Skip to main content
Log in

Effects of cobalt on plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Cobalt, a transition element, is an essential component of several enzymes and co-enzymes. It has been shown to affect growth and metabolism of plants, in different degrees, depending on the concentration and status of cobalt in rhizosphere and soil. Cobalt interacts with other elements to form complexes. The cytotoxic and phytotoxic activities of cobalt and its compounds depend on the physico-chemical properties of these complexes, including their electronic structure, ion parameters (charge-size relations) and coordination. Thus, the competitive absorption and mutual activation of associated metals influence the action of cobalt on various phytochemical reactions.

The distribution of cobalt in plants is entirely species-dependent. The uptake is controlled by different mechanisms in different species. Biosorption involves ion-exchange mechanism in algae, but in fungi both metabolism-independent and -dependent processes are operative. Physical conditions like salinity, temperature, pH of the medium, and presence of other metals influence the process of uptake and accumulation in algae, fungi, and mosses.

Toxic concentrations inhibit active ion transport. In higher plants, absorption of Co2+ by roots involves active transport. Transport through the cortical cells is operated by both passive diffusion and active process. In the xylem, the metal is mainly transported by the transpirational flow. Distribution through the sieve tubes is acropetal by complexing with organic compounds. The lower mobility of Co2+ in plants restricts its transport to leaves from stems.

Cobalt is not found at the active site of any respiratory chain enzymes. Two sites of action of Co2+ are found in mitochondrial respiration since it induces different responses toward different substrates like α-keto glutarate and succinate. In lower organisms, Co2+ inhibits tetraphyrrole biosynthesis, but in higher plants it probably participates in chlorophyll b formation. Exogenously added metal causes morphological damage in plastids and changes in the chlorophyll contents. It also inhibits starch grain differentiation and alters the structure and number of chloroplasts per unit area of leaf. The role of cobalt in photosynthesis is controversial. Its toxic effect takes place by inhibition of PS2 activity and hence Hill reaction. It inhibits either the reaction centre or component of PS2 acceptor by modifying secondary quinone electron acceptor Qb site. Co2+ reduces the export of photoassimilates and dark fixation of CO2. In C4 and CAM plants, it hinders fixation of CO2 by inhibiting the activity of enzymes involved.

Cobalt acts as a preprophase poison and thus retards the process of karyokinesis and cytokinesis. The action of cobalt on plant cells is mainly turbagenic. Cobalt compounds act on the mitotic spindle, leading to the formation of chromatin bridges, fragmentation, and sticky bridges at anaphase and binucleate cells. High concentrations of cobalt hamper RNA synthesis, and decrease the amounts of the DNA and RNA probably by modifying the activity of a large number of endo- and exonucleases.

The mutagenic action of cobalt salts results in mitochondrial respiratory deficiency in yeasts. In cytokinesis-deficient mutant of Chlamydomonas it increases the amount of sulfhydryl compounds. Cobalt has been shown to alter the sex of plants like Cannabis sativa, Lemna acquinoclatis, and melon cultivars. It decreases the photoreversible absorbance of phytochrome in pea epicotyl and interferes with heme biosynthesis in fungi.

Low concentration of Co2+ in medium stimulates growth from simple algae to complex higher plants. Relatively higher concentrations are toxic. A similar relationship is seen with crop yield when the metal is used in the form of fertilizer, pre-seeding, and pre-sowing chemicals.

Toxic effect of cobalt on morphology include leaf fall, inhibition of greening, discolored veins, premature leaf closure, and reduced shoot weight.

Being a component of vitamin B12 and cobamide coenzyme, Co2+ helps in the fixation of molecular nitrogen in root nodules of leguminous plants. But in cyanobacteria, CoCl2 inhibits the formation of heterocyst, ammonia uptake, and nitrate reductase activity.

The interaction of cobalt with other metals mainly depends on the concentration of the metals used. For example, high levels of Co2+ induce iron deficiency in plants and suppress uptake of Cd by roots. It also interacts synergistically with Zn, Cr, and Sn. Ni overcomes the inhibitory effect of cobalt on protonemal growth of moss, thus indicating an antagonistic relationship.

The beneficial effects of cobalt include retardation of senescence of leaf, increase in drought resistance in seeds, regulation of alkaloid accumulation in medicinal plants, and inhibition of ethylene biosynthesis.

In lower plants, cobalt tolerance involves a cotolerance mechanism. The mechanism of resistance to toxic concentration of cobalt may be due to intracellular detoxification rather than defective transport. In higher plants, only a few advanced copper-tolerant families showed cotolerance to Co2+. Tolerance toward Co2+ may sometimes determine the taxonomic shifting of several members of Nyssaceae. Due to the high cobalt content in serpentine soil, essential element uptake by plants is reduced, a phenomenon known as “serpentine problem,” for New Caledonian families like Flacourtiaceae. Large amounts of calcium in soil may compensate for the toxic effects of heavy metals in adaptable genera grown in this type of soil.

The biomagnification of potentially toxic elements, such as cobalt from coal ash or water into food webs, needs additional study for effective biological filtering.

Résumé

Le cobalt, élément de transition, est un composant essentiel de plusieurs enzymes et co-enzymes. Il est prouvé qu’il peut modifier la croissance et le métabolisme des végétaux, à des degrés variables, selon la concentration et la condition du cobalt dans la rhizosphère et le sol. Le cobalt réagit sur d’autres éléments pour former d’autres complexes. Les activités cytotoxique et phytotoxique du cobalt et de ses composés dépendent des propriétés physico-chimiques de ces complexes, y compris de leur strucuture électronique, de leurs paramètres d’ion (relations charge-taille) et de leur coordination. Ainsi, l’absorption compétitrice et l’activation mutuelle des métaux associés influencent l’action du cobalt dans diverses réactions phytochimiques.

La répartition du cobalt dans les végétaux depend entièrement de l’espèce. L’absorption est contrôlée par différents mécanismes pour différentes espèces. L’absorption biologique exige un échange d’ions les algues mais chez les champignons l’on observe des procédés indépendants du métabolisme aussi bien que des procédés dépendants. Des conditions physiques telles que la salinité, la température, le Ph du milieu, et la présence d’autres métaux influencent les procédés d’absorption et d’accumulation dans les algues, chez les champignons, et les mousses.

Des concentrations toxiques empêchent le transport actif des ions. Chez les végétaux supérieurs, l’absorption du Co2+ par les racines exige un transport actif. Le transport à travers les cellules corticales se fait à la fois par und diffusion passive et par un procédé actif. Dans le xylème, le métal est transporté surtout par le flux d’exsudation. La répartition à travers les vaisseaux criblés est acropète par la formation de complexes avec des composés organiques. La faible mobilité du Co2+ chez les végétaux restreint sa circulation des tiges aux feuilles. On ne trouve pas de cobalt au siège actif de n’importe quelle chaine respiratoire d’enzymes. L’on trouve deux sièges de réaction du Co2+ dans la respiration mitochondriaque puisqu’il provoque des réactions différentas sur différents substrats tels que α-keto glutarate et succinate.

Dans les organismes inférieurs, le Co2+ empêche la biosynthèse tetraphyrolle mais dans les végétaux supérieurs il participe probablement à la formation de la chlorophylle b. Le métal ajouté de façon exogène provoque des destructions morphologiques dans les plastities (ou chromatophore) et change leur teneur en chlorphylle. Il empêche également la différentiation des grains d’amidon et modifie la structure et le nombre des chloroplastes par unité de surface de la feuille. Le rôle du cobalt dans la photosynthèse est controversable. Son action toxique se produit par inhibition de l’activité de PS2 et donc par réaction de Hill. Soit il inhibe le siège de la réaction ou composé de l’accepteur PS2 en modifiant le siège de l’électron accepteur Qb de la quinone secondaire. Le Co2+ réduit le transport des photoassimilés et la fixation sombre du CO2. Chez les plantes C4 et CAM, il gêne la fixation du CO2 en inhibant l’activité des enzymes en cause.

Le cobalt agit en tant que poison de préprophase et retarde ainsi le processus de caryocinèse et de cytocinèss. L’action du cobalt sur les cellules végétales est surtout turbagénique. Les composés du cobalt agissent sur l’axe mitosique, abountissant à la formation de ponts de chromatine, à la fragmentation, et à des ponts s’agglutinant à l’anaphase ainsi qu’à des cellules binucléaires. De fortes concentrations de cobalt empêchentla synthèse RNA et diminuent les quantités de DNA et RNA probablement en modifiant l’activité d’un grand nombre d’endo et d’exo nucléases.

