Skip to main content
Log in

Some aspects of aluminum toxicity in plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Aluminum toxicity is a major factor in limiting growth in plants in most strongly acid soils. Toxic effects on plant growth have been attributed to several physiological and biochemical pathways, although the precise mechanism is still not fully understood. In general, root elongation is hampered through reduced mitotic activity induced by Al, with subsequent increase in susceptibility to drought. The initial site of uptake is usually the root cap and the mucilaginous secretion covering the epidermal cells. Al ions bind very specifically to the mucilage by exchange adsorption on the polyuronic acid, complexing with the pectic substances and by the formation of polyhydroxy forms, increasing the number of Al atoms per positive charge.

Toxicity has been suggested to be initiated at the sites of mucopolysaccharide synthesis. Al is absorbed on all Ca-binding sites on the cell surface. In the intact tissues, most of the Al is bound to the pectic substances of the cell wall and a part to the nucleic acids and cell membrane. Al is also reported to enter the plant by moving into meristematic cells via the cortex, bypassing the endodermal barrier. Being a polyvalent cation, it follows principally the apoplasmic pathway of transport through cortical cells, but may also enter the stele through the plasmalemma. Ultrastructural studies have shown the maximum accumulation to be in the epidermal and cortical cells.

The interaction of Al with different systems follows different pathways. The plasma membrane at the outer boundary of the root cell is a potential target and its physical properties can be altered by Al through interaction with membrane-bound ATPase, lipids, carbohydrates and proteins. The Golgi apparatus has been suggested as the primary site of action, followed by damage to the plasmalemma.

Aluminum interferes with the uptake, transport and use of several essential elements, including Cu, Zn, Ca, Mg, Mn, K, P and Fe. Excess of Al reduces the uptake of certain elements and increases that of others, the patterns being dependent on the element, the plant part and species involved. A major factor is the pH concentration. At an acid pH, below 5.5, the antagonism between Ca and Al is probably the most important factor affecting Ca uptake by plants.

The molecular mechanism of tolerance of Al is as yet not clear. Tolerant plants reduce the absorption by the root or detoxify Al after absorption. Al tolerant plants may be grouped into those with higher Al concentrations in tops and those with less. In the latter, more Al is entrapped in roots. Uptake of Al may be reduced by binding to cell wall or to membrane lipid. Tolerance may be different in different species and seems to be controlled by one or more genes.

Absorption of Al in non-metabolic conditions is affected only slightly by temperature. Anaerobic conditions, like the presence of nitrogen and metabolic inhibitors, damage the endodermal membrane barrier, increasing the uptake and enhancing injurious effects.

Aluminum also causes morphological damage to plant parts. It affects photosynthesis by lowering chlorophyll content and reducing electron flow. Reduced respiratory activity might be due to reduced metabolic energy requirement. Protein synthesis is decreased probably due to effect on ribosome distribution at endoplasmic reticulum.

Aluminum is known to bind to DNA and nuclei. However, its penetrance to DNA of mitotically active centers is slow. On accumulating in roots, it initially inhibits mitotic activity, possibly through affecting the integrated control function of the root meristem.

Aluminum toxicity in acid soil is of special importance due to the destruction of components of forest ecosystems under specific conditions. It reduces biomass yield and tree growth and represses litter-degrading microflora.

Further information is required on the factors affecting membrane permeability, distribution and accumulation of Al in different plant parts and different species. Al tolerance may be studied with relation to the presence of different ligands, nitrogen metabolism (nitrate reductase and protein accumulation), nitrogen tolerance in relation to pH change and metal ion activities, the role of Ca and P and interference with water relations and litter degradation.

Zusammenfassung

A1 giftig ist einer Wichtiger Umstand in Wachstum Begrezung im Pflanzen in meiste schwere Sauere Erde. Giftig Effekten an die Pflanze Wachstum haben zu vie physiologische und biokemiche Pfad beimessen, obgleich der genau Mechanismus jetzt nicht völlig verstanden hat. Allgem ein Wurzel Verlängerung ist durch leise mitotische Tätigkeit beim Al veranlass behindern wird mit Resultat Vergrößerung in der Dürre empfängung. Die anfängliche Lage Einfahrt ist allgemen die Wurzel-Kappe und die Schleim Absonderung daß die Oberhaut Zelle verdeckt. Giftigkeit hat an die mucopolysaccharide Synthese Lage beginnen so vorschlagen werden. Al ion binden eben besonders an die Schleim beim Umtausch Adsorption an die polyuronic Saure, mit den pektiken Substanze Komplex gemacht werden und bei den polyhydroxy Form Bildüng und die Al atom per Positiv charge Nummer vermehern.

Al wird an alle Ca-binden Lage an die Zelle Fläche aufsaugen. In die unberührt Zelle meist des Al ist zu den pektiken Zelle Wand Substanze binden und ein Teil zu den Nucleic Saure und Zelle Membran. Al wird auch die Pflanze zu einfahren bei der Bewegung hinein meristematik Zellevia die Cortex, die endodermische Schranke passieren geanzeit. Wie es ein polyvalent Cation ist es folgt hauptsächlich den apoplasmiken Transport Pfad durch cortische Zelle, aberkann auch den Stele durch die Plasmalemma einfahren. Ultrastruktür Studiumen haben die Höchstmaß Anhäufung in der uberhaute und cortische Zelle gezeigt.

Der Al Gegenseitig Tätigkeit mit anderen System folgt andere Pfad. Die Plasmamembran, daß an die äußer Grenze auf die Wurzel Zelle ist, ist eine mögliche Scheibe. Sie physische Eigentum Kann beim Al durch Gegeuseitig Tätigkeit mit Membran bindet ATPase, Lipid, Carbohydrate und Protein sich veränderen. Der Golgi apparat hat as den haupten aktionen Zentrum mit Schaden zu Plasmalemma vorschlagen geworden.

Al einmischt sich mit der Einfahrt, Transport und Gebrauch auf mehrere wichtige Element, em schießlich auf Cu, Zn, Ca, Mg, Mn, K, P and Fe. Al Übermaß vermindet sich der Reinfall auf sicher Element und vergrößt sich wie auf anderer, das Muster von die Element, die Pflanze Teile und Verwickeinte spezies abhängig sind. Ein wichtig Umstand ist die pH Konzentration. In Sauer pH, unter 5.5, der Widerstand zwischen Ca und Al ist vieleicht der meister wichtiger Umstand daß Pflanze Ca-Reinfall wirken auf.

Der molecular Mechanismus auf Al Duldsamkeit ist jetzt nicht klar. Duldsam Pflanze vermindet sich die Wachstum Aufsaugung oder Al nach Aufsaugung nicht giftig machen. Al-duldsam Pflanze konnen in zwei Gruppen geteilt werden mit höchste Al-Konzentration in oberstes Eude und mit kleiner. In der letztere, mehrere Al ist in die Wurzel einfangen werden. Der Al Reinfall wird vieleicht bein Binden zur Zellewand oder zum Membran Lipid vermindern. Die Duldsamkeit wurde vieleicht im andere Spezies anders und bei ein oder mehre Gene Kontrolierten erscheinen.

Die Al Aufsaugung ist in nicht-metabolike Stellungen nur gering auf die Temperatur wirken. Anaerobike Stellungen, wie die Gegenwart nach N2 und metabolik Hemmungen, schädigen die Endodermische Membran Barriere zur Reinfall und den schädlichen Wirkungen sich vergrößern.

Al verursacht auch morphologischer Schaden an die Pflanze teile. Er wirk auf photosynthesis durch chlorophyll Gehalt und Elektron-Fluß leiser machen. Leiser Atmen Tätigkeit wurde vieleicht zur leisere metabolike Energy-Forderung. Protein Verbindung wurde vieleicht zur Wirkung an Ribosom Verteilung an Endoplasmik Reticulum Vermindern.

