Skip to main content
Log in

Finite element modeling simulation of in-plane forming limit diagrams of sheets containing finite defects

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Finite element modeling (FEM) has been used to predict forming limit diagrams (FLDs) of thin sheets based on two-dimensional (2-D) finite thickness defects. The local growth of these defects is simulated until an arbitrary failure criterion is reached. Many aspects of this simulation re-produce the standard Marciniak-Kuczynski (M-K) results. For example, the plane strain intercept, FLD0, is sensitive to the material work hardening,n, and the strain rate sensitivity,m, but is not affected by the normal anisotropy,r. The positive side of the FLD was characterized by a line of logarithmic slopeP. The value ofP decreases sharply asn andm increase. The effect ofr depends on the choice of yield function. The absolute location of the FLD, as given by the FLD0, depends not only on the material properties, but also on the choice of failure criterion, defect geometry, and details of the simulative model (mesh size, number of defect dimensions,etc.). This is true of any measurement or simulation of the FLDs. Therefore, we propose that the FLD0 be used as the single “fitting parameter” between modeling and experimental results: a more realistic approach based on what is actually measured in the FLD experiments. This method allows clarification of the role of material plasticity properties(e.g.,n, m, andr) vs fracture properties (contained in the FLD0) in determining the shape of the FLDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Keeler and W.A. Backofen:ASM Trans. Q., 1964, vol. 56, pp. 25–48.

    Google Scholar 

  2. S.P. Keeler: Society of Automotive Engineers Technical Paper No. 650535, 1965.

  3. S.P. Keeler: Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1961.

    Google Scholar 

  4. G.M. Godwin: Society of Automotive Engineers Technical Paper No. 680093, 1968.

  5. S.S. Hecker:Sheet Metal Forming and Formability, Proc. 7th Biennial Cong, of International Deep Drawing Research Group, Hoogovens Ijmuiden Bv, Amsterdam, Holland, 1972, pp. 5.1–5.8.

  6. M. Azrin and W.A. Backofen:Metall. Trans., 1970, vol. 1, pp. 2857–65.

    Google Scholar 

  7. Forming Limit Diagrams: Concepts, Methods, and Applications, R.H. Wagoner, K.S. Chan, and S.P. Keeler, eds., TMS, Warrendale, PA, 1989.

    Google Scholar 

  8. R. Hill:J. Mech. Phys. Solids, 1952, vol. 1, pp. 19–30.

    Article  Google Scholar 

  9. Z. Marciniak and K. Kuczynski:Int. J. Mech. Sci., 1967, vol. 9, pp. 609–20.

    Article  Google Scholar 

  10. Z. Marciniak, K. Kuczynski, and T. Pokora:Int. J. Mech. Sci., 1973, vol. 15, pp. 789–805.

    Article  Google Scholar 

  11. K.S. Chan: inForming Limit Diagrams: Concepts, Methods, and Applications, R.H. Wagoner, K.S. Chan, and S.P. Keeler, eds., TMS, Warrendale, PA, 1989, pp. 73–110.

    Google Scholar 

  12. Mechanics of Sheet Metal Forming, D.P. Koistinen and N.M. Wang, eds., Plenum Press, New York, NY, 1978.

    Google Scholar 

  13. P.B. Mellor:Int. Met. Rev., 1981, vol. 26, pp. 1–20.

    Google Scholar 

  14. F.A. Nichols:Acta Metall., 1980, vol. 28, pp. 663–73.

    Article  CAS  Google Scholar 

  15. P. Bate and D.B. Wilson:Int. J. Mech. Sci., 1984, vol. 26, pp. 363–72.

    Article  Google Scholar 

  16. R.A. Ayres, W.G. Brazier, and V.F. Sajewski:J. Appl. Metalworking, 1979, pp. 41–49.

  17. K. Chung and R.H. Wagoner:Int. J. Mech. Sci., 1987, vol. 29, pp. 45–59.

    Article  Google Scholar 

  18. N.M. Wang: inNUMIFORM, J.F.T. Pittman, R.D. Wood, J.M. Alexander, and O.C. Zienkiewicz, eds., Pineridge Press, Swansea, U.K., 1982, pp. 797–806.