L’action mutagéne des sels de cobalt provoque un trouble de la respiration mitochondriaques chez les levures. Dans la cytocinèse, mutant incomplet de la Chlamydomonas, il augmente le nombre de composés sulfhydriliques. Il a été démontré que le cobalt peut changer le sexe de plantes telles que Cannabis sativa, Lemma acquinoclatis, et de cultures de melons. Il relentit l’absorption photoréversible du phytochrome dans l’épicotyle du pois et gêne la biosynthese heme des champignons.

De faibles concentrations de Co2+ dans le milieu stimulent l’évolution de simples algues en végétaux supérieurs complexes. Des concentrations fortement supérieures sont toxiques. Une relation identique peut être établie pour le rendement d’une culture quand le métal est utilisé sous forme d’engrais, de produits chimiques avant ensemencement et semences.

Les effets toxiques du cobalt sur la morphologie incluent: chute des feuilles, inhibition du verdissage, nervures décolorées, fermeture prematurée de la feuille, et poids réduit de la pousse. Puisqu’il est un composé de la vitamine B12 et du coenzyme cobamide le Co2+ facilite la fixation du nitrogène moléculaire dans les nodosités radiculaires des légumineuses. Mais dans la cyanobacterie, CoCl2 inhibe la formation d’hétérocyste, la fixation de l’ammoniaque, et l’activité de la réductase du nitrate.

L’interaction du cobalt avec d’autres métaux dépend surtout de la concentration des métaux utilisés. Par exemple, de fortes doses de Co2+ vont provoquer une déficience en fer chez les végétaux et supprimer la fixation de Cd par les racines. Il agit aussi synergistement avec Zn, Cr, et Sn. Ni maitrise l’effect d’inhibition du cobalt sur la croissance protonémale des mousses, prouvant ainsi une relation antagonists.

Les effets bienfaisants du cobalt incluent: retardement du vieillissement de la feuille, augmentation de la résistance à la sécheresse pour les semences, régulation de l’accumulation alkaloide chez les plantes médicinales, et inhibition de la biosynthèse de l’éthylene.

Chez les végétaux inférieurs, la tolérance au cobalt implique un mécanisme de cotolérance. Le mécanisme de resistance à une concentration toxique peut être dû à un phénomène de desintoxication intracellulaire plutôt qu’à un transport défectueux. Chez les végétaux supérieurs, seules quelques familles avancées et tolérant le cuivre ont montré une cotolérance pour Co2+. Une tolérance au Co2+ peut parfois déterminer le changement taxinomique de plusieurs membres de Nyssaceae. A cause de al haute teneur en cobalt d’un sol constitué de serpentine, la fixation par les végétaux d’éléments essentiels est réduite, c’est un phénomène connu sous le nom de “problème de la serpentine” pour des familles de plantes de Nouvelle Calédonie telles que les Flacourtiaceae. De grandes quantités de calcium dans le sol peuvent contrebalancer les effets toxiques des métaux lourds dans des espèces adaptables poussant sur ce type de sol.

La biomagnification d’éléments potentiellement toxiques tel que le cobalt provenant de cendres de charbon ou l’eau dans les tissus nutritifs, nécessite une étude approfondie pour un épurage biologique effectif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Acharya, P. &H.S. Chhatpar. 1981. Purification and characterization of 2 forms of 5′-AMP nucleotidase (E.C.3.1.3.5) fromNeurospora crassa. Indian J. Exp. Biol.19:953–955.

    PubMed  CAS  Google Scholar 

  • Afusoaic, D. &T. Muraru. 1967. A study of trace element mobility (Mn, Mo, Cu, Co, Zn, and B) in acid, limed soils. Agrochim. Agrotehn. Pasuni. Finete.35:45–56.

    Google Scholar 

  • Agarwala, S.C., S.S. Bisht &C.P. Sharma. 1977. Relative effectiveness of certain heavy metals in producing toxicity and symptoms of iron deficiency in barley. Canad. J. Bot.55:1299–1307.

    CAS  Google Scholar 

  • Agrawal, M. &H.D. Kumar. 1977. Cobalt toxicity and its possible mode of action in the blue-green algaeAnacystis nidulans. Beitr. Biol. Pflanzen53:157–164.

    Google Scholar 

  • Ahluwalia, A.S. &M. Kaur. 1988. Effect of some heavy metal compounds on growth and differentiation in blue-green and green algae. Microbios53: 37–46.

    Google Scholar 

  • Aleshin, E.P., A.K. Sheudzhen, O.A. Doseeva & V.T. Rymar. 1987. Photosynthetic and respiratory activity in rice leaves as a function of cobalt supply to the plants. Dokl. Uses Ordena Lenina Ordena Trud Krasnago Znameni Akad. S-KH Nauk Lenina.0(II): 15–17.

  • An, Pau-Tsen., T. Tsung-che &C. Kuan-yuen. 1975. Some properties of the phosphatidase produced byErwinia aroideae and its possible toxicity to radish cells. Phytopathol. Entomol.4: 85–93.

    CAS  Google Scholar 

  • Anisimov, A.A. &O.P. Ganicheva. 1978. Possible interchangeability between cobalt and zinc in plants. Fiziol. Biokhim. Kul’t. Rast.10:613–617.

    CAS  Google Scholar 

  • Arora, K.K., P.S. Sukhija &I.S. Bhatia. 1987. Partial purification and properties of lipase isolated from germinating sunflower (Helianthus annus) seeds. J. Res. Punjab Agric. Univ.24:130–138.

    CAS  Google Scholar 

  • Austenfeld, F.A. 1979a. Effects of nickel, cobalt and chromium on net photosynthesis of primary and secondary leaves ofPhaseolus vulgaris cultivar saxa. Photosynthetica13:434–438.

    CAS  Google Scholar 

  • —. 1979b. Phytotoxicity of nickel and cobalt onPhaseolus vulgaris cultivar saxa grown in solution culture. Z. Pflanzenernaehr. Bodenk.142:786–791.

    CAS  Google Scholar 

  • Babalakova, N., T. Kudrev &I. Petrov. 1986. Copper, cadmium, zinc and cobalt interactions in their absorption by pea plants. Fiziol. Rast.12: 67–73.

    Google Scholar 

  • Babu, T.S., S.C. Sabat &P. Mohanty. 1992. Alterations in photosystem II organization by cobalt treatment in the cyanobacteriumSpirulina platensis. J. Pl. Biochem. Biotechnol.1: 61–63.

    CAS  Google Scholar 

  • Baker, A.J.M., R.R. Brooks, A.J. Pease &F. Malaisse. 1983. Copper and cobalt tolerance in three closely related taxa within the genusSilene (Caryophyllaceae) from Zaire. Pl. Soil 73: 377–386.

    CAS  Google Scholar 

  • Banik, A.K. 1976. Mineral nutrition ofAspergillus niger for citric acid production. Folia Microbiol.21:139–143.

    CAS  Google Scholar 

  • Barbat, I., M. Tomsa &T. Suciu. 1979. Influence of foliar nutrition with microelements on some physiological processes in apple-tree. Bull. Inst. Agron. Cluj-Napora. Ser. Agric.33:69–74.

    CAS  Google Scholar 

  • Bell, J.B., J.P. Gelugne &K.B. Jacobson. 1976. A non-specific inhibitory effect of tRNA on the activity of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase fromSaccharomyces cerevisiae. Biochim. Biophys. Acta435:21–29.

    PubMed  CAS  Google Scholar 

  • Belles, J.M. &V. Conejero. 1989. Ethylene mediation of the viroid-like syndrome induced by silver ions inGynura aurantiaca DC plants. Phytopathology124:275–284.

    CAS  Google Scholar 

  • Berrow, M.L. &R.L. Mitchell. 1980. Location or trace elements in soil profiles: total and extractable contents of individual horizons. Trans. R. Soc. Earth Sci.71:103–122.

    CAS  Google Scholar 

  • Berry, W.L. &A. Wallace. 1981. Toxicity: The concept and relationship to the dose response curve. J. Pl. Nutr.3:13–19.

    CAS  Google Scholar 

  • Blankenship, M.L. &K.M. Wilbur. 1975. Cobalt effects on cell division and calcium uptake in the coccolithophoroidCricosphaera carterae (Haptophyceae). J. Physiol.11:211–219.

    CAS  Google Scholar 

  • Bobak, M. 1974. Influence of exogenous added cobalt upon the submicroscopic structure and the chromosomes of meristematic cells of the horse bean (Vicia faba L.C.V. Zborovicky). Acta Fac. Rerum Nat. Univ. Comen., Physiol. Pl.8: 17–24.

    Google Scholar 

  • Bond, G. &E.J. Hewitt. 1962. Cobalt and the fixation of nitrogen by root nodules ofAlnus andcasuarina. Nature195: 94–95.

    CAS  Google Scholar 

  • Brooks, R.R. 1977. Copper and cobalt uptake byHaumanistrum species. Pl. Soil48:541–544.