Al verbind DNA und Kern. Wie auch sein Eindringen ist langsam zu DNA von mitotiklich aktiv Zentrum. An Anhäufung in Wurzel, es verhindert anfänglich mitotike Tätigkeit, vieleicht auf die Wurzel Meristem einfügenlich Kontrol Function wirken.

Al Giftigkeit ist in sauere Erde auf spezial Wichtigkeit durch Wald Ekosystem Bestandteil Tötung unter spezifischen Stellungen. Es vermindert Biomass Ertrag, Pflanze Wachstum und Streu absetzenlich Microflora. Mehre Information hat über der Faktor daß Al Membran Durchlässigkeit, Verteilung und Anhäüfung in andere Pflanzeteile und anders spezies wirken auf gebraucht wird. Al-Duldsamkeit wird vieleicht in bezug auf andere Ligand, N2 Metabolism (nitrate reductase und protein Anhäufung), N2 Duldsamkeit in bezug auf pH veränderung und Metall ion Tätigkeit, die Rolle des Ca und P und Einmischung mit Wasser Erzählung und Streu-absetzung Studieren werden. (Translated by K. Talukder).

Aluminum toxicity is probably the most important factor involved in limiting growth in plants in strongly acid soils and mine spoils (Carvalho et al., 1980; Foy, 1974, 1984; McLean, 1976; Silva, 1976), since it affects both depth and branching of roots (Foy, 1984). However, even with high levels of Al in soil, plant parts contain relatively low concentrations due to the poor solubility of the naturally occurring Al compounds (Elinder & Sjögren, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Abruna, F., E. Rivera &G. J. A. Rodriguez. 1984. Crop response to soil acidity factors in Ultisols and Oxisols in Puerto Rico, pigeon peas. J. Agric. Univ. P.R.68(4): 433–447.

    Google Scholar 

  • Aimi, R. &T. Murakami. 1964. Cell physiological studies on the effect of aluminum on the growth of crop plants. Bull. Nat. Inst. Agric. Sci. (Japan)11: 331–392 (in Japanese).

    CAS  Google Scholar 

  • Alam, S. M. 1981. Influence of aluminum on plant growth and mineral nutrition of barley. Commun. Soil Sci. Pl. Anal.12: 121–138.

    CAS  Google Scholar 

  • —. 1983. Effect of aluminum on the dry matter and mineral content of rice. J. Sci. Tech.7(1-2): 1–3.

    Google Scholar 

  • Ali, S. M. E. 1973. Influence of cations on aluminum toxicity in wheat (Triticum aestivum Vill. Host). Ph.D. Dissertation. Oregon State University, Corvallis.

    Google Scholar 

  • Alva, A. K., D. G. Edwards, C. J. Asher &F. P. C. Blarney. 1986. Effects of phosphorus/ aluminum molar ratio and calcium concentration of plant response to aluminum toxicity. J. Soil Sci. Soc. Amer.50: 133–137.

    CAS  Google Scholar 

  • Andrew, C. S. 1978. Legumes and acid soil. Pages 72–88in J. Dobereiner, R. H. Burns & A. Hollaender (eds.), Limitations and potentials for biological nitrogen fixation in the tropics. Plenum Press, New York.

    Google Scholar 

  • —,A. D. Johnson &R. L. Sandland. 1973. Effect of aluminum on the growth and chemical composition of some tropical and temperate pasture legumes. Austral. J. Agric. Res.24: 325–339.

    CAS  Google Scholar 

  • Angyal, S. J. 1973. Complex formation between sugars and metal ions. Chim. Pure Appl.35: 131–146.

    CAS  Google Scholar 

  • Aniol, A. 1983. Aluminum uptake by roots of two winter wheat varieties of different tolerance to aluminum. Biochem. Physiol. Pflanzen.178: 11–20.

    CAS  Google Scholar 

  • —. 1984. Induction of aluminum tolerance in wheat seedlings by low doses of aluminum in the nutrient solution. Pl. Physiol.76(3): 551–555.

    Google Scholar 

  • — &J. Kaczkowski. 1979. Wheat tolerance to low pH and aluminum: Comparative aspects. Cereal Res. Commun.7: 113–122.

    CAS  Google Scholar 

  • Bache, B. W. 1985. Soil acidification and aluminum mobility. Soil Use Managern.1(1): 10–14.

    CAS  Google Scholar 

  • Barber, S. A. 1974. Influence of the plant root on ion movement in soil. Pages 525–564in E. W. Carson (ed.), The plant root and its environment. University Press, Charlottesville. Cited in Sarkunen et al., 1984.

    Google Scholar 

  • Barlett, R. J. &D. C. Riego. 1972. Effect of chelation on the toxicity of aluminum. Pl. Soil37: 419–423.

    Google Scholar 

  • Bartuska, A. M. &I. A. Ungar. 1980. Elemental concentrations in plant tissues as influenced by low pH soils. Pl. Soil55: 155–161.

    Google Scholar 

  • — et al. 1985. Assessment of acid deposition and its effects. Report NAPAP, Washington, D.C., cited in World Resources, 1986, Washington.

    Google Scholar 

  • Bauer, A., K. W. Joy &A. A. Urquhart. 1977. Amino acid metabolism of pea leaves, labelling studies on utilization of amides. Pl. Physiol.59: 920–924.

    CAS  Google Scholar 

  • Baumgartner, J. G., H. P. Haag, G. D. Oliveira &D. Perecin. 1976. Tolerance of tomato (Lycopersicon esculentum Mill.) cultivars to aluminum and manganese. An. Esc. Super. Agric. Luiz de Queiroz University, São Paulo33: 513–541.

    Google Scholar 

  • Bennet, R. J., C. M. Breen &M. V. Fey. 1985a. Aluminum uptake sites in the primary root ofZea mays L. S. Afr. J. Pl. Soil2(1): 1–7.

    CAS  Google Scholar 

  • —,——. 1985b. The primary site of aluminum injury in the root ofZea mays L. S. Afr. J. Pl. Soil2(1): 8–17.

    CAS  Google Scholar 

  • —,——. 1987. The effects of aluminum on root cap function and root development inZea mays L. Environ. Exp. Bot.27(1): 91–104.

    CAS  Google Scholar 

  • Blarney, F. P. C. 1983. Acid soil infertility: Effects on peanut yields and yield components. Commun. Soil Sci. Pl. Anal.14(5): 373–386.

    Google Scholar 

  • Blaustein, M. P. 1967. Phospholipids as ion exchangers: Implications for a possible role in membrane excitability and anaesthesia. Biochim. Biophys. Acta135: 653–668.

    PubMed  CAS  Google Scholar 

  • Borkenhagen, J. E. &J. G. Iyer. 1972. Aluminum sulfate as a stabilizer of nursery stock development. J. Forest. 70: 33–34.

    Google Scholar 

  • Boyer, J. S. 1982. Plant productivity and environment. Science218: 443–448.

    PubMed  Google Scholar 

  • Caldwell, C. R. &A. Haug. 1982. Divalent cation inhibition by barley root plasma membrane-bound Ca2+-ATPase activity and its reversal by monovalent cations. Physiol. Pl.54: 112–118.

    CAS  Google Scholar 

  • Camargo, C. E. D. 1983. Effect of temperature of the nutrient solution on aluminum tolerance of wheat cultivars. Bragantia42(1): 51–63.

    CAS  Google Scholar 

  • —. 1985. Influence of calcium levels combined with salt concentrations on the tolerance of wheat to aluminum toxicity in nutrient solution. Bragantia44(2): 659–668.

