Skip to main content
Log in

Intravascular tumour targeting of aclarubicin-loaded gelatin microspheres. Preparation, biocompatibility and biodegradability

  • Original Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

This study is to evaluate the potential use of aclarubicin-loaded gelatin microspheres as an intravascular biodegradable drug delivery system for the regional cancer therapy. The diameter of the microspheres prepared by water in oil emulsion polymerization could be controlled by adjusting the stirring rate in the range of 10–50 μm: D(in μm)=−73.8 log(rpm)+262.7. The addition of proteolytic enzyme increased the in vitro aclarubicin release, but it did not change the amount of the initial burst release which reached about 45%. Microspheres injected intravenously into the mouse tail vein embolized only to the lung when observed by fluorescence microscopy. From histological examination following injection of gelatin microspheres into mouse femoral muscle, mild inflammation was observed from the appearance of neutrophils after 2 days and rapid repair process was confirmed thereafter. Biodegradation process of gelatin microspheres lodged on the pulmonary capillary bed was followed up by microscopic observation; degradation was taking place by about 36 hrs, followed by severe damage on the spherical shape and microspheres was no longer found 10 days after injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Widder, K.J., Senyei, A.E. and Sears, B.: Experimental methods in cancer therapeutics.J. Pharm. Sci. 71, 379 (1982).

    Article  PubMed  CAS  Google Scholar 

  2. Tirrell, D.A., Donaruma, L.G. and Turek, A.B.: “Macromolecules as drugs and as carriers for biologically active materials”, The New York Academy of Sciences, N.Y., pp. 458 (1985).

    Google Scholar 

  3. Baldwin, R.W. and Byers, V.S.: “Monoclonal antibodies for cancer detection and therapy”, Academic Press, London, pp. 395 (1985).

    Google Scholar 

  4. Gregoriadis, G.: “Liposome technology, Vol.III-targeted drug delivery and biological interaction”, CRC Press, Boca Raton, pp. 292 (1984).

    Google Scholar 

  5. Tomlinson, E.: Microsphere delivery systems for drug targeting and controlled release,Int. J. Pharm. Technol. Prod. Manuf. 4, 49 (1983).

    CAS  Google Scholar 

  6. Illum, L., Hynneyball, I.M. and Davis, S.S.: The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and by peritoneal macrophages.Int. J. Pharm. 29, 53 (1986).

    Article  CAS  Google Scholar 

  7. Widder, K.J. and Senyei, A.E.: Magnetic microspheres: A vehicle for selective targeting of drugs.Pharmac. Ther. 20, 377 (1983).

    Article  CAS  Google Scholar 

  8. Morimoto, Y., Okumura, M., Sugibayashi, K. and Kato, Y.: Biomedical applications of magnetic fluids. II. Preparation and magnetic guidance of magnetic albumin microsphere for site specific drug delivery in vivo.J. Pharm. Dyn. 4, 624 (1981).

    CAS  Google Scholar 

  9. Lee, K.C., Koh, I.B. and Oh, I.J.: Preparation of magnetic gelatin microspheres for the targeting of drugs.Arch. Pharm. Res. 9, 145 (1986).

    Article  CAS  Google Scholar 

  10. Burger, J.J., Tomlinson, E., Mulder, E.M.A. and McVie, J.G.: Albumin microspheres for intra-arterial tumour targeting. I. Pharmaceutical aspects.Int. J. Pharm. 23, 333 (1985).

    Article  CAS  Google Scholar 

  11. Gallo, J.M., Hung, C.T. and Perrier, D.G.: Analysis of albumin microsphere preparation.Int. J. Pharm. 22, 63 (1984).

    Article  CAS  Google Scholar 

  12. Yoshioka, T., Hashida, M., Muranishi, S. and Sezaki, H.: Specific delivery of Mitomycin C to the liver, spleen and lung: Nano-and microspherical carriers of gelatin,Int. J. Pharm. 8, 131 (1981).

    Google Scholar 

  13. Gyves, J.W., Ensminger, W.D., VanHarken, D., Niederhuber, J., Sterson, P. and Walker, S.: Improved regional selectivity of hepatic arterial mitomycin by starch microspheres.Clin, Pharmacol. Ther. 34, 259 (1983).

    CAS  Google Scholar 

  14. Illum, L., Khan, M.A., Mak, E. and Davis, S.S.: Evaluation of carrier capacity and release characteristics for poly (butyl 2-cyanoacrylate) nanoparticles.Int. J. Pharm. 30, 17 (1986).

    Article  CAS  Google Scholar 

  15. Benita, S., Benoit, J.P., Puisieux, F. and Thies, C.: Characterization of drug-loaded poly (d,1-lactide) microspheres.J. Pharm. Sci. 73, 1721 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. Kato, T., Nemoto, R., Mori, H. and Kumagai, I.: Sustained-release properties of microencapsulated mitomycin C with ethylcellulose infused into the renal artery of the dog.Cancer 46, 14 (1980).