    CAS  Google Scholar 

  • —. 1977. Cobalt and nickel uptake by the Nyssaceae. Taxon26:197–201.

    Google Scholar 

  • —. 1978. Copper and cobalt in African species ofAeolanthus Mart. (Plectranthinae, Labiatae). Pl. Soil50: 503–508.

    CAS  Google Scholar 

  • —. 1980. Hyperaccumulation of copper and cobalt: A review. Bull. Soc. Roy. Bot. Belgique113:166–172.

    CAS  Google Scholar 

  • Burca, S., D. Cachita-Cosma &M. Trifu. 1978. Morphological changes induced by four microelements, Mn, Zn, Co and Cd in tomato seedlings (Solanum lycopersicum). Stud. Univ. Babes-Bolyai.Biol.2: 11–18.

    Google Scholar 

  • —,—. 1984. Modifications caused by the trace elements manganese and cobalt in the ultrastructure of the roots of tomato seedlings. Stud. Univ. Babes-Bolyai. Biol.29: 27–34.

    CAS  Google Scholar 

  • Canterford, G.S. 1980. Formation and regeneration of abnormal cells of the marine diatomDitylum brightwelli. J. Mar. Biol. Assoc.60: 243–254.

    Google Scholar 

  • Chandra, G., K.S. Reddy &H.Y. Mohan Ram. 1981. Extension of vase-life of cut marigold (Tagetes patula) Crysanthemum flowers by the use of cobalt chloride. Indian J. Exp. Biol.19: 150–154.

    CAS  Google Scholar 

  • Chappel, W.R. 1979. Heavy metal pollution from shale oil production. Pages 592–595in Management, control of heavy metal: Proceedings of the Environmental International Conference. CEP Consultants, Edinburgh, Scotland.

    Google Scholar 

  • Chaudhury, F.M. &J.F. Loneragan. 1972. Zinc absorption by wheat seedlings: II Inhibition by hydrogen ions and by micronutrient cations. Soil Sci. Soc. Am. Proc.36: 327–331.

    Google Scholar 

  • Cherry, D.S. &R.K. Guthrie. 1979. The uptake of chemical elements from coal ash and settling basin effluent by primary producers: 2. Relation between concentrations in ash deposits and tissues of grasses growing on the ash. Sci. Total Environm.13: 27–32.

    CAS  Google Scholar 

  • Cocucci, S.M. &S. Morgutti. 1986. Stimulation of proton extrusion by potassium ion and divalent cations (nickel, cobalt, zinc) in maize (zea mays cultivar Dekalab XL85) root segments. Physiol. Pl.68: 497–501.

    CAS  Google Scholar 

  • Cole, R.M., W.A. MacPeek &W.S. Cohen. 1980. Divalent cations and restoration of electron transport activity of fatty acid treated chloroplasts. Pl. Sci. Lett.17: 345–352.

    CAS  Google Scholar 

  • Coleman, R.D. 1971. Zinc and cobalt bioconcentration and toxicity in selected algal species. Bot. Gaz.132:102–109.

    CAS  Google Scholar 

  • Coppenet, M., E. More, L.L. Corre &M.L. Mao. 1972. Variations in ryegrass cobalt content: Investigating enriching methods. Ann. Agron.23: 165–192.

    CAS  Google Scholar 

  • Cox, R.M. &T.C. Hutchingson. 1981. Multiple and co-tolerance to metals in the grassDeschampais cespitosa: Adaptation, preadaptation and ‘Cost’. J. Plant. Nutr.3: 731–741.

    CAS  Google Scholar 

  • Craig, L.G. &W.E. Schmid. 1974. Absorption of cobalt by excised barley roots. Pl. Cell Physiol.15: 273–279.

    Google Scholar 

  • Crouzillat, D., M.O. Desbiel, C. Penel &T. Gaspar. 1985. Lithium, aminoethoxy-vinylglycine and cobalt reversal of the cotyledonary prickling-induced growth inhibition in the hypocotyl ofBidens pilosus in relation to ethylene and peroxidases. Pl. Sci.40: 7–12.

    CAS  Google Scholar 

  • Csatorday, K., Z. Gombos &B. Szalontai. 1984. Manganese and cobalt toxicity in chlorophyll biosynthesis. Proc. Natl. Acad. Sci.81: 476–478.

    PubMed  CAS  Google Scholar 

  • Dang, K.F.K., N.A. Solov’ena, Z.G. Evstigneeva &V.L. Kretovich. 1988. Specificity and regulation of glutamine synthetase activity by metals inSpirulina platensis Dokl. Akad. Nauk SSSR302:984–987.

    Google Scholar 

  • Danilova, T-A., I.V. Tishchenko &E.N. Demikina. 1969. Some characteristic effects of cobalt on peas. Agrokhimiya1: 85–89.

    Google Scholar 

  • —. 1970. Distribution and translocation of cobalt in legumes. Agrokhimiya2: 100–104.

    Google Scholar 

  • Davidova, E.G., A.P. Belov &V.V. Zachinskii. 1986. The accumulation of labelled cobalt in yeast cells. IZh. Timiryazev. S-KH. Akad.0(4): 109–114.

    CAS  Google Scholar 

  • Davis, R.D., P.H.T. Beckett &E. Wollen. 1978. Critical levels of twenty potentially toxic elements in young spring barley. Pl. Soil49: 395–408.

    CAS  Google Scholar 

  • El-Kadovsky, S. &V. Alexandrescu. 1987. Purification and some properties of sunflower leaf peroxidase. Rev. Roumaine Biochem.24: 19–26.

    Google Scholar 

  • Elliott, J.I. &J.M. Brewer. 1980. Binding of inhibitory metals to yeast enolase (EC 4.2.1.11). J. Inorg. Biochem.12: 323–334.

    PubMed  CAS  Google Scholar 

  • Fjeldstad, H., O.O. Hvatum &J.E. Biorndalen. 1988. Heavy metal pollution of ombotropic bogs in the Kristiansand area, vet-Agder, Norway. Norweg. J. Agric. Sci2: 161–178.

    Google Scholar 

  • Florza, V. 1969. Toxicity of metal ions forAspergillus nidulans. Microbiol. Esp.22:131–138.

    Google Scholar 

  • Freiberg, G.Y. 1970. Absorption of trace elements Cu and Co by some field cultivars in relation to the content of organic matter in soil. Izv. Akad. Nauk. Latvijsk. SSR2: 116–121.

    Google Scholar 

  • Fujino, D.W. &M.S. Reid. 1983. Factors affecting the vase life of fronds of maiden hair fern (Adiantum raddianum). Sci Hort.21: 181–188.

    CAS  Google Scholar 

  • Gaal, I., H. Ariunaa &M. Gyuris. 1988. Influence of various stress effects on ethylene production in wheat seedlings. Acta Univ. Szeged. Acta Biol.34: 35–44.

    CAS  Google Scholar 

  • Gadd, G.M., C. White &J.L. Mowel. 1987. Heavy metal uptake by intact cells and protoplasts ofAureobasidium pollulans. Febs. Microbiol. Ecol.45: 261–268.

    CAS  Google Scholar 

  • Gilles, I., H.G. Loeffler &F. Schneider. 1981. Cobalt-substituted acylamino-acid amido-hydrolase fromAspergillus oryzae. Z. Naturf. Sect. C. Biosci.36: 751–754.

    Google Scholar 

  • Grinkevich, N.L., L.F. Gribovskaya, A.N. Shandova &L.S. Dinevich. 1971. Concentration of cobalt in some medicinal plants and its effect on the accumulation of flavonoids in buckwheat. Biol. Nauk.14: 88–91.

    CAS  Google Scholar 

  • Grover, S. &W.K. Purves. 1976. Cobalt and plant development: Interactions with ethylene in hypocotyl growth. Pl. Physiol.57: 886–889.

    CAS  Google Scholar 

  • Hall, A. 1980. Heavy metal co-tolerance in a copper-tolerant population of the marine fouling alga,Ectocarpus siliculosus. New Physiol.85: 73–78.

    CAS  Google Scholar 

  • Haydar, M. &D. Hadziyev. 1974. Mitochondrial lipids and their oxidation during mitochondrial swelling. J. Sci Food Agric.25: 1285–1305.

    PubMed  CAS  Google Scholar 

  • Herich, R. 1965. The effect of cobalt on the structure of chromosome and on the mitosis. Chromosoma17: 194–198.

    PubMed  CAS  Google Scholar 

  • —. 1977. Influence of exogenously added cobalt on the submicroscopical structure of the proplastids. Acta Fac. Rerum Nat. Univ. Comen. Pl. Physiol.13:3–8.