    Google Scholar 

  • Cambraia, J. &A. G. Calbo. 1980. Efeito do alumínio sobre a absorção e obre transporte de fosforo em dois cultivares de Sorgho (Sorghum bicolor L. Moench.). Rev. Ceres.27: 615–625.

    CAS  Google Scholar 

  • —,F. R. Galvani, M. M. Estevão &R. Sant’Anna. 1983a. Effects of aluminum on organic acid, sugar and amino acid composition of the root system of sorghum (Sorghum bicolor L. Moench.). J. Pl. Nutr.6(4): 313–322.

    CAS  Google Scholar 

  • —,D. L. F. J. Pires, M. D. M. Estevão &M. A. Oliva. 1983b. Effects of aluminum on the levels of magnesium, iron, manganese and copper in sorghum. Rev. Ceres.30(167): 45–54.

    CAS  Google Scholar 

  • Canal, I. N. &J. Mielniczuk. 1983. Potassium absorption parameters in corn plants (Zea mays L.) as affected by aluminum-calcium interaction. Cienc. Cult. (São Paulo)35(3): 336–340.

    CAS  Google Scholar 

  • Carvalho, M. M., C. S. Andrew, D. G. Edwards &C. J. Asher. 1980. Comparative performances of sixStylosanthes species in three acid soils. Austral. J. Agric. Res.31: 61–76.

    Google Scholar 

  • Cheung, W. Y. 1982. Calmodulin: An overview. Fed. Proc.41: 2253–2257.

    PubMed  CAS  Google Scholar 

  • Chong, K., J. C. Wynne, C. H. Elkan &T. J. Schneeweis. 1987. Effects of soil acidity and aluminum content onRhizobium inoculation, growth and nitrogen fixation of peanuts and other grain legumes. Trop. Agric.64(2): 97–104.

    CAS  Google Scholar 

  • Clark, R. B. 1977. Effect of aluminum on growth and mineral elements of Al-tolerant and Al-intolerant corn. Pl. Soil47: 653–662.

    CAS  Google Scholar 

  • —,P. A. Pier, D. Knudsen &J. W. Maranville. 1981. Effect of trace element deficiencies and excesses on mineral nutrients in sorghum. J. Pl. Nutr.3: 367–374.

    Google Scholar 

  • Clarkson, D. T. 1963. Some comparative aspects of the mineral nutrition of species in the genusAgrostis with special reference toAgrostis setacea. Ph.D. Thesis. University of Exeter. Cited in Clarkson, 1965.

  • —. 1965. The effect of aluminum and some other trivalent metal cations on cell division in the root apices ofAllium cepa. Ann. Bot., N.S.29: 309–315.

    Google Scholar 

  • —. 1966. Effect of aluminum on the uptake and metabolism of phosphorus by barley seedlings. Pl. Physiol.41: 165–172.

    CAS  Google Scholar 

  • —. 1967. Interactions between aluminum and phosphorus on root surfaces and cell wall material. Pl. Soil27: 347–356.

    CAS  Google Scholar 

  • —. 1969. Metabolic aspects of aluminum toxicity and some possible mechanisms for resistance.In I. H. Rorison (ed.), Ecological aspects of mineral nutrition in plants. Blackwell Sci. Publ., Oxford.

    Google Scholar 

  • —, &J. Sanderson. 1969. The uptake of a polyvalent cation and its distribution in the root apices ofAllium cepa: Traces and autoradiographic studies. Planta89: 136–154.

    CAS  Google Scholar 

  • —. 1971. Inhibition of the uptake and long-distance transport of calcium by aluminum and other polyvalent cations. J. Exptl. Bot.22: 837–851.

    CAS  Google Scholar 

  • Clowes, F. A. L. 1972. Regulation of mitosis in roots by their caps. Nature New Biol.235: 143–144.

    Google Scholar 

  • Clymo, R. S. 1962. An experimental approach to part of the calcicole problem. J. Ecol.50: 707–731.

    CAS  Google Scholar 

  • Costa, N. D., I. Anghinoni &J. Mielniczuk. 1984. Aluminum toxicity inPaspalum guenoarum Arech. forms. Agron. Sul Rio Grandense20(1): 51–62.

    CAS  Google Scholar 

  • Coughlin, R. T., S. Tonsager &E. J. McGroaty. 1983. Quantitation of metal cations bound to membranes and extracted lipopolysaccharide ofEscherichia coli. Biochemistry22(8): 2002–2007.

    PubMed  CAS  Google Scholar 

  • Crenan, C. S. &C. L. Schofield. 1979. Aluminum leaching response to acid precipitation: Effects on high-elevation watersheds in the north-east. Science204: 304–306.

    Google Scholar 

  • Crum, J. R. &D. P. Franzmeir. 1980. Soil properties and chemical composition of tree leaves in southern Indiana. J. Soil Sci. Soc. Amer.44: 1063–1069.

    CAS  Google Scholar 

  • Cullis, P. R. &B. De Kruijff. 1979. Lipid polymorphism and the functional role of lipids in biological membranes. Biochim. Biophys. Acta559: 339–420.

    Google Scholar 

  • De Carvalho, L. &P. Cesar. 1984. Effect of aluminum on a cassava (Manihot esculenta Crantz) crop. Rev. Bras. Mandioca3(1): 1–5.

    Google Scholar 

  • De Carvalho, M. M., C. J. Asher, D. G. Edwards &C. S. Andrew. 1982. Lack of effect of toxic aluminum concentrations on nitrogen fixation by nodulatedStylosanthes species. Pl. Soil66(2): 225–231.

    Google Scholar 

  • Dedov, V. M. &E. L. Klimashevskii. 1976. Cited in Sarkunan et al., 1984. Skh. Nauki3: 13.

    Google Scholar 

  • Deleers, M. 1985. Cationic atmosphere and cation competition binding at negatively charged membranes: Pathological implications of aluminum. Res. Commun. Chem. Pathol. Pharmacol.49(2): 277–293.

    CAS  Google Scholar 

  • Dodge, C. S. &A. J. Hiatt. 1974. Relationship of pH to ion uptake imbalance by varieties of wheat (Ttiticum vulgare L.). Agron. J.64: 476–481.

    Google Scholar 

  • Dovale, F. R., R. F. De Novais, N. F. De Barros &B. G. Milagres. 1984. Absorption on nitrate and ammonium by intact roots of corn pretreated with aluminum. Rev. Bras. Cienc. Solo8(2): 215–218.

    CAS  Google Scholar 

  • Edwards, J. H., B. D. Horton &H. C. Kirkpatrick. 1976. Aluminum toxicity symptoms in peach seedlings. J. Amer. Soc. Hort. Sci.101: 139–142.

    CAS  Google Scholar 

  • Elinder, C. G. &B. Sjögren. 1986. Aluminum. Pages 1–25in L. Friberg, G. F. Nordberg & V. Vouk (eds.), Handbook on the toxicology of metals, 2nd ed. Elsevier Science Publishers B.V.

    Google Scholar 

  • Fagria, N. K. 1982. Differential tolerance of rice cultivars to aluminum in nutrient solution. Pesq. Agropecu. Bras.17(1): 1–9.

    Google Scholar 

  • Fernandes, M. S., R. O. P. Rossiello &M. L. R. Arruda. 1984. Root cation-exchange capacity and aluminum toxicity relationships in two pasture grasses. Pesq. Agropecu. Bras.19(5): 631–638.

    CAS  Google Scholar 

  • Fitter, A. H. &R. K. M. Hay. 1981. Pages 200–231in Environmental physiology of plants. Academic Press, New York.

    Google Scholar 

  • Fleming, A. L. &C. D. Foy. 1968. Root structure reflects differential aluminum tolerance in wheat varieties. Agron. J.60: 172.