    Google Scholar 

  19. K. Chung and R.H. Wagoner:Metall. Trans. A., 1986, vol. 17A, pp. 1001–09.

    Google Scholar 

  20. K. Chung and R.H. Wagoner:Metall. Trans. A., 1988, vol. 19A, pp. 293–300.

    CAS  Google Scholar 

  21. Y. Germain, K. Chung, and R.H. Wagoner:Int. J. Mech. Sci., 1989, vol. 31, pp. 1–24.

    Article  Google Scholar 

  22. J.R. Knibloe and R.H. Wagoner:Metall. Trans. A, 1989, vol. 20A, pp. 1509–21.

    CAS  Google Scholar 

  23. Y.H. Kim and R.H. Wagoner:Int. J. Mech. Sci., 1987, vol. 29, pp. 179–94.

    Article  Google Scholar 

  24. Y.H. Kim and R.H. Wagoner:Scripta Metall., 1987, vol. 21, pp. 223–28.

    Article  CAS  Google Scholar 

  25. Y.H. Kim and R.H. Wagoner: The Ohio State University, Columbus, OH, unpublished research, 1990.

  26. R. Hill:Math. Proc. Camb. Phil. Soc, 1979, vol. 85, pp. 179–91.

    Article  Google Scholar 

  27. W.F. Hosford:7th North American Metalworking Research Conf. Proc, Society of Manufacturing Engineers, Dearborn, MI, 1979, pp. 191–97.

    Google Scholar 

  28. R. von Mises:Gottinger Nachr. Math. Phys. Klasse, 1913, p. 582.

  29. R. Hill:Proc. R. Soc. London, 1948, vol. 193A, pp. 281–97.

    Google Scholar 

  30. D. Zhou and R.H. Wagoner: The Ohio State University, Columbus, OH, unpublished research, 1989–1990.

  31. R.W. Logan and W.F. Hosford:Int. J. Mech. Sci., 1980, vol. 22, pp. 419–30.

    Article  Google Scholar 

  32. D.A. Burford and R.H. Wagoner: inForming Limit Diagrams: Concepts, Methods, and Applications, R.H. Wagoner, K.S. Chan, and S.P. Keeler, eds., TMS, Warrendale, PA, 1989, pp. 167–82.

    Google Scholar 

  33. R.W. Logan, DJ. Meuleman, and W.F. Hosford: inFormability and Metallurgical Structure, A.K. Sachdev and J.D. Embury, eds., TMS, Warrendale, PA, 1986, pp. 159–73.

    Google Scholar 

  34. J. Lian, D. Zhou, and B. Baudelet:Int. j. Mech. Sci., 1989, vol. 31, pp. 237–47.

    Article  Google Scholar 

  35. J. Lian, F. Barlat, and B. Baudelet:Int. J. Plast., 1989, vol. 5, pp. 131–47.

    Article  Google Scholar 

  36. A. Graf and W.F. Hosford:Metall. Trans. A, 1990, vol. 21A, pp. 87–94.

    CAS  Google Scholar 

  37. K.S. Chan, D.A. Koss, and A.K. Ghosh:Metall. Trans. A, 1984, vol. 15A, pp. 323–29.

    CAS  Google Scholar 

  38. D. Lee and F. Zaverl:Int. J. Mech. Sci., 1982, vol. 22, pp. 157–73.

    Article  Google Scholar 

  39. R. Sowerby and J.L. Duncan:Int. J. Mech. Sci., 1971, vol. 13, pp. 217–29.

    Article  Google Scholar 

  40. F. Barlat and O. Richmond:Mater. Sci. Eng., 1987, vol. 95, pp. 15–29.

    Article  Google Scholar 

  41. F. Barlat:Mater. Sci. Eng., 1987, vol. 91, pp. 55–72.

    Article  CAS  Google Scholar 

  42. A. Graf and W.F. Hosford: inForming Limit Diagrams: Concepts, Methods, and Applications, R.H. Wagoner, K.S. Chan, and S.P. Keeler, eds., TMS, Warrendale, PA, 1989, pp. 153–63.

    Google Scholar 

  43. D.V. Wilson and O. Ascelrad: inProc. 10th IDDRG Meeting, Warwick, U.K., Portcullis Press Ltd., Queensway House, Redhill, Surrey, U.K., 1978, pp. 155–66.

    Google Scholar 

  44. E. Schedin and A. Thuvander:International Deep Drawing Research Group Working Group Meeting, Schaffhausen, Switzerland, 1987.

  45. D.N. Lee and Y.K. Kim: inForming Limit Diagrams: Concepts, Methods, and Applications, R.H. Wagoner, K.S. Chan, and S.P. Keeler, eds., TMS, Warrendale, PA, 1989, pp. 37–59.

    Google Scholar 

  46. P. Bate:Int. J. Mech. Sci., 1984, vol. 26, pp. 373–84.

    Article  Google Scholar 

  47. S.S. Hecker:J. Eng. Mater. Technol. Trans. ASME, 1975, vol. 97H, pp. 66–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narasimhan, K., Wagoner, R.H. Finite element modeling simulation of in-plane forming limit diagrams of sheets containing finite defects. Metall Trans A 22, 2655–2665 (1991). https://doi.org/10.1007/BF02851359

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02851359

Keywords

Navigation