    Article  PubMed  CAS  Google Scholar 

  17. Zaikov, G.E.: Quantitative aspects of polymer degradation in the living body,JMS-Rev. Macromol. Chem. Phys. C25, 551 (1985).

    CAS  Google Scholar 

  18. Dickinson, H.R., Hiltner, A., Gibbons, D.F. and Anderson, J.M.: Biodegradation of a poly (α-amino acid) hydrogel. I. In vivo.J. Biomed. Mater. Res. 15, 577 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. Wilson, J., Pigott, G.H., Schoen, F.J. and Hench, L.L.: Toxicology and biocompatibility of bioglasses.J. Biomed. Mater. Res. 15, 805 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. Park, J.B.: “Biomaterials science and engineering”, Plenum Press, New York, p. 171 (1984).

    Google Scholar 

  21. Goldberg, E.P.: “Targeted Drugs”, John Wiley & Sons, New York, pp. 296 (1983).

    Google Scholar 

  22. Gregoriadis, G., Senior, D. and Trouet, A.: “Targeting of Drugs”, Plenum Press, New York, pp. 419 (1982).

    Google Scholar 

  23. Kato, T. and Nemoto, R.: Clinical application of microencapsulated anticaner drugs.Jpn. J. Clin. Med. 40, 220 (1982).

    Google Scholar 

  24. Oppenheim, R.C., Marty, J.J. and Speiser, P.: Injectable composition, nanoparticles useful therein, and process of manufacturing same.U.S. Patent No. 4107288, (1978).

  25. Madan, P.L., Jani, R.K. and Barticucci, A.J.: New method of preparing gelatin microcapsules of soluble pharmaceuticals.J. Pharm. Sci. 67, 409 (1978).

    Article  PubMed  CAS  Google Scholar 

  26. Jizomoto, H.: Phase separation induced in gelation-base coacervation systems by addition of water-soluble nonionic polymers I: Microencapsulation.J. Pharm. Sci. 73, 879 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. Kaeser-Liard, B.: Herstellung von gelatine-mikrokapseln unter anwendung der emulsions-induktions-technik.Pharm. Acta Helv. 60, 326 (1985).

    CAS  Google Scholar 

  28. Griffiths, B.: Scaling-up of animal cell culture, in “Animal cell culture” (Freshney, R.I. ed.), IRL Press, Oxford, p. 33 (1986).

    Google Scholar 

  29. Ratcliffe, J.H., Hunneyball, I.M., Smith, A., Wilson, C.G., Davis, S.S.: Preparation and evaluation of biodegradable polymeris systems for the intra-articular delivery of drugs.J. Pharm. Pharmacol. 36, 431 (1984).

    PubMed  CAS  Google Scholar 

  30. El-Samaligy, M. and Rohdewald, P.: Triamcinolone diacetate nanoparticles, a sustained release drug delivery system suitable for parenteral administration.Pharm. Acta Hev. 57, 201 (1982).

    CAS  Google Scholar 

  31. Longo, W.E., Iwata, H., Lindheimer, T.A. and Goldberg, E.P.: Preparation of hydrophilic albumin microspheres using polymeric despersing agents.J. Pharm. Sci. 71, 1323 (1982).

    Article  PubMed  CAS  Google Scholar 

  32. Kato, T.: Encapsulated drugs in targeted cancer therapy, in “Controlled Drug Delivery” Vol. II (Bruck, S.D. ed.), CRC Press, Boca Raton, pp. 189 (1983).

    Google Scholar 

  33. Salthouse, T.N.: Cellular enzyme activity at the polymer-tissue interface: A review.J. Biomed. Mater. Res. 10, 197 (1976).

    Article  PubMed  CAS  Google Scholar 

  34. Salthouse, T.N., Williams, J.A. and Willigan, D.A.: Relationship of cellular enzyme activity to catgut and collagen suture absorption.Surg. Gynecol. Obster. 129, 690 (1969).

    Google Scholar 

  35. Chu, C.C.: Survey of clinically important wound closure biomaterials, in “Biocompatible polymers, metals andcomposites” (Szycher, M. ed), Technomic Pub., Lancaster, p. 477, (1983).

    Google Scholar 

  36. El-Samaligy, M.S., Rohdewald, P., Reconstituted collagen nanoparticles, a novel drug carrier delivery system,J. Pharm. Pharmacol. 35, 537 (1983).

    PubMed  CAS  Google Scholar 

  37. McManus, J.F.A. and Mowry, R.W.: “Staining Methods”, Harper & Row, New York, p. 65, (1964).

    Google Scholar 

  38. Weiss, M.: On pharmacokinetics in target tissues.Biopharm. Drug Disposition 6, 57 (1985).

    Article  CAS  Google Scholar 

  39. Oppenheim, R.C.: Solid colloidal drug delivery systems: Nanoparticles.Int. J. Pharm. 8, 217 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.C., Koh, I.B. Intravascular tumour targeting of aclarubicin-loaded gelatin microspheres. Preparation, biocompatibility and biodegradability. Arch. Pharm. Res. 10, 42–49 (1987). https://doi.org/10.1007/BF02855620

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02855620

Keywords

Navigation