;99:534–551

    CAS  Google Scholar 

  13. Khalil H. Determination of cardiac output in man by a new method based on thermodilution. Lancet 1963;1: 1352–1354

    Article  PubMed  CAS  Google Scholar 

  14. Normann RA, Johnson RW, Messinger JE, Sohrab B. A continuous cardiac output computer based on thermodilution principles. Ann Biomed Eng 1989;17:61–73

    Article  PubMed  CAS  Google Scholar 

  15. Philip JH, Long MC, Quinn MD, Newbower RS. Continuous thermal measurement of cardiac output. IEEE Trans Biomed Eng 1984;31(5):393–400

    Article  PubMed  CAS  Google Scholar 

  16. Bogaard JM, van Duyl WA, Versprille A, Wise ME. Influence of random noise on the accuracy of the indicatordilution method. Clin Phys Physiol Meas 1985;6(1):59–64

    Article  PubMed  CAS  Google Scholar 

  17. Wessel HU, James GW, Paul MH. Effects of respiration and circulation on central blood temperature of the dog. Am J Physiol 1966;211(6):1403–1412

    PubMed  CAS  Google Scholar 

  18. Wessel HU, Paul MH, James GW, et al. Limitations of thermal dilution curves for cardiac output determinations. J Appl Physiol 1971;30:643–652

    PubMed  CAS  Google Scholar 

  19. Olsson B, Pool J. Validity and reproducibility of determination of cardiac output by thermodilution in man. Cardiology 1970;55:136–48

    Article  PubMed  CAS  Google Scholar 

  20. Ganz W, Donoso R, Marcus HS. A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 1971;27:392–396

    Article  PubMed  CAS  Google Scholar 

  21. Gillis MF, Smith LG, Bingham DB. Final technical progress report on studies on the effects of additional endogenous heat relating to the artificial heart. Bethesda, MD: National Heart and Lung Institute publication no. PH-43-66-1130-5, 1973

    Google Scholar 

  22. Bendat JS, Piersol AC. Random data: analysis and measurement procedures, 2nd ed. New York: Wiley, 1986

    Google Scholar 

  23. Lee YW. Statistical theory of communication. New York: Wiley, 1960

    Google Scholar 

  24. Oppenheim AV, Schafer RW. Digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1975

    Google Scholar 

  25. Korn CA. Random-process simulation and measurements. New York: McGraw-Hill, 1966

    Google Scholar 

  26. Golomb SW, ed. Digital communications with space application. Englewood Cliffs, NJ: Prentice-Hall, 1964

    Google Scholar 

  27. Davies WDT. System identification for self-adaptive control. London: Wiley, 1970

    Google Scholar 

  28. Bassingthwaighte JB, Ackerman FH, Wood EH. Applications of the lagged normal density curve as a model for arterial dilution curves. Circ Res 1966;18:398–407

    PubMed  CAS  Google Scholar 

  29. Bassingthwaighte JB, Warner HR. Analog computer analysis of dispersion of indicator in circulation. Med Res Engr 1966;5:30–37

    CAS  Google Scholar 

  30. Bassingthwaighte JB, Ackerman FJ. Mathematical linearity of circulatory transport. J Appl Physiol 1967;22(5): 879–888

    PubMed  CAS  Google Scholar 

  31. Zierler KL. Circulation times and the theory of indicatordilution methods for determining blood flow and volume. In: Hamilton WF, Dow P, eds. Handbook of physiology-Circulation I. Washington DC: American Physiological Societies, 1962:585–615

    Google Scholar 

  32. Coulam CG, Warner JR. A transfer function analysis of coronary and renal circulation calculated from upstream and downstream indicator-dilution curves. Circ Res 1966;19:879–890

    PubMed  CAS  Google Scholar 

  33. Parrish D, Hayden DT. Analogue computer analysis of flow characteristics and volume of the pulmonary vascular bed. Circ Res 1959;7:746–752

    PubMed  CAS  Google Scholar 

  34. Maseri A, Caldini P. Frequency function of transit times through dog pulmonary circulation. Circ Res 1970;26:527–543

    PubMed  CAS  Google Scholar 

  35. Yelderman ML, Quinn MD, McKown RC. Continuous thermodilution cardiac output in sheep. Presented at the annual meeting of the Society of Cardiovascular Anesthesia, Orlando, FL, May 1990

  36. Reynolds WC, Perkins HC. Engineering thermodynamics. New York: McGraw-Hill, 1977

    Google Scholar 

  37. Halliday D, Resnick R. Physics, 7th ed. New York: Wiley, 1965

  38. Rubin LM. Electronic augmentation of thermodilution techniques Master of Science Thesis, Massachusetts Institute of Technology, 1975

  39. Fegler GA. Measurement of cardiac output in anesthetized animals by a thermodilution method. Q J Exp Physiol 1954;39:153–164

    CAS  Google Scholar 

  40. Levett JM, Reploge RL. Thermodilution cardiac output: a critical analysis and review of the literature. J Surg Res 1978;27:392

    Article  Google Scholar 

  41. Pavek K, Boska D, Selecky FV. Measurement of cardiac output by thermodilution with constant rate injection of indicator. Circ Res 1964;15:311–319

    PubMed  CAS  Google Scholar 

  42. Andres R, Zierler KL, Angerson HM, et al. Measurement of blood flow and volume in the forearm of man; with notes on the theory of indicator-dilution and on production of turbulence, hemolysis and vasodilation by intravascular injection. J Clin Invest 1954, 33:482–504

    Article  PubMed  CAS  Google Scholar 

  43. Szekers L, Papp G, Fischer E. Continuous determination of coronary sinus outflow and cardiac output in the anaesthetized dog by the thermodilution technique, using constant rate infusion of cold fluid. Acta Physiol Hung 1968;33(1):115–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yelderman, M. Continuous measurement of cardiac output with the use of stochastic system identification techniques. J Clin Monitor Comput 6, 322–332 (1990). https://doi.org/10.1007/BF02842492

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02842492

Key Words

Navigation