    Google Scholar 

  • Foy, C. D. 1974. Effect of aluminum on plant growth. Pages 601–642in E. W. Carson (ed.), The plant root and its environment. University Press of Virginia, Charlottesville.

    Google Scholar 

  • —. 1984. Physiological effects of hydrogen, aluminum and manganese toxicities in acid soils. Agronomy Monogr.12(2nd ed.): 57–97.

    CAS  Google Scholar 

  • —,G. R. Burns, J. C. Brown &A. L. Fleming. 1965. Differential aluminum tolerance of two wheat varieties associated with plant induced pH changes around their roots. Proc. Soil Sci. Soc. Amer.29: 64–67.

    CAS  Google Scholar 

  • —,R. L. Chaney &M. C. White. 1978. The physiology of metal toxicity in plants. Annu. Rev. Pl. Physiol.29: 511–566.

    CAS  Google Scholar 

  • — &A. L. Fleming. 1978. The physiology of plant tolerance of excess available aluminum and manganese in acid soils. Pages 301–328in G. A. Jung (ed.), Crop tolerance to suboptimal land conditions. ASA Spec. Pub. No. 32. Am. Soc. of Agron., Madison, Wisconsin.

    Google Scholar 

  • ——. 1982. Aluminum tolerance of two wheat cultivars related to nitrate reductase activities. J. Pl. Nutr.5: 1313–1333.

    CAS  Google Scholar 

  • —,— &W. H. Armiger. 1969. Aluminum tolerance of soybean varieties in relation to calcium nutrition. Agron. J.61: 505–511.

    CAS  Google Scholar 

  • —,—,G. R. Burns &W. H. Armiger. 1967. Characterization of differential aluminum tolerance among varieties of wheat and barley. Proc. Soil Sci. Soc. Amer.31: 513–521.

    CAS  Google Scholar 

  • —,H. N. Lafever, J. W. Schwartz &A. L. Fleming. 1974. Aluminum tolerance of wheat cultivars related to region of origin. Agron. J.66: 751–758.

    CAS  Google Scholar 

  • Franco, A. A. &D. N. Munns. 1982. Acidity and aluminum restraints on nodulation, nitrogen fixation and growth ofPhaseolus vulgaris in nutrient solution. J. Soil Sci. Soc. Amer.46: 296–301.

    CAS  Google Scholar 

  • Friedland, A. J., A. H. Johnson &T. G. Siccama. 1984. Trace metal content of the forest floor in the Green Mountains of Vermont: Spatial and temporal patterns. Water, Air Soil Pollut.21: 161–170.

    CAS  Google Scholar 

  • Furlani, P. R. &R. B. Clark. 1981. Screening sorghum for aluminum tolerance in nutrient solutions. Agron. J.73: 587–594.

    CAS  Google Scholar 

  • Gerzabek, M. H. &A. Edelbauer. 1986. Aluminum toxicity in corn (Zea mays L.). Influence of aluminum on the yields and the nutrient contents. Bodenkultur37(4): 309–319.

    CAS  Google Scholar 

  • Giulian, D. &E. G. Diacumakes. 1976. The study of intracellular compartments by micropipette techniques. J. Cell Biol.70: 332a (Abstr.).

    Google Scholar 

  • Gomes, M. M. S., J. Cambraia, R. Sant’anna &M. M. Estevão. 1985. Aluminum effects on uptake and translocation of nitrogen in sorghum (Sorghum bicolor L. Moench.). J. Pl. Nutr.8(6): 457–465.

    CAS  Google Scholar 

  • Gomez-Lepe, B. E., O. Y. Lee-Stadelman, J. A. Patta &E. J. Stadelman. 1979. Effects of acetylguanidine on cell permeability and other protoplasmic properties ofAllium cepa epidermal cells. Pl. Physiol.64: 131–138.

    CAS  Google Scholar 

  • Guerrier, G. 1978a. Adsorption et absorption d’aluminum chez le sorgho-grain. C. R. Acad. Agric.64: 647–654.

    CAS  Google Scholar 

  • —. 1978b. Influence de l’aluminum sur la sélectivité racinaire de plantes calcicole et calcifuge. Canad. J. Bot.56: 1949–1952.

    CAS  Google Scholar 

  • —. 1978c. Interactions aluminum-calcium chez sorghum dochna. Agrochimica23(3-4): 226–234.

    Google Scholar 

  • —. 1979. Absorption of mineral elements in the presence of aluminum. Pl. Soil51: 275–278.

    CAS  Google Scholar 

  • —. 1982. Relation between sorghum root system and aluminum toxicity. J. Pl. Nutr.5(2): 123–136.

    CAS  Google Scholar 

  • Hackett, C. 1964. Ecological aspects of the nutrition ofDeschampsia flexuosa (L.) Trin. I. The effect of aluminum, manganese and pH on germination. J. Ecol.52: 159–168.

    Google Scholar 

  • Hampp, R. &M. Schnabl. 1975. Effect of aluminum ions on14CO2 fixation and membrane system of isolated spinach chloroplasts. Z. Pflanzenphysiol.76: 300–306.

    CAS  Google Scholar 

  • Hanson, J. B. 1984. The functions of calcium in plant nutrition. Pages 149–208in P. B. Tinker and A. Lauchli (eds.), Advances in plant nutrition, Vol. 1, Praeger Scientific, New York.

    Google Scholar 

  • Hartwell, B. L. &F. R. Pember. 1918. The presence of aluminum as a reason for the difference in the effect of so-called acid soil on barley and rye. Soil Sci.6: 259–281.

    CAS  Google Scholar 

  • Haug, A. 1984. Molecular aspects of aluminum toxicity. CRC Crit. Rev. Pl. Sci.1: 345–373.

    CAS  Google Scholar 

  • — &C. R. Caldwell. 1985. Aluminum toxicity in plants: The role of the root plasma membrane and calmodulin. Pages 359–381in J. B. St. John, E. Berlin & P. C. Jackson (eds.), Frontiers of membrane research in agriculture. Rowman & Allanheld, Totowa.

    Google Scholar 

  • Hecht-Buchholz, C. H. 1983. Light and electron microscopic investigations of the reactions of various genotypes to nutritional disorders. Pl. Soil72: 151–165.

    Google Scholar 

  • — &C. D. Foy. 1981. Effect of aluminum toxicity on root morphology of barley. Pages 343–345in R. Brouwer et al. (eds.), Structure and function of plant roots. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague.

    Google Scholar 

  • Helyar, K. R. 1978. Effects of aluminum and manganese toxicity on legume growth. Pages 207–231in C. S. Andrew & E. J. Kamprath (eds.), Mineral nutrition of legumes in tropical and subtropical soils. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Henning, S. J. 1975. Aluminum toxicity in the primary meristem of wheat roots. Ph.D. Thesis. Oregon State University, Corvallis, Oregon. (Disser. Abstr. Int.35B: 5728.)

    Google Scholar 

  • Henry, E. W., J. F. Miller, L. J. Dungy, M. T. Johnson &J. K. Yeekpeh. 1981. Effect of aluminum uptake on growth and enzyme activity inPisum sativum var. ‘Alaska’ and ‘Little Marvel’. J. PL Nutr.4(4): 353–373.

    CAS  Google Scholar 

  • Hiatt, A. J., D. F. Amos &H. F. Massey. 1963. Effect of aluminum on copper sorption by wheat. Agron. J.55: 284–287.

    Google Scholar 

  • Hofler, K. 1958. Aluminiumsalz-wirkung auf Spirogyren und Zygnemen. Protoplasma49: 248–258.