    CAS  Google Scholar 

  • Herichova, A. 1974. Study of the influence of cobalt spiralization of the chromosomes. Acta Fac. Rerum Nat. Univ. Comen. Pl. Physiol.9: 73–77.

    Google Scholar 

  • Hochman, Y., A. Lanir, M.M. Werber &C. Carmeli. 1979. The effect of binding of cobalt (III) — nucleotide complexes on the kinetic properties of adenosine triphosphatase activity in coupling factor I from chloroplasts. Arch. Biochem. Biophys.192:138–147.

    PubMed  CAS  Google Scholar 

  • Hogan, G.D. &W.E. Rauser. 1979. Tolerance and toxicity of cobalt, copper, nickel and zinc in clones ofAgrostis gigantea. New Phytol. 83:665–670.

    CAS  Google Scholar 

  • Holloman, W.K. &R. Holliday. 1973. Studies on a nuclease fromUstilago maydis: 1. Purification properties and implication in recombination of the enzyme. J. Biol. Chem.248: 8107–8113.

    PubMed  CAS  Google Scholar 

  • Hunter, J.G. &O. Verghano. 1953. Trace-element toxicities in oat plants. Ann. Appl. Biol.40: 761–777.

    CAS  Google Scholar 

  • Husic, H.D. &N.E. Tolbert. 1984. Anion and divalent cation activation of phosphoglycolate phosphatase from leaves. Arch. Biochem. Biophys.229: 64–72.

    PubMed  CAS  Google Scholar 

  • Hyodo, H. &R. Fukasawa. 1985. Ethylene production in kiwi fruit (Actinidia chinensis cultivar. Hayward). J. Jap. Soc. Hort. Sci 54:209–215.

    CAS  Google Scholar 

  • Ilamanova, R.I. 1987. Effect of trace element on the vegetative growth and generative development of melons. Izv. Akad. Nauk. Turkmensk. SSR. Ser. Biol. Nauk.0(1): 19–26.

    CAS  Google Scholar 

  • Imai, I. &S.M. Siegel. 1973. A specific response to toxic cadmium levels in red kidney bean embryos. Pl. Physiol.29:118–120.

    CAS  Google Scholar 

  • Isola, M.C. &L. Franzoni. 1989. Effect of ethylene on the increase in RNAase activity in potato tuber tissue. Pl. Physiol. Biochem. 27:245–250.

    CAS  Google Scholar 

  • Iu, K.L., I.D. Pulford &H.J. Duncan. 1982. Influence of soil waterlogging on subsequent plant growth and trace element content. Pl. Soil66:423–428.

    CAS  Google Scholar 

  • Jack, A., J.E. Ladner, D. Rhodes, R.S. Brown &A. Klug. 1977. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J. Molec. Biol.111: 315–318.

    PubMed  CAS  Google Scholar 

  • Jarosick, J., P. Zvara, J. Koneeny &M. Obdrzalek. 1988. Dynamics of cobalt 60 uptake by roots of pea plants. Sci Total Environm.71:225–229.

    Google Scholar 

  • Johari, R.B., R. Nagar &R.C. Sharma. 1987. Studies on copper (II), nickel (II), cobalt (II) and zinc (II) complexes of acetone salicyloyl hydrazone and ethyl methyl ketone salicyloyl hydrazone. Indian J. Chem. Sect. A Inorg. Phys. Theor. Anal.26:962–963.

    Google Scholar 

  • Jonson, A.G. 1969. Some enzymatic properties ofapTOteasefromAlternariatenuissima. ActaChem. Scand.23:1943–1950.

    Google Scholar 

  • Jorgovic-Kremzer, J., M. Duricic &V. Bjelic. 1980. Levels of copper, manganese, zinc, cobalt, iron and lead in cucumbers before and after pickling. Agrohemija0(5/6): 165–172.

    CAS  Google Scholar 

  • Joshi, P.K., D.N. Bhatia &J.H. Kulkarni. 1987. Groundnut root nodulation as affected by micronutrient application andRhizobium inoculation. Int. J. Trop. Agric. 5:199–202.

    CAS  Google Scholar 

  • Juma, N.G. &M. Tabatabai. 1988. Phosphatase activity in corn and soybean roots: Conditions for assay and effects of metals. Pl. & Soil107: 39–48.

    CAS  Google Scholar 

  • Kameenova, Y.S.M., T.D. K’Drev &L.K.A. Shakhpazova. 1983. Effect of cobalt and mercury on some maize plant reactions. Fiziol. Rast.9: 78–82.

    Google Scholar 

  • —. 1981. The influence of some heavy metals on organic acid content in young maize plants. Fiziol. Rast.7:41–5.

    Google Scholar 

  • Kang, B.G. 1969. Effect of inhibitors of RNA and protein synthesis on bean hypocotyl hook opening and their implications regarding phytochrome action. Planta87: 217–226.

    CAS  Google Scholar 

  • Kapur, A. &R.H. Chopra. 1989. Effects of some metal ions on protonemal growth and bud formation in the mossTimiella anomala grown in aseptic cultures. J. Hattori Bot. Lab.0(66): 283–298.

    Google Scholar 

  • Karataglis, S., D. Babalonas &B. Kabasakalis. 1982. The ecology of plant populations growing on serpentine soils: 2. Calcium-magnesium ratio concentrations as development factors ofBuxus semipervirens. Phyton22: 317–328.

    CAS  Google Scholar 

  • Kashes, T.M. &A.S. Dolobovskaya. 1969. The effect of trace elements on the processes of division and extension of cells in connection with the germination ofFraxinus excelsior embryos. Mikroelem. V. S-KH. Med. Resp. Mezhved SB 5: 67–72.

    Google Scholar 

  • Kasimova, G.K., P.B. Zamanov, R.A. Abushev &M.G. Safarov. 1971. The effect of certain trace elements molybdenum, boron, manganese and cobalt on the background of mineral fertilizers on the biological activity of tobacco rhizosphere. Ref. Zhurn. Biol. 3: 7–9.

    Google Scholar 

  • Kassim, E.A. &I.M. Ghazi. 1981. Effect of minerals, activators and inhibitors on the biosynthesis ofcellulase from Aspergillus niger. Ain. Sham. Univ. Fac. Agric. Res. Bull.0(1605): 1–14.

    Google Scholar 

  • Kenesarina, N.A. 1972. The effect of mineral fertilizers on cobalt content in potato plants. Izv. Akad. Nauk. Kaz. SSR. Ser. Biol.6: 31–35.

    Google Scholar 

  • Khan, M.W. &M.A. Salam. 1990. Interactions ofMeloidogyne javanica, Fusarium udum andRhizobium on pigeon pea in the presence of nickel and cobalt as pollutants. Ann. Appl. Biol.116: 549–556.

    CAS  Google Scholar 

  • Kharab, P. &I. Singh. 1985. Genotoxic effects of potassium dichromate, sodium arsenite, cobalt chloride and lead nitrate in diploid yeast. Mutat. Res.155: 117–120.

    PubMed  CAS  Google Scholar 

  • —. 1987. Induction of respiratory deficiency in yeast by salts of chromium, arsenic, cobalt and lead. Indian J. Exp. Biol.25: 141–142.

    PubMed  CAS  Google Scholar 

  • Kim, B.Y., K.S. Kim, B.J. Kim &K.H. Han. 1978. Uptake and yield of the rice plant related to concentration of heavy metals (Cu, Ni, Cr, Co, Mn). Res. Rep. Off. Rural Developm.20: 1–10.

    Google Scholar 

  • Kim, C. &DJ. Weber. 1980. Isolation and characterization of ATPase fromSalicorniapacifica var. utahensis. Pl. Cell Physiol.21: 755–763.

    CAS  Google Scholar 

  • Kloke, A. 1980. Lecture. Pages 58–87in Proceedings Verwendung von klarschlammkon-posten in der Landwirtschaft. GDI Institut, Zurich.

    Google Scholar 

  • Komczynski, L., H. Nowak &L. Rejniak. 1963. Effect of cobalt, nickel and iron on mitosis in the roots of the broad bean (Vicia faba). Nature8: 1016–1017.

    Google Scholar 

  • Kostyaev, V.Y. 1980. Effect of heavy metal ions on Cyanobacteria (Anabaena spiroides). Mikrobiologiya49: 821–824.

    CAS  Google Scholar 

  • —. 1980. Sensitivity ofAnabaena spiroides to zinc and cobalt. Gidrobiol. Zhurn.16: 89–92.

    CAS  Google Scholar 

  • Koval’Skii, V.V., N.I. Grinkevich, I.F. Gribovskaya, L.S. Dinevich &A.N. Shandova. 1971. Cobalt in medicinal plants and its effect on the accumulation of biologically active compounds. Restit. Resur.7: 503–510.

