Skip to main content
Log in

Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocityvs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. van Leeuwen:Corrosion, 1973, vol. 29, p. 197.

    Google Scholar 

  2. R.A. Oriani and P.H. Josephic:Acta Metall., 1974, vol. 22, p. 1065.

    Article  CAS  Google Scholar 

  3. H.P. van Leeuwen:Corrosion, 1975, vol. 31, p. 154.

    Google Scholar 

  4. W.W. Gerberich and Y.T. Chen:Metall. Trans. A, 1975, vol. 6A, pp. 271–78.

    CAS  Google Scholar 

  5. W.W. Gerberich, Y.T. Chen, and C. St. John:Metall. Trans. A, 1975, vol. 6A, pp. 1485–98.

    CAS  Google Scholar 

  6. A.W. Thompson:Mater. Sci. Technol., 1985, vol. 1, p. 711.

    CAS  Google Scholar 

  7. H.J. Maier, W. Popp, and H. Kaesche:Acta Metall., 1987, vol. 35, p. 875.

    Article  CAS  Google Scholar 

  8. R.A. Oriani:Corrosion, 1987, vol. 43, p. 390.

    CAS  Google Scholar 

  9. W.W. Gerberich, T. Livne, X.-F. Chen, and M. Kaczorowski:Metall. Trans. A, 1988, vol. 19A, pp. 1319–34.

    CAS  Google Scholar 

  10. S. Singh and C. Altstetter:Metall. Trans. A, 1982, vol. 13A, pp. 1799–1808.

    Google Scholar 

  11. T.P. Pemg and C.J. Altstetter:Metall. Trans. A, 1987, vol. 18A, pp. 123–34.

    Google Scholar 

  12. T.P. Perng and C.J. Altstetter:Metall. Trans. A, 1988, vol. 19A, pp. 145–52.

    CAS  Google Scholar 

  13. T.P. Perng and C.J. Altstetter:Metall. Trans. A, 1988, vol. 19A, pp. 651–56.

    CAS  Google Scholar 

  14. T.P. Perng and C.J. Altstetter:Acta Metall., 1986, vol. 34, p. 1771.

    Article  CAS  Google Scholar 

  15. T.P. Perng and C.J. Altstetter:Acta Metall., 1988, vol. 36, p. 1251.

    Article  CAS  Google Scholar 

  16. M.B. Whiteman and A.R. Troiano:Corrosion, 1965, vol. 21, p. 53; J. Kolts:Stress-Corrosion-New Approaches, ASTM STP 610, 1976, p. 366.

    CAS  Google Scholar 

  17. C. Briant: inHydrogen Effects in Metals, I.M. Bernstein and A. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, p. 527.

    Google Scholar 

  18. D.G. Ulmer and C.J. Altstetter:J. Mater. Res., 1987, vol. 2, p. 305.

    Article  CAS  Google Scholar 

  19. W.F. Brown, Jr. and J.E. Srawley: ASTM STP 410, 1966, p. 1.

    Google Scholar 

  20. D. Eliezer, D.G. Chakrapani, C.J. Altstetter, and E.N. Pugh:Metall. Trans. A, 1979, vol. 10A, pp. 935–41.

    CAS  Google Scholar 

  21. J.J. Lewandowski and A.W. Thompson: inHydrogen Effect in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, p. 629.

    Google Scholar 

  22. W.-Y. Chu, J. Yao, and C.-M. Hsiao:Metall. Trans. A, 1984, vol. 15A, pp. 729–33.

    CAS  Google Scholar 

  23. Hsun-Kai Juang: Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1989.

    Google Scholar 

  24. D.G. Ulmer and C.J. Altstetter:Acta Metall., 1991, vol. 39, pp. 1237–48.

    Article  CAS  Google Scholar 

  25. A.R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  26. M. Puls: inHydrogen Degradation of Ferrous Alloys, R. Oriani, J. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985, p. 114.

    Google Scholar 

  27. R. McMeeking and J. Rice:Int. J. Solids Struct., 1974, vol. 11, p. 601.

    Article  Google Scholar 

  28. P. Sofronis and R. McMeeking:J. Mech. Phys. Solids, 1989, vol. 37, p. 317.

    Article  Google Scholar 

  29. J. Kameda and C.J. McMahon, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 903–11; J. Kameda and J. Jokl:Scripta Metall., 1982, vol. 16, p. 325.

    Google Scholar 

  30. G.R. Caskey, Jr.:Scripta Metall., 1977, vol. 11, p. 1077.

    Article  CAS  Google Scholar 

  31. T. Lee, I. Robertson, and H. Birnbaum:Phil. Mag., 1990, vol. 62, p. 131.

    CAS  Google Scholar 

  32. S.-I. Pyun and H.-K. Lee:Metall. Trans. A, 1990, vol. 21A, pp. 2577–83.

    CAS  Google Scholar 

  33. M. Tanino, H. Komatsu, and S. Funaki:J. Phys., 1982, vol. 43 (c4), p. 503.

    Google Scholar 

  34. P. Rozenak and D. Eliezer:ActaMetall., 1987, vol. 35, p. 2329.

    CAS  Google Scholar 

  35. R.W. Balluffi and D.N. Seidman:J. Appl. Phys., 1965, vol. 36, p. 2078.

    Article  Google Scholar 

  36. R. Liu, N. Narita, C. Altstetter, H. Birnbaum, and E.N. Pugh:Metall. Trans. A, 1980, vol. 11A, pp. 1563–74.

    CAS  Google Scholar 

  37. G. Schuster and C. Altstetter:Metall. Trans. A, 1983, vol. 14A, pp. 2085–90.

    CAS  Google Scholar 

  38. W.M. Garrison, Jr. and J.M. Hyzak:Metall. Trans. A, 1986, vol. 17A, pp. 1876–77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Assistant, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J.H., Altstetter, C.J. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels. Metall Trans A 22, 2605–2618 (1991). https://doi.org/10.1007/BF02851354

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02851354

Keywords

Navigation