    CAS  Google Scholar 

  • Horst, W. J. &H. Goppel. 1986. Aluminum—Toleranz von Ackerbohne (Vicia faba), Lupine (Lupinus luteus), Gerste (Hordeum vulgare) und Roggen (Secale cereale). II. Mineralstoffgehalte in Sproße b und Würzein in Abhängigkeit vom Aluminium Angebot. Z. Pflanzenernaehr. Bodenk.149: 94–109.

    CAS  Google Scholar 

  • —,A. Wagner &H. Marschner. 1982. Mucilage protects root meristems from aluminum injury. Z. Pflanzenphysiol.105: 435–444.

    CAS  Google Scholar 

  • —,——. 1983. Effect of aluminum on root growth, cell-division rate and mineral element contents in roots ofVigna unguiculata genotypes. Z. Pflanzenphysiol.109: 95–103.

    CAS  Google Scholar 

  • Howeler, R. H. &L. F. Cadavid. 1976. Screening of rice cultivars for tolerance to Al toxicity in nutrient solutions as compared with a field screening method. Agron. J.68: 551–555.

    CAS  Google Scholar 

  • Huck, M. G. 1972. Impairment of sucrose utilization for cell wall formation in the roots of aluminum-damaged cotton seedlings. Pl. Cell Physiol.13: 7–14.

    CAS  Google Scholar 

  • Hue, N. V., G. R. Craddock &F. Adams. 1986. Effect of organic acids on aluminum toxicity in subsoils. J. Soil Sci. Soc. Amer.50: 28–34.

    CAS  Google Scholar 

  • Huett, D. O. &R. C. Menary. 1979. Aluminum uptake by excised roots of cabbage, lettuce and kikuyu grass. Austral. J. Pl. Physiol.6: 643–653.

    CAS  Google Scholar 

  • ——. 1980. Aluminum distribution in freeze-dried roots of cabbage, lettuce and kikuyu grass by energy dispersive X-ray analysis. Austral. J. Pl. Physiol.7: 101–111.

    CAS  Google Scholar 

  • Hutchinson, T. C. 1985. A comparative study of the toxicity of aluminum to seedlings of five conifer species. Report to the Canadian Forestry Service, University of Toronto, Ontario, Canada. Cited in Thornton et al., 1986b.

    Google Scholar 

  • Ikeda, T., S. Higashi, S. Kagohashi &T. Moriya. 1965. Studies on the adaptability of wheat and barley on acid soil, especially in regard to its varietal difference and laboratory detection. Bull. Tokai-Kinki Natl. Agric. Exp. Stat.12: 64–79.

    Google Scholar 

  • IRRI—International Rice Research Institute. 1974. International Rice Research Institute Report, 1973. IRRI, Los Banos, Laguna, Philippines.

    Google Scholar 

  • Jackson, W. A. 1967. Physiological effects of soil acidity.In R. W. Pearson & F. Adams (eds.), Soil acidity and liming. Agronomy12: 43–124. Amer. Soc. Agron., Madison, Wisconsin.

  • Jayman, T. C. Z. &S. Sivasubramaniam. 1975. Release of bound iron and aluminum from soils by the root exudates of tea (Camellia sinensis) plants. J. Sci. Food Agric.26: 1895–1898.

    CAS  Google Scholar 

  • Jones, L. H. 1961. Aluminum uptake and toxicity in plants. Pl. Soil13: 297–310.

    CAS  Google Scholar 

  • Juniper, B. 1972. Mechanisms of perception and patterns of organisation in root caps. Pages 119–131in M. W. Miller & C. C. Kuehnert (eds.), The dynamics of meristem cell populations. Advances Exp. Med. Biol. 18. Plenum Press, New York.

    Google Scholar 

  • Kerridge, P. C., M. D. Daw son &P. D. Moore. 1971. Separation of degrees of aluminum tolerance in wheat. Agron. J.63: 586–591.

    CAS  Google Scholar 

  • — &W. E. Kronstad. 1968. Evidence of genetic resistance to aluminum toxicity in wheat (Triticum aestivum Vill. Host). Agron. J.60: 710–711.

    Google Scholar 

  • Kesar, M., F. Benedict, F. Newbauer &F. E. Hutchinson. 1975. Influence of aluminum ions on developmental morphology of sugarbeet roots. Agron. J.67: 84–88.

    Google Scholar 

  • Khanna, P. K., J. Prenzel, K. J. Meiwes, B. Ulrich &E. Matzner. 1987. Dynamics of sulfate retention by acid forest soils in an acidic deposition environment. J. Soil Sc. Soc. Amer.51(2): 446–452.

    CAS  Google Scholar 

  • Kinraide, T. B. &D. R. Parker. 1987. Cation amelioration of aluminum toxicity in wheat. Pl. Physiol.83: 546–551.

    CAS  Google Scholar 

  • Klee, C. B. &T. G. Vanaman. 1982. Calmodulin. Adv. Protein Chem.35: 213–321.

    PubMed  CAS  Google Scholar 

  • Klein, R. M. 1982. Ecosystems approach to the acid rain problem. Acid Precip. Ser. (Proc. Symp. Acid Precip. Am. & Chem. Soc. Meet.). R. A. Linthurst (ed.), P. 1982. Publ. 1984, 5, 1–11. Butterworth, Boston.

    Google Scholar 

  • —. 1985. Effects of acidity and metal ions on water movement. Pages 303–321in D. Adams & W. Page (eds.), Acid deposition: Environmental and economic impacts. Plenum Publ., New York.

    Google Scholar 

  • Klimashevskii, E. L. &N. F. Chernysheva. 1980. Content of organic acids and physioogically active compounds in plants differing in their susceptibility to the toxicity of Al3+. Soviet Agric. Sci.1980(2): 5–8.

    Google Scholar 

  • —,Y. A. Markova &T. S. Lebedeva. 1979. Interaction of aluminum and phosphorus on root surfaces and cell walls. Soviet Agric. Sci.3: 6–9.

    Google Scholar 

  • —,—M. L. Seregina, D. M. Grodzinskii &T. D. Kozarenko. 1970. Specifics of the physiological activity of pea plants in connection with unequal resistance of different varieties to mobile aluminum. Soviet Pl. Physiol.17: 372–378.

    Google Scholar 

  • —,—,S. M. Zyabkina, G. K. Zirenka, T. E. Zolotuklin &S. E. Pavolova. 1976. Aluminum absorption and localization in root tissues of different pea varieties. Fiziol. Biokhim. Kult. Rast.8: 396–401.

    CAS  Google Scholar 

  • Ko, W. H. &F. K. Hora. 1972. Identification of an Al ion as a soil fungotoxin. Soil Sci.113: 42–45.

    CAS  Google Scholar 

  • Krizek, D. T. & C. D. Foy. 1981. Water stress: Role in differential aluminum tolerance of barley genotypes. Agron. Abstr.: 181–182.

  • Lee, C. R. 1971. Influence of Al on plant growth and tuber yield of potatoes. Agron. J.63: 363–364.

    CAS  Google Scholar 

  • Lee, J. &M. W. Pritchard. 1984. Aluminum toxicity expression on nutrient uptake, growth and root morphology ofTrifolium repens L. cv. ‘Grassland Huia’. Pl. Soil82(1): 101–116.

    CAS  Google Scholar 

  • Lewis, W. E. 1973. Effect of mineral salts onAphanomyces enteiches andAphanomyces root rot of peas. Phytopathology63: 989–993.

    CAS  Google Scholar 

  • Liebig, G. F., A. P. Vanselow &H. D. Chapman. 1942. Effects of Al on Cu toxicity as revealed by solution culture and spectrographic studies of citrus. Soil Sci.53: 341–357.

    CAS  Google Scholar 

  • Like, D. E. &R. M. Klein. 1985. The effect of simulated acid rain on nitrate and ammonium production in soils from three ecosystems of Camels Hump Mountain, Vermont (USA). Soil Sci.140(5): 352–355.