    CAS  Google Scholar 

  • Kumar, D., M. Jha &H.D. Kumar. 1985. Heavy metal toxicity in the cyanobacteriumNostoc linekia. Aquatic. Bot.22:101–106.

    CAS  Google Scholar 

  • Kuyucak, N. &B. Volesky. 1989. The mechanism of cobalt biosorption. Biotechnol. Bioengin.33: 823–831.

    CAS  Google Scholar 

  • Lau, O.L. &S.F. Yang. 1976. Inhibition of ethylene production by cobaltous ion. Pl. Physiol.58: 114–117.

    CAS  Google Scholar 

  • Letunova, S.V., S.A. Alekseeva, B.N. Zolotareva, N.I. Kerova &E.M. Korobora. 1988. Cobalt and copper concentration by microscopic fungi inhabiting the soil of the non-chernozem zone (USSR). Biol. Nauki.0(2): 101–105.

    CAS  Google Scholar 

  • Levan, A. 1945. Cytological reactions induced by inorganic salt solutions. Nature156: 751.

    CAS  Google Scholar 

  • Ligocki, P., T. Olszewski &K. Slowik. 1988. Heavy metal content of the soil, apple leaves, spurs and fruit from three experimental orchards. I. Soils. Fruit Sci Rep.15: 27–34.

    CAS  Google Scholar 

  • Lim, Y.P. &B.D. Kim. 1988a. Isolation and characterization of a DNA-binding protein from pearl millet mitochondria. Korean J. Biochem.21: 351–356.

    CAS  Google Scholar 

  • —. 1988b. A novel topoisomerase from soluble fraction of pearl millet mitochondria: its purification and characterization. Korean J. Biochem.21:357–364.

    CAS  Google Scholar 

  • Lindergren, C.C., S. Nagai &H. Nagai. 1958. Induction of respiratory deficiency in yeast by manganese, copper, cobalt and nickel. Nature182: 446–449.

    Google Scholar 

  • Linehan, D.J., A.H. Sinclair &M.G. Mitchell. 1989. Seasonal changes in copper, manganese, zinc and cobalt concentrations in soil in the root-zone of barley (Hordeum vulgare L.). J. Soil Sci.40: 103–116.

    CAS  Google Scholar 

  • Lipskaya, G.A. 1970a. Accumulation of chlorophyll in the chloroplast of sugar beets to which cobalt is applied separately and in combination with boron, manganese, copper, zinc and molybdenum. Agrokhimiya2: 105–110.

    Google Scholar 

  • —. 1970b. Anatomo-cytological features of cucumber leaves in the presence of cobalt and manganese in the nutrient mixture. Fiziol. Rast.17: 475–981.

    Google Scholar 

  • —. 1971. Characteristics of the effect of the same concentration of cobalt on the photosynthetic apparatus of different plants. Vyestsi. Akad. Navuk. Byelarus. SSR Syer. Biyal. Navuk.1:14–20.

    Google Scholar 

  • —. 1972. Accumulation of chlorophyll in chloroplasts of cucumber leaves under the effect of cobalt and manganese applied separately and together. Biol. Nauki.15: 90–94.

    CAS  Google Scholar 

  • —. 1974. Effect of cobalt and heteroauxin on the morphology and structure of barley leaf. Vyestsi. Akad. Navuk. BSSR Syer. Biyal. Navak.5:121–123.

    Google Scholar 

  • —. 1988. Morphofunctional characteristics of the photosynthetic apparatus of the growing barley leaf under the effect of cobalt and auxin. Fiziol. Biokhim. Kul’t. Rast.20: 241–245.

    CAS  Google Scholar 

  • —. 1990. Development of the photosynthetic apparatus in barley grown from seeds varying in cobalt content under sterile and nonsterile conditions. Fiziol. Rast.37: 668–674.

    CAS  Google Scholar 

  • —. 1973. Effect of various combination of cobalt with other trace elements on the change of activity of the Hill reaction. Vyesti. Akad. Navuk. B. SSR Syer. Biyal. Navuk.2: 32–37.

    Google Scholar 

  • —. 1972. Effect of cobalt on accumulation of various forms of chlorophyll. Dokl. Akad. Nauk. B. SSR.116: 70–72.

    Google Scholar 

  • Lixandru, G., E. Taranauceanu &G. Ciurea. 1979. Effect of nitrogen, phosphorus, potassium and trace element fertilizers on soybean (Glycine hispida) yield. Lucr. Stiint. Inst. Agron. “N. Balcescu”. Agron. J.23: 63–66.

    Google Scholar 

  • Long, M.I.E. &S. Frederiksen. 1970. The relation between extractable soil cobalt and the cobalt content of some grasses from lake shore areas of Uganda. Bodenk & Pflanzenernahr.126:238–244.

    CAS  Google Scholar 

  • Lovkova, M.Y., G.N. Buzuk, N.S. Sabirova, N.I. Kliment’eva &N.I. Grinkevich. 1988. Pharmacognostic examination ofGlaucium flavum Cr. Farmatsiya37: 31–34.

    CAS  Google Scholar 

  • Lukshene, Z.B., N.I. Zakharova, E.P. Lukshev, A.A. Kononenko, E.M. Kolosova, G.N. Novodarova &M.E. Vol’pin. 1985. Effect of oi-phenanthroline complexes of cobalt and copper on light induced electron transfer in chloroplasts and chloroplast fragments enriched with photo system I. Biokhimiya50: 1440–1447.

    Google Scholar 

  • Macklon, A.E.S. &A. Sim. 1987. Cellular cobalt fluxes in roots and transport of the shoots of wheat seedlings. J. Exp. Bot.38: 1663–1677.

    CAS  Google Scholar 

  • —. 1990. Cortical cell fluxes of cobalt in roots and transport to the shoots of rye grass seedlings. Pl. Physiol.80: 409–416.

    CAS  Google Scholar 

  • Madan, M. &K.S. Thind. 1979. Role of trace elements on the growth and sporulation ofAlternaria chartarum andAlternaria solani. Proc. Indian Natl. Sci Acad. B Biol. Sci.45: 628–632.

    CAS  Google Scholar 

  • Mandal, R. &J.W. Parsons. 1989. Effect of chlorides of cobalt, nickel and copper on nitrification in peat. Pakistan J. Sci Industr. Res.32:584–586.

    CAS  Google Scholar 

  • Manley, S.L. 1984. Micronutrient uptake and translocation byMicrocystis pyrifera (Phaeophyceae). J.Phycol.20: 192–201.

    CAS  Google Scholar 

  • McKenzie, R.M. 1972. The manganese oxides in soils: A review. Bodenk. & Pflanzenernähr.131: 221–242.

    CAS  Google Scholar 

  • Mercky, R., J.H. Van Grinkel, J. Sinnaeve &A. Cremers. 1986. Plant induced changes in the rhizosphere of maize and wheat: II Complexion of Co, Zn and Mn in the rhizosphere of maize and wheat. Pl. Soil96: 95–101.

    Google Scholar 

  • Mirzoeva, Z.A., E.R. Mirzoev &M.S. Bezhaev. 1969. Complex deficiency of trace elements (manganese, zinc, cobalt) in orchard soils of highland Dagestan. Sb-Nauchn. Soobshch. Dagest. Univ. Kafedry. Khim.5: 102–104.

    Google Scholar 

  • Mohan, P.M. &K. Sivaramasastry. 1983. Interrelationship in trace-element metabolism in metal toxicities in nickel-resistant strains ofNeurospora crassa. Biochem. J.212: 205–210.

    Google Scholar 

  • Mohanty, N., I. Vass &S. Demeter. 1989. Impairment of photosystem 2 activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zinc ions. Physiol. Pl.76: 386–390.

    CAS  Google Scholar 

  • Morrison, R.S., R.R. Brooks, R.D. Reeves &F. Malaisse. 1979. Copper and cobalt uptake by metallophytes from Zaire. Pl. Soil53: 535–540.

    CAS  Google Scholar 

  • Munda, I.M. &V. Hudnik. 1988. The effects of zinc, manganese and cobalt accumulation on growth and chemical composition ofFucus vesiculosus L. under different temperature and salinity conditions. Mar. Ecol.9: 213–216.

    CAS  Google Scholar 

  • Muresanu, P.L. &G. Catrina. 1966. Contributions of the knowledge of the content of microelements: Cu, Co and Zn: Available to plants in characteristic soil types of Western Romania. Inst. Agron. Timisoara. Lucr. Stint. Ser. Agron.9: 75–83.

    Google Scholar 

  • Muthukrishnan, S., G. Padmanaban &P.S. Sharma. 1969. Regulation of heme biosynthesis inNeurospora crassa. J. Biol. Chem.244: 4241–4246.

    PubMed  CAS  Google Scholar 

  • Naoharu, M. 1968. Studies on chemical characteristics of Serpentine soil in Hokkaido: III: The content of cobalt in plants and soils and the difference of the plant absorption rate of cobalt and other elements (copper, zinc and nickel) from the soil. Bull. Hokkaido Prefect. Agric. Exp. Sta.17: 62–72.

    Google Scholar 

  • Nash, T.H. 1975. Influence of effluents from a zinc factory on lichens. Ecol. Monogr.45: 183–198.

    Google Scholar 

  • Nguyen, T.T., A. Ngam-ek, J. Jenkins &S.D. Grover. 1988. Metal ion interactions with phosphoenol pyruvate carboxylase fromCrassula argentea andZea mays. Pl. Physiol.86: 104–107.

    CAS  Google Scholar 

  • Nieboer, E., P. Lovoie, R.L.P. Sasseville, K.J. Puckett &D.H.S. Richardson. 1976a. Cation-exchange equilibrium and mass balance in the lichenUmbilicaria muhlenbergii. Canad. J. Bot.54: 720–723.

    CAS  Google Scholar 

  • —. 1976b. The uptake of nickel byUmbilicaria muhlenbergii: a physicochemical process. Canad. J. Bot.54: 724–733.

    CAS  Google Scholar 

  • Niehaus, W.G. &R.P. Dilts. 1984. Purification and characterization of glucose-6-phosphate dehydrogenase(EC 1.1.11.49) fromAspergillus parasiticus. Arch. Biochem. Biophys.228: 113–119.

    PubMed  CAS  Google Scholar 

  • Norris, P.R. &D.P. Kelly. 1977. Accumulation of cadmium and cobalt bySaccharomyces cerevisiae. J. Gen. Microbiol.99: 317–324.

    CAS  Google Scholar 

  • Okamoto, K., M. Suzuki, M. Fukami, S. Toda &K. Fuwa. 1977. Uptake of heavy metals by a copper-tolerant fungus,Penicillium ochrochloron. Agric. Biol. Chem.41: 17–22.

    CAS  Google Scholar 

  • Parashar, R.K., R.S. Sharma, R. Nagar &R.C. Sharma. 1987. Biological studies of ONS and ONN donor Schiff bases and their copper (II), nickel (II), zinc (II), cobalt (II) and manganese (II) complexes. Curr. Sci.56: 518–521.

    CAS  Google Scholar 

  • Paribok, T.A., N.A. Sazykina, G.A. Temp, E.A. Troitskaya, G.D. Leina &E.G. Chervyakova. 1982. Metal content in leaves of urban trees. Bot. Zhurn.67: 1533–1539.

    Google Scholar 

  • Passow, H., A. Rothstein &T.W. Clarkson. 1961. The general pharmacology of the heavy metals. Pharmacol. Rev.13: 185–224.

    PubMed  CAS  Google Scholar 

  • Patel, P.M., A. Wallace &R.T. Mueller. 1976. Some effects of copper, cobalt, cadmium, zinc, nickel and chromium on growth and mineral element concentration in chrysanthemum. J. Amer. Soc. Hortic. Sci.101: 553–556.

    CAS  Google Scholar 

  • Peterson, C.A. &W.E. Rauser. 1979. Callose deposition and photo assimilate export inPhaseolus vulgaris exposed to excess cobalt, nickel and zinc. Pl. Physiol.63: 1170–1174.

    CAS  Google Scholar 

  • Petrishek, I.A., M.Y. Lovkova, N.I. Grinkevich, L.P. Orlova &L.V. Polvdennyi. 1983. The influence of microelements (cobalt and copper) on the accumulation of alkaloids inAtropa belladona. Izv. Akad. Nauk. SSSR Ser. Biol.0(6): 879–887.

    CAS  Google Scholar 

  • Phung, H.T., L.J. Lund, A.L. Page &G.R. Bradford. 1979. Trace elements in fly ash and their release in water and treated soils. J. Environm. Qual.8: 171–175.

    Google Scholar 

  • Platash, I.T., L.I. Dyeryuhina &V.S. Art’omchenko. 1972.Astragalus micro-element. Farm. Zhurn.27: 64–65.

    CAS  Google Scholar 

  • Poole, D.B.R., L. Moore, T.F. Finch, M.J. Gardiner &G.A. Fleming. 1974. An unexpected occurrence of cobalt pine in lambs in North Leinster. Irish J. Agric. Res.13: 119–122.

    CAS  Google Scholar 

  • Prazmo, W., E. Balbin, H. Baranowska, A. Ejchart &A. Putrament. 1975. Manganese mutagenesis in yeast: II. Conditions of induction and characteristics of mitochondrial respiratory differentSaccharomyces cerevisiae mutants induced with manganese and cobalt. Genet. Res.26: 21–29.

    PubMed  CAS  Google Scholar 

  • Puckett, K.J. 1976. The effect of heavy metals on some aspects of lichen physiology. Canad. J. Bot.54: 2695–2703.

    CAS  Google Scholar 

  • —. 1973. Sulfur dioxide: Its effect on photosynthetic14C fixation in lichens and suggested mechanisms of phytotoxicity. New Phytol.72: 141–154.

    CAS  Google Scholar 

  • Putrament, A., H. Baranowska, A. Ejchart &N. Jachymczyk. 1977. Manganese mutagenesis in yeast VI. Mn2 uptake, mt DNA replication and ER induction. Comparison with other divalent cations. Molec. Gen. Genet. 151:69–76.

    CAS  Google Scholar 

  • Rai, L.C. &S.K. Dubey. 1989. Impact of chromium and tin on a nitrogen-fixing cyanobacteriumAnabaena doliolum: Interaction with bivalent cations. Environm. Safety17: 94–104.

    CAS  Google Scholar 

  • Ram, H.Y.M. &R. Sett. 1979. Sex reversal in the female plantsCannabis sativa by cobalt ion. Proc. Indian Acad. Sci.,B 88: 303–308.

    Google Scholar 

  • Ramada, S., A.A. Razak &A.M. Hamed. 1988. Partial dependence ofAspergillus fumigatus thermophilism on additive nutritional requirements. Mikrobiologia25: 57–66.

    Google Scholar 

  • Rauser, W.E. 1978. Early effect of phytotoxic burdens of cadmium, cobalt, nickel and zinc in white beans. Canad. J. Bot.56: 1744–1749.

    CAS  Google Scholar 

  • —. 1980. Vein loading in seedlings ofPhaseolus vulgaris exposed to excess cobalt, nickel and zinc. Pl. Physiol.65: 578–583.

    CAS  Google Scholar 

  • —. 1981. Effect of excess cobalt, nickel and zinc on the water relations ofPhaseolus vulgaris cultivar Kentwood. Environm. Exp. Bot.21: 249–256.

    CAS  Google Scholar 

  • Razaque, M.A., S. Ito &M. Yatazawa. 1980. Taxonomic characteristics in accumulating cobalt and nickel in the temperate forest vegetation in Central Japan. Soil Sci. Pl.Nutr.26: 271–280.

    Google Scholar 

  • Reddy, T.V. 1988. Mode of action of cobalt extending the vase life of cut roses. Sci Hort.36: 303–314.

    CAS  Google Scholar 

  • Rehab, F.I. &A. Wallace. 1978a. Excess trace metal elements on cotton: 2. Copper, zinc, cobalt and manganese in yolo loam soil. Commun. Soil. Sci Pl. Analysis9: 519–528.

    CAS  Google Scholar 

  • —. 1978b. Excess trace metal effects on cotton: 1. Copper, zinc, cobalt and manganese in solution culture. Commun. Soil Sci. Pl. Analysis9: 517–518.

    Google Scholar 

  • Reynolds, T.L. 1987. A possible role for ethylene during IAA-induced pollen embryogenesis in anther cultures ofSolanum carolinense L. Amer. J. Bot.74: 967–969.

    CAS  Google Scholar 

  • Robson, A.D. &G.R. Mead. 1980. Seed cobalt inLupinus angustifolius. Austral. J. Agric. Res. 31: 109–116.

    CAS  Google Scholar 

  • — &K. Snowball. 1987. Response of narrow-leafed lupines to cobalt application in relation to cobalt concentration in seed. Austral. J. Exp. Agric.27: 657–660.

    CAS  Google Scholar 

  • Rojas, O.D., L.R. McDowell, J.E. Moore, F.G. Martin &W.R. Ocumpaugh. 1987. Mineral concentration of tropical grasses as affected by age of regrowth. Trop. Grasslands21: 8–14.

    Google Scholar 

  • Romanovskaya, O.I., V.V. II’in &O.Z. Kreitsberg. 1988. Ethylene biosynthesis in winter wheat and kidney beans upon growth inhibition with chlorocholine chloride. Fiziol. Rast.35: 893–898.

    CAS  Google Scholar 

  • Rosko, J J. &J.W. Rachlin. 1975. The effect of copper, zinc, cobalt and manganese on the growth of the marine diatomNitzschia closterium. Bull. Torrey Bot. Club102: 100–106.

    CAS  Google Scholar 

  • Roy, A.K. &L.L. Srivastava. 1988. Removal of some micronutrients by forage crops in soils. J. Indian Soc. Soil Sci.36: 133–137.

    CAS  Google Scholar 

  • Rudyk, V.F. &L.N. Korchagina. 1977. Effect of metal ions on the activity of lipase fromNigella damascena L. seeds. Prikl. Biokhem. Mikrobiol.13: 319–323.

    Google Scholar 

  • Ruhling, A. &G. Tyler. 1970. Sorption and retention of heavy metals in woodland mossHylocomium splendens (Hedw.). Br. et Sch. Oikos21: 92–97.

    CAS  Google Scholar 

  • Ryndina, D.D. &G.G. Polikarpov. 1983. Distribution of certain chemical elements in biochemical fractions of the black sea algaCystoseira barbata. Gidrobiol. Zhurn.19: 79–84.

    CAS  Google Scholar 

  • Sal’kova, E.G. &E.A. Bulantseva. 1988. Effect of cobalt and silver ions on ethylene evolution by discs from the peel. Prikl. Biokhem. Mikrobiol.24: 698–702.

    CAS  Google Scholar 

  • Samarkoon, A.B. &W.E. Rauser. 1979. Carbohydrate levels and photoassimilate export from leaves ofPhaseolus vulgaris exposed to excess cobalt, nickel and zinc. Pl. Physiol.63: 1165–1169.

    Google Scholar 

  • Sarse, F. 1979. Investigation of serpentine sites in France, Italy, Austria and West Germany: 2. Plant analysis. Flora168: 578–594.

    Google Scholar 

  • Satsukyevich, V.B. 1972. Effects of copper and cobalt on dehydrogenase activity and intensive respiration of potato shoots. Vyestsi. Akad. Navuk. BSSR Syer. Biyal. Wavuk.2: 42–46.

    Google Scholar 

  • —. 1975. Changes of the physiological and biochemcal indices and productivity of sugar beet under conditions of the after effect of copper and cobalt. Vyestsi. Akad. Navuk. BSSR Syer. Biyal. Navuk.5: 554–558.

    Google Scholar 

  • Sawan, Z.M. 1985. Effect of nitrogen fertilization and foliar application of calcium and micro-elements on yield, yield components and fibre properties of Egyptian Cotton, Egypt. J. Agron.10: 24–38.

    Google Scholar 

  • —. 1989. Effect of nitrogen fertilisation and foliar application of calcium and micro-elements on cotton seed yield, viability and seedling vigour. Seed Sci. Techn.17: 421–432.

    Google Scholar 

  • Schrauzer, G.N. 1991. Cobalt. Pages 879–892in E. Merian (ed.), Metals and their compounds in the environment. VCH Verlagsgesellschaft, Weinheim, Germany.

    Google Scholar 

  • Sen, C. 1973. Enzyme make-up ofTrichophyton rubrum andT. mentagrophytes III—urease activity. Indian J. Mycol. Pl. Pathol.3: 159–164.

    CAS  Google Scholar 

  • Sharma, C.P., S.S. Bisht &S.C. Agarwala. 1978. Effect of excess supply of heavy metals on the absorption and translocation of iron (59 Fe) in barley. J. Nucl. Agric. Biol.7: 12–14.

    CAS  Google Scholar 

  • Sharma, H.N. &C.P. Ghonsikar. 1976. Effect of micronutrients on nodulation in cowpea (Vigna sinensis L.). Indian J. Microbiol.16: 109–115.

    Google Scholar 

  • Shimazaki, Y. &M. Furuya. 1980. Effects of divalent cations and EDTA on special properties of phytochrome in particulate fractions from etiolated pea (Pisum sativum) Cultivar Alaska. Pl. Cell Physiol.21:855–863.

    CAS  Google Scholar 

  • Shumik, S.A. &S.Y. Mininberg. 1975. Change in content of nucleic acids in black currant leaves molybdenum and cobalt. Fiziol. Biokhim. Kul’t. Rast.7: 632–636.

    CAS  Google Scholar 

  • —. 1980. Nitrate-reductase activity of different plant species affected by trace elements. Ukrayins’k Bot. Zhurn.37: 7–9.

    Google Scholar 

  • Siddiqui, M.H., A. Mathur, D. Mukherji &S.N. Mathur. 1982. Regulation of nitrate reductase (EC 1.9.6.1) activity inVigna mungo by divalent cations. Angew. Bot.56: 407–412.

    Google Scholar 

  • Siegel, S.M. 1977. The cytotoxic response ofNicotiana protoplasts to metal ions: A survey of the chemical elements. Water Air Soil Pollut.8: 293–304.

    CAS  Google Scholar 

  • Sivalingam, P.M. 1980. Toxicities of trace metals onChlorella vulgaris isolated from palm oil mill sludge. Jap. J. Phycol.28: 159–164.

    CAS  Google Scholar 

  • — &R.R. Ismail. 1981.Cladophora fascicularis as a prominent global algal monitor for trace element pollutants: 1. High concentration stresses and modes of biodeposition. Jap. J. Phycol.29: 171–179.

    CAS  Google Scholar 

  • Spiess, L.D., B.B. Lippincott &J.A. Lippincott. 1973. Effect of hormones and vitamin B12 on gametophore development in the mossPolaisiella selwynii. Amer. J. Bot.60: 708–716.

    CAS  Google Scholar 

  • Strauss, R. 1986. Nickel and cobalt accumulation by characeae. Hydrobiologia14: 263–268.

    Google Scholar 

  • Subik, J. &J. Kolarov. 1970. Metabolism of calcium and effect of divalent cations on respiratory activity of yeast mitochondria. Folia Microbiol.15: 448–458.

    CAS  Google Scholar 

  • Tarabrin, V.P. &T.R. Teteneva. 1979. Presowing treatment of seeds and its effect on drought resistance of woody plant seedlings. Ekologija0(3): 39–46.

    Google Scholar 

  • Tateda, Y. &J. Misonolu. 1988. Marine indicator organisms of cobalt, strontium, cesium, Denryoku. Chuo Kenkyusho Hokoku.0(U88007): 1–19.

    Google Scholar 

  • Thorn, M., J. Willenbrink &A. Maretzki. 1983. Characteristics of ATPase from sugarcane (Saccharum sp.) protoplast and vacuole membranes. Pl. Physiol.58: 497–504.

    Google Scholar 

  • Tittle, F.L. 1987. Auxin-stimulated ethylene production in fern gametophytes and sporophytes. Pl. Physiol.70: 499–502.

    CAS  Google Scholar 

  • Tosh, S., M.A. Choudhuri &S.K. Chatterjee. 1979. Retardation of lettuce (Lactuca sativa) leaf senescence by cobalt ions. Indian J. Exp. Biol.17: 1134–1136.

    CAS  Google Scholar 

  • Tran Van, L. &D.K. Teherani. 1988. Accumulation and distribution of elements in rice (seed, bran, layer, husk) by neutron activation analysis. J. Radioanal. Nucl. Chem.128: 35–42.

    Google Scholar 

  • Tripathy, B.C. &P. Mohanty. 1981. Stabilization by glutaraldehyde fixation by chloroplast membrane structure and function against heavy metal ion induced damage. Pl. Sci. Lett.22: 253–261.

    CAS  Google Scholar 

  • Tu- S., E. Nungesser &D. Braver. 1989. Characterization of the effects of divalent cations on the coupled activités of the proton—ATPase in tonoplast vesicles. Pl. Physiol.90: 1636–1643.

    CAS  Google Scholar 

  • Tuppy, H. &W. Sieghart. 1973. Effect of Co2+ on yeast mitochondria. Monatsh. Chem.104: 1433–1443.

    CAS  Google Scholar 

  • Underwood, E.J. 1975. Cobalt. Nutr. Rev.33: 65–69.

    CAS  Google Scholar 

  • Veltrup, W. 1981. The effect of heavy metals on the activity of ATPase. Ber. Deutsch. Bot. Ges.93: 659–666.

    CAS  Google Scholar 

  • Venkatarayappa, T., M.J. Tsujita &D.P. Murr. 1980. Influence of cobaltous ion on the post-harvest behaviour of roses (Rosa hybrida cultivar samantha). J. Amer. Soc. Hort. Sci.105:148–151.

    CAS  Google Scholar 

  • —. 1981. Effect of cobalt and sucrose on the physiology of cut roses (Rosa hybrida cultivar samantha). J. Hort. Sci.56: 21–25.

    CAS  Google Scholar 

  • Venkateswerlu, G. &G. Stotzky. 1986. Copper and cobalt alter the cell wall composition ofCunninghamella blakesleeana. Canad. J. Microbiol.32: 654–662.

    CAS  Google Scholar 

  • —. 1989. Binding of metals by cell walls ofCunninghamella blakesleeana grown in the presence of copper or cobalt. Appl. Microbiol. Biotechnol.31: 619–625.

    CAS  Google Scholar 

  • —. 1970. The mechanism of uptake of cobalt ions byNeurospora crassa. Biochem.J.118: 497–503.

    PubMed  CAS  Google Scholar 

  • —. 1973. Interrelationship in trace-element metabolism in metal toxicities in a cobalt-resistant strain ofNeurospora crassa. Biochem. J.132: 673–680.

    PubMed  CAS  Google Scholar 

  • Volkorezov, V.I. 1968. Pretreatment ofPinus sylvestris seeds with cobalt sulfate. Uch. Zap. Gor’k Univ.90: 114–117.

    Google Scholar 

  • Vyechar, A.S., V.B. Satsukyevich &A.Y. Shyrnyuk. 1974. Effect of trace elements on the acidity of dehydrogenase and polyphenol oxidase in potato chloroplasts. Vyestsi. Akad. Navuk. B. SSR Syer. Biyal. Navuk.3: 35–40.

    Google Scholar 

  • Wallace, A. 1982. Additive, protective and synergistic effects of plants with excess trace elements. Soil Sci.133: 319–323.

    CAS  Google Scholar 

  • -& E.M. Romney. 1977. Roots of higher plants as a barrier in translocation of some metals to shoots of plants. Pages 370–379in Biological implications of metals in the environment. Proc. 15th Ann. Hanford Life Sci. Symp. Richland, Washington.

  • —. 1989. Low levels but excesses of five different trace elements, singly and in combination, on interactions in bush beans grown in solution culture. Soil Sci.147: 439–441.

    CAS  Google Scholar 

  • —. 1989. Dose response curves for zinc, cadmium and nickel in combinations of one, two or three. Soil Sci.147: 401–410.

    CAS  Google Scholar 

  • —. 1977. Cyanide effects on transport of trace metals in plants. Commun. Soil Sci. Pl. Analysis8: 709–712.

    CAS  Google Scholar 

  • —. 1976. High levels of four heavy metals on the iron status of plants. Commun. Soil Sci. Pl. Analysis7: 43–46.

    CAS  Google Scholar 

  • —. 1982. Mineral composition of native wood plants growing on a serpentine soil in California, USA. Soil Sci.134: 42–44.

    CAS  Google Scholar 

  • Wang, L., G. Li &T. Tsao. 1990. Preliminary studies on chemical control of sex expression inLemna acquinoctialis strain 6746, Wassmann. J. Biol.47:127–135.

    Google Scholar 

  • Wangen, L.E. &F.B. Turner. 1980. Trace elements in vegetation downwind of a coal-fired power plant. Water Air Soil Pollut.13: 99–108.

    CAS  Google Scholar 

  • Warr, J.R. &D. Gibbons. 1973. Effect of benzimidazole and cobalt on free cystine levels ofChlamydomonas wild type and cell division mutant strains Exp. Cell Res.78: 454–456.

    CAS  Google Scholar 

  • —. 1977. Low molecular weight sulphydryl compounds and the expression of a cell division mutant ofChlamydomonas reinhardi. Exp. Cell Res.104: 442–445.

    PubMed  CAS  Google Scholar 

  • Watrud, L.S. &A. H. Ellingboe. 1973. Cobalt as a mitochondrial density marker in a study of cytoplasmic exchange during mating ofSchizophyllum commune. J. Cell Biol.59: 127–133.

    PubMed  CAS  Google Scholar 

  • Werner, V. 1979. Effect of nickel, cadmium and cobalt on the uptake of copper by intact barley (Hordeum distichon) roots. Z. Pflanzenphysiol.93: 1–10.

    Google Scholar 

  • Wheeler, R.M. &F.B. Salisbury. 1981. Gravitropism in higher plants shoots: 1. A role for ethylene. Pl. Physiol.67: 686–690.

    CAS  Google Scholar 

  • White, C. &G.M. Gadd. 1986. Uptake and cellular distribution of copper, cobalt and cadmium in strains ofSaccharomyces cerevisiae cultured on elevated concentrations of these metals. F.E.M.S. Microbiol. Ecol.38: 277–284.

    CAS  Google Scholar 

  • —. 1981. Variation in nitrogen, sulfur, selenium, cobalt, manganese, copper and zinc contents of grain from wheat (Triticum aestivum) and 2 lupine (Lupinus) species grown in a range of Mediterranean environment. Austral. J. Agric. Res.32: 47–60.

    CAS  Google Scholar 

  • Wiersma, D. &B.J.V. Goor. 1979. Chemical forms of nickel and cobalt in phloem ofRicinus communis. Pl. Physiol.45: 440–442.

    CAS  Google Scholar 

  • Williams, S.L., D.B. Avlenbach &N.L. Clesceri. 1977. Distribution of metals in lake sediments of the Adirondacks region of New York State.In Biological implications of metals in the environment. ERDA Symposium Series42: 153–166.

    CAS  Google Scholar 

  • Willis, R.B.H. &K.J. Scott. 1974. A role for minerals in the development of superficial scald of apples. J. Sci. Food Agric.25:149–151.

    Google Scholar 

  • Wojciechowska, B. &H. Kocik. 1987. Effect of cadmium, cobalt and bismuth nitrate on the root meristem ofVicia faba L. Pr. Nauk. Univ. Slask. Katowicak.0(932): 74–91.

    Google Scholar 

  • Wong, M.H. 1980. Toxic effects of cobalt and zinc onChlorella pyrenoidosa (26) in soft and hard water. Microbios28: 19–26.

    PubMed  CAS  Google Scholar 

  • Yadav, D.V., S.S. Khanna &R.P. Yadav. 1986. Modelling cobalt and phosphorus response in some legumes. Int. J. Trop. Agric.4: 228–232.

    CAS  Google Scholar 

  • Yadrov, B.N., S.E. Donitruk &V.G. Baturin. 1978. The effect of copper, manganese and cobalt on the productivity of a culture of isolated tissueof Datura innoxia Mill. Rastitel’n. Resursy.14: 408–411.

    CAS  Google Scholar 

  • Yagodin, B.A. &G.F. Khailova. 1969. Cytological characteristics of the leaf palisade parenchyma of Co-chlorotic plants of beans. Fiziol. Rast.16: 929–931.

    Google Scholar 

  • —. 1981. Effect of cobalt on buckwheat yield and on the content of mineral elements and rutin. Izv. Timiryazev. S-Kh. Akad.0(6): 68–72.

    CAS  Google Scholar 

  • —. 1982. Yield and quality of chinese cabbage is seed treatment with trace elements. Izv. Timiryazev. S-Kh. Akad.0(2): 98–104.

    Google Scholar 

  • —. 1970. Effect of cobalt on nitrate reductase activity in leguminous plants. Sel’skokhoz. Z. Bot.5:134–136.

    CAS  Google Scholar 

  • Yang, X.H., R.R. Brooks, T. Jaffre &J. Laee. 1985. Elemental levels and relationships in the flacourtiaceaeof New Caledonia and their significance for the evaluation of ‘Serpentine problem’ Pl. Soil87: 281–292.

    CAS  Google Scholar 

  • Yarnall, M., T.C. Rowe &W.K. Holloma. 1984. Purification and properties of nuclease fromUstilago maydis. J. Biol. Chem.259: 3026–3032.

    PubMed  CAS  Google Scholar 

  • Yopp, J.M. 1973. The role of light and growth regulators in the opening of theDentaria petiolar hook. Pl. Physiol.54: 7141–7147.

    Google Scholar 

  • Young, L.A. &E.C. Sisler. 1990. Interaction of discamba (3,6-dichloro-o-anisic acid) and ethylene on tobacco leaves. Tobacco Sci.34: 34–35.

    Google Scholar 

  • Young, T.F. &N. Terry. 1984. Specificity of iron transport in iron-stressed sugar beet (Beta vulgaris cultivar F 58 — 5541 + 1). Evidence for preferential accumulation of cobalt in the presence of iron. Canad. J. Bot.62: 207–210.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palit, S., Sharma, A. & Talukder, G. Effects of cobalt on plants. Bot. Rev 60, 149–181 (1994). https://doi.org/10.1007/BF02856575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856575

Keywords

Navigation