    CAS  Google Scholar 

  • Mathan, K. K. 1980. Effect of various levels of aluminum on the dry matter yield, content and uptake of phosphorus, aluminum, manganese, magnesium and iron in maize. Madras Agric. J.67(11): 751–757.

    CAS  Google Scholar 

  • Matsumoto, H., F. Hirasawa, H. Torikai &E. Takahashi. 1976. Localization of absorbed aluminum in pea root and its binding to nucleic acid. Pl. Cell Physiol.17: 127–137.

    CAS  Google Scholar 

  • —,S. Morimura &E. Hirasawa. 1979. Localization of absorbed aluminum in plant tissues and its toxicity studies in the inhibition of pea root elongation. Pages 171–194in K. Kudrev et al. (eds.), Mineral nutrition of plants. Vol. I. Proc. First Int. Symp. on Plant Nutrition, Varna, Bulgaria, 24–29 September. Bulgarian Acad. Sci. Inst. Pl. Physiol., Sofia, Bulgaria.

    Google Scholar 

  • Matzner, E. &B. Ulrich. 1981. Effects of acid precipitation on soil. Pages 555–564in L. Fazzolare & W. Smith (eds.), Beyond the energy crisis. Pergamon Press, New York.

    Google Scholar 

  • Mayz, D. M. J. &P. M. Cartwright. 1984. The effects of pH and aluminum toxicity on the growth and symbiotic development of cowpeas (Vigna unguiculata). Pl. Soil80(3): 423–430.

    Google Scholar 

  • McCormick, J. 1985. Acid rain. Earthscan, London.

    Google Scholar 

  • McCormick, D. H. &K. C. Steiner. 1978. Variation in aluminum tolerance among six genera of trees. Forest Sci.24: 565–568.

    Google Scholar 

  • McLaughlin, S. B. 1985. Effects of air pollution on forests—A critical review. J. Air Pollut. Control Assoc.35: 512–534.

    CAS  Google Scholar 

  • McLean, E. O. 1976. Chemistry of soil aluminum. Commun. Soil Sci. Pl. Anal.7: 619–636.

    CAS  Google Scholar 

  • McLean, F. T. &B. E. Gilbert. 1927. The relative aluminum tolerance of crop plants. Soil Sci.24: 163–174.

    CAS  Google Scholar 

  • McLean, I. B. 1980. The toxic aluminum reaction in corn and barley roots: An ultrastructural and morphological study. Michigan State University, East Lansing. University Microfilms Int. 1314642, Ann Arbor, Michigan (Master’s Abstr.)18(4): 259.

  • Memon, A. R., M. Chino &Y. Yatazawa. 1981. Microdistribution of aluminum and manganese in the tea leaf tissues as revealed by X-ray analyses. Commun. Soil Sci. Pl. Anal.12: 441–452.

    CAS  Google Scholar 

  • Menten, J., E. Malavolta, J. C. Sabino, A. A. Veiga &N. A. Tulmann. 1981. Virus-like abnormality in the bean plant (Phaseolus vulgaris L.) induced by manganese toxicity. Fitopatol. Bras.6(2): 179–185.

    CAS  Google Scholar 

  • Mesdag, I., I. A. J. Slootmaker &J. Post, Jr. 1970. Linkage between tolerance to high soil acidity and genetically high protein content in the kernel of wheat,Triticum aestivum L. and its possible use on breeding. Euphytica19: 163–174.

    Google Scholar 

  • Miyazawa, A., N. Maeda &A. Kitazawa. 1981. Aluminium toxicity on the growth of rice plants. Miyagi-Ken Nogyo Senta Kenkyu Hokuku48: 43–58.

    CAS  Google Scholar 

  • Moloney, K. A., L. J. Stratton &R. M. Klein. 1983. Effects of simulated acidic, metal containing precipitation on coniferous litter decomposition. Canad. J. Bot.61(12): 3337–3342.

    CAS  Google Scholar 

  • Morimura, S., E. Takahashi &H. Matsumoto. 1978. Association of aluminum with nuclei and inhibition of cell division in onion (Allium cepa) roots. Z. Pflanzenphysiol.88: 395–401.

    CAS  Google Scholar 

  • Morita, K., S. Inoue, Y. Murai, K. Watanabe &S. Shima. 1982. Effects of the metals beryllium, iron, copper and aluminum on the mobility of immunoglobin receptors. Experientia38: 1227–1228.

    PubMed  CAS  Google Scholar 

  • Morré, J. D. 1977. Membrane differentiation and the control of secretion: A comparison of plant and animal Golgi apparatus. Pages 293–303in B. R. Brinkley & K. R. Porter (eds.), International cell biology. Rockefeller University Press, New York.

    Google Scholar 

  • Mosquim, P. R. 1977. Influencia do aluminio sobre o crescimento e o metabolismo em plantas deStylosanthes humilis M. B. K. M.S. Thesis. UFU, Viçosa MG, Brasil.

    Google Scholar 

  • Muchovej, J. J., L. A. Maffia &R. M. C. Muchovej. 1980. Effect of exchangeable soil aluminum and alkaline calcium salt on the pathogenicity and growth ofPhytophthora capsici from green pepper—Capsicum frutescens. Phytopathology70: 1212–1214.

    CAS  Google Scholar 

  • Mugiwara, L. M., S. M. Elgawhary &K. I. Patel. 1976. Differential tolerances of triticale, wheat, rye and barley to aluminum in nutrient solution. Agron. J.68: 782–787.

    Google Scholar 

  • —,M. Floyd &S. V. Patel. 1981. Tolerances of triticale lines to manganese in soil and nutrient solution. Agron. J.73: 319–322.

    Google Scholar 

  • Mullette, K. J. 1975. Stimulations of growth in eucalyptus due to aluminum. Pl. Soil42: 495–599.

    CAS  Google Scholar 

  • Munns, D. N., K. G. Cassnan &H. H. Keyser. 1981. Selection of naturally occurring stress tolerantRhizobium. Basic Life Sci.17: 181–191.

    CAS  Google Scholar 

  • Naidoo, G., J. McD. Stewart &R. J. Lewis. 1978. Accumulation sites of Al in snapbean and cotton roots. Agron. J.70: 489–492.

    CAS  Google Scholar 

  • Nair, V. D. &J. Prenzel. 1978. Calculations of equilibrium concentrations of monoand polynuclear hydroxyaluminum species at different pH and total aluminum concentrations. Z. Pflanzenernähr Bodenkd.141: 741–751.

    CAS  Google Scholar 

  • Nambiar, E. K. S. 1976. Uptake of65Zn from dry soil by plants. PL Soil44: 267–271.

    CAS  Google Scholar 

  • Newcomb, E. H. 1980. The general cell.In N. E. Tolbert (ed.), The biochemistry of plants1: 1–54. Academic Press, New York.

    Google Scholar 

  • Niedziela, G. &A. Aniol. 1983. Subcellular distribution of aluminum in wheat roots. Acta Biochim. Polon.30: 99–105.

    PubMed  CAS  Google Scholar 

  • Nightingale, E. R. 1959. Phenomenological theory of ion solution. Effective radii of hydrated ions. J. Phys. Chem.63: 1381–1387.

    CAS  Google Scholar 

  • Paulino, V. T., J. Olivares &E. J. Bedmar. 1987. Nodulation and nitrogenase activity of pea nodules as affected by low pH and aluminum. Pl. Soil101(2): 299–302.

    CAS  Google Scholar 

  • Pavan, M. A. 1982. Toxic effects of aluminum on coffee seedlings in relation to calcium nutrition. Rev. Bras. Ci. Solo6(3): 209–213.

    CAS  Google Scholar 

  • —— &F. T. Bingham. 1982a. Aluminum toxicity in coffee trees cultivated in nutrient solution. Pesq. Agropecu. Bras.17(9): 1293–1302.

    CAS  Google Scholar 

  • —. 1982b. Toxicity of aluminum to seedlings grown in nutrient solution. J. Soil Sci. Soc. Amer.46(5): 993–997.

    CAS  Google Scholar 

  • Peneva, N. &D. Stoyanov. 1982. Effect of zinc, copper and aluminum on soyabean as related to the levels of nitrogen, phosphorus and potassium. I. Effect of phosphate levels. Pochvozn. Agrokhim.17(5): 31–40.

    CAS  Google Scholar 

  • Peterson, P. J. &C. A. Girling. 1981. Aluminum. Pages 214–217in N. W. Lepp (ed.), Effect of heavy metal pollution on plants. Vol. 1. Applied Science Publishers, U.K.

    Google Scholar 

  • Pettersson, A., L. Haellbom &B. Bergman. 1985. Physiological and structural responses of the cyanobacteriumAnabaena cylindrica to aluminum. Physiol. Pl.63(2): 153–158.

    CAS  Google Scholar 

  • Possingham, J. V. 1956. The effect of mineral nutrition on the content of free amino acids and amides in tomato plants. Austral. J. Biol. Sci.9: 539–551.

    CAS  Google Scholar 

  • Rasmussen, H. P. 1968. Entry and distribution of aluminium inZea mays: Electron microprobe x-ray analysis. Planta81: 28–37.

    CAS  Google Scholar 

  • Raven, J. A. &P. H. Rubery. 1982. Co-ordination of development: Hormone receptors, hormone action and hormone transport.In H. Smith & D. Crierson (eds.), The molecular biology of plant development. Bot. Monogr.18: 28–48. Blackwell, Oxford.

    Google Scholar 

  • Ray, D. J. &D. L. Robinson. 1984. Effects of aluminum source and level, nutrient solution pH and tissue age on elemental concentrations in rye grass. J. PL Nutr.7(11): 1545–1554.

    CAS  Google Scholar 

  • Rees, W. J. &G. M. Sidrak. 1961. Interrelationships of aluminum and manganese toward plants. Pl. Soil14: 101–117.

    CAS  Google Scholar 

  • Reid, D. A. 1979. Genetic control of reaction to aluminum in winter barley. Pages 409–413in R. A. Nilan (ed.), Barley genetics II. Washington State University Press, Pullman.

    Google Scholar 

  • Rhue, R. D. 1976. The time concentration interaction of Al toxicity in wheat root meristems. Ph.D. Thesis. Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • —. 1979. Differential aluminum tolerance in crop plants. Pages 61–80in H. Mussell & R. C. Staples (eds.), Stress physiology in crop plants. John Wiley & Sons, New York.

    Google Scholar 

  • — &C. O. Grogan. 1977. Screening corn for Al tolerance using different Ca and Mg concentration. Agron. J.69: 755–760.

    CAS  Google Scholar 

  • Rodrigues, T. J. D. 1979. Crescimento de plantas a respiração de raizes deStylosanthes na presença de aluminio em Solução nutritiva. M.S. Thesis. UFV, Viçosa, MG, Brasil.

    Google Scholar 

  • Rorison, I. H. 1960. The calcicole-calcifuge problem II. The effects of mineral nutrition on seedling growth in solution culture. J. Ecol.48: 679–688.

    Google Scholar 

  • —. 1965. The effect of aluminum on the uptake and incorporation of phosphate by excised sainfoin roots. New Phytol.64: 23–26.

    CAS  Google Scholar 

  • Sampson, J., D. T. Clarkson &D. D. Davies. 1965. DNA synthesis in aluminum treated roots of barley. Science148: 1476–1477.

    PubMed  CAS  Google Scholar 

  • Saneoka, H., N. Kanda &S. Ogata. 1986. Differential tolerance among tropical forage crops for problem soil conditions. I. Effect of low pH and aluminum in culture medium on the growth and nutrient uptake of tropical forage crops. Nippon Sochi Gakkaishi32(3): 251–260.

    CAS  Google Scholar 

  • Sarkunan, V. &C. C. Biddappa. 1982. Effect of aluminum on the growth yield and chemical composition of rice. Oryza19(3-4): 188–190.

    CAS  Google Scholar 

  • —,— &S. K. Nayak. 1984. Physiology of Al toxicity in rice. Curr. Sci.53(15): 822–824.

    CAS  Google Scholar 

  • Sartain, J. B. 1974. Differential effects of aluminum on top and root growth, nutrient accumulation and nodulation of several soybean varieties. Ph.D. Dissertation. North Carolina State University, Raleigh.

    Google Scholar 

  • Scherbatskoy, T. & M. Bliss. 1983. Occurrence of acidic rain and cloud water in high elevation ecosystems in the Green Mountains of Vermont. Proc. Air Pollut. Control Assoc. Conf. Hartford, Connecticut.

  • — &R. M. Klein. 1983. Response of spruce and birch foliage to leaching by acidic mists. J. Environ. Qual.12(2): 189–195.

    CAS  Google Scholar 

  • Schmandke, H., G. Muschiolik, M. Schultz, G. Schmidt &H. D. Quade. 1979. The effect of aluminum ions on chemical and functional properties of spun protein fibres. Nahrun23: 229–236.

    CAS  Google Scholar 

  • Schweiger, R. G. 1966. Metal chelates of pectate and comparison with alginate. Kolloid Z. 208:28–31.

    CAS  Google Scholar 

  • Sharma, A. &G. Talukder. 1987. Effects of metals on chromosomes of higher organisms. Environ. Mutagenesis9(2): 191–226.

    CAS  Google Scholar 

  • Siegel, N., R. T. Coughlin &A. Haug. 1983. A thermodynamic and electron paramagnetic resonance study of structural changes in calmodulin induced by aluminum binding. Biochem. Biophys. Res. Commun.115: 512–517.

    PubMed  CAS  Google Scholar 

  • — &A. Haug. 1983a. Aluminum interaction with calmodulin: Evidence for altered structure and function from optical and enzymatic studies. Biochim. Biophys. Acta744: 35–45.

    Google Scholar 

  • ——. 1983b. Calmodulin-dependent formation of membrane potential in barley root plasma membrane vesicles: A biochemical model of aluminum toxicity in plants. Physiol. Pl.59: 285–291.

    CAS  Google Scholar 

  • Silva, A. R. 1976. Application of the plant genetic approach to wheat culture in Brazil. Pages 223–231in M. J. Wright & S. A. Ferrari (eds.), Plant adaptation to mineral stress in problem soils. Cornell University Agric. Exp. Sta. Spec. Pub., Ithaca, New York.

    Google Scholar 

  • Sivasubramaniam, S. &O. Talibudeen. 1971. Effect of aluminum on growth of tea (Camellia sinensis) and its uptake of potassium and phosphorus. J. Sci. Food Agric.22: 325–329.

    CAS  Google Scholar 

  • ——. 1972. Effects of aluminum on the growth of tea (Camellia sinensis) and its uptake of potassium and phosphorus. Tea43: 4–13.

    Google Scholar 

  • Smith, W. H. 1981. Air pollution and forests: Interactions between air contaminants and forest ecosystems. Springer-Verlag, New York. Pages 333–334.

    Google Scholar 

  • —. 1984. Ecosystems pathology: A new perspective for phytopathology. Forest Ecol. Managern.9: 193–219.

    CAS  Google Scholar 

  • —. 1985. Evidence for effects of air pollution on the northern forest.In Air pollutants’ effects on forest ecosystems. Acid Rain Foundation, St. Paul, Minnesota.

    Google Scholar 

  • Steiner, K. C., D. H. McCormick &D. S. Canavera. 1980. Differential response of paper birch (Betula papyrifera) provenances to aluminium in solution cultures. Canad. J. Forest Res.10: 25–29.

    CAS  Google Scholar 

  • —,J. R. Barbour &L. H. McCormick. 1984. Response ofPopulus hybrids to aluminum toxicity. Forest Sci.30: 404–410.

    Google Scholar 

  • Sung, M. K. &B. K. Kwon. 1980. Korean J. Bot.23: 17. Cited in Sarkunan et al., 1984.

    CAS  Google Scholar 

  • Tanokura, M. &K. Yamada. 1983. A calorimetric study of Ca2+ and Mg2+ binding by calmodulin. J. Biochem.94: 607–609.

    PubMed  CAS  Google Scholar 

  • Thaworuwong, N. &A. Van Diest. 1974. Influences of high acidity and Al on the growth of lowland rice. Pl. Soil41: 191–195.

    Google Scholar 

  • Thornton, F. C., M. Schaedle &D. J. Raynal. 1986a. Effect of aluminum on the growth of sugar maple in solution culture. Canad. J. Forest Res.16: 892–896.

    CAS  Google Scholar 

  • —,——. 1986b. Effect of aluminum on growth, development, and nutrient composition of honeylocust (Gleditsia triacanthos L.) seedlings. Tree Physiol.2: 307–316.

    PubMed  CAS  Google Scholar 

  • —,—,—, &C. Zipperer. 1986c. Effects of aluminum on honeylocust (Gleditsia triacanthos L.) seedlings in solution culture. J. Exp. Bot.37(179): 775–785.

    CAS  Google Scholar 

  • Tingey, D. T., S. Raba, J. Wagner &K. D. Rodecap. 1982. Vermiculite: A source of metals forArabidopsis thaliana. J. Amer. Soc. Hort. Sci.107: 465–468.

    CAS  Google Scholar 

  • Trapp, G. 1980. Studies of aluminum interaction with enzymes and proteins—The inhibition of hexokinase. Neurotoxicology1: 89–100.

    CAS  Google Scholar 

  • Ulmer, S. E. 1979. Aluminum toxicity and root DNA synthesis in wheat. Ph.D. Dissertation. Iowa State University, Ames.

    Google Scholar 

  • Ulrich, B., R. Mayor &P. K. Khanna. 1980. Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Sci.130: 193–199.

    CAS  Google Scholar 

  • — et al. 1981. Chemical changes due to acid precipitation in soil. Pages 555–564in L. Fazzolare & W. H. Smith (eds.), Beyond the energy crisis. Pergamon Press, New York.

    Google Scholar 

  • Van Haecht, J. L., M. Bolpombo &P. G. Rouxhet. 1985. Immobilization ofSaccharomyces cerevisiae by adhesion: Treatment of the cells by aluminum ions. Biotechnol. Bioeng.27(3): 217–224.

    Google Scholar 

  • Van Praag, H. J., F. Weissen, S. Souguez-Remy &G. Carletti. 1985. Aluminum effects on spruce and bearch seedlings. Statistical analysis of sand culture experiments. Pl. Soil83(3): 339–356.

    Google Scholar 

  • Veltrup, W. 1983. Thein vivo andin vitro effects of calcium2+ ion and aluminum3+ ion upon ATPases from barley roots. J. PL Nutr.6(5): 349–361.

    CAS  Google Scholar 

  • Videl, R. D. &T. C. Broyer. 1962. Effect of high levels of magnesium on the Al uptake and growth of maize in nutrient solution. Anales Edafol. Agrobiol.21: 13–30.

    Google Scholar 

  • Vierstra, R. &A. Haug. 1978. The effect of Al3+ on the physical properties of membrane lipids inThermoplasma acidophilium. Biochem. Biophys. Res. Commun.84: 138–143.

    PubMed  CAS  Google Scholar 

  • Vogelmann, H. W., G. J. Badger, M. Bliss &R. M. Klein. 1985. Forest decline on Camels Hump, Vermont (USA). Bull. Torrey Bot. Club112(3): 274–287.

    Google Scholar 

  • Wagatsuma, T. 1983a. Effect of non-metabolic conditions on the uptake of aluminum by plant roots. Soil Sci. Pl. Nutr.29(3): 323–333.

    CAS  Google Scholar 

  • —. 1983b. Characterization of absorption sites for aluminum in the roots. Soil Sci. Pl. Nutr.29(4): 499–515.

    CAS  Google Scholar 

  • —. 1984. Characteristics of upward translocation of aluminum in plants. Soil Sci. Pl. Nutr.30(3): 345–358.

    CAS  Google Scholar 

  • —,T. Kyuuda &A. Sarkuraba. 1987a. Aluminum accumulation characteristics of aluminum-tolerant plants. Yamagata Daigaku Kiyo, Nogaku,10(2): 355–359.

    CAS  Google Scholar 

  • —,K. Minoru &Y. Hayasaka. 1987b. Destruction process of plant root cells by aluminum. Soil Sci. Pl. Nutr.33(2): 161–175.

    CAS  Google Scholar 

  • — &K. Yamasaku. 1985. Relationship between differential aluminum tolerance and plant-induced pH change of medium among barley cultivars. Soil Sci. Pl. Nutr.31(4): 521–535.

    CAS  Google Scholar 

  • Wallace, S. U. &I. C. Anderson. 1984. Al toxicity and DNA synthesis in wheat roots. Agron. J.76(1): 5–8.

    CAS  Google Scholar 

  • Wallihan, E. F. 1948. The influence of aluminum on the phosphorus nutrition of plants. Amer. J. Bot.35: 106–112.

    CAS  Google Scholar 

  • Wavare, R. A., B. Subbalakshmi &P. Mohanty. 1983. Effect of Al on electron transport catalyzed by photosystem I and photosystem II of photosynthesis in cyanobacterium,Synechococcus cedorum spheroplasts andBeta vulgaris chloroplasts. Indian J. Biochem. Biophys.20(5): 301–303.

    PubMed  CAS  Google Scholar 

  • Wojciechowska, B. &H. Kocik. 1983. Influence of aluminum chloride and sulphate on the root meristem ofVicia faba L. Acta Soc. Bot. Poloniae52(3-4): 185–195.

    CAS  Google Scholar 

  • Woolhouse, H. W. 1983. Toxicity and tolerance in the response of plants to metals. Encycl. Pl. Physiol. N.S.12C: 245–300.

    CAS  Google Scholar 

  • Wright, K. E. 1943. Internal precipitation of phosphorus in relation to aluminum toxicity. Pl. Physiol.18: 708–712.

    CAS  Google Scholar 

  • — &B. A. Donahue. 1953. Aluminum toxicity studies with radioactive phosphorus. Pl. Physiol.28: 674–680.

    CAS  Google Scholar 

  • Wright, K. &D. H. Northcote. 1974. The relationship of root cap slimes to pectins. Biochem. J.139: 525–534.

    PubMed  CAS  Google Scholar 

  • Wright, R. J. &S. F. Wright. 1987. Effects of aluminum and calcium on the growth of subterranean clover in Appalachian soils. Soil Sci.143(5): 341–348.

    CAS  Google Scholar 

  • Yandow, T. S. &R. M. Klein. 1986. Nitrate reductase of primary roots of red spruce seedlings: Effects of acidity and metal ions. Pl. Physiol.81(3): 723–725.

    CAS  Google Scholar 

  • Zhao, X-J., E. Sucoff &E. J. Stadelmann. 1987. Al3+ and Ca3+ alteration of membrane permeability ofQuercus rubra root cortex cells. Pl. Physiol.83: 159–162.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, A.K., Sharma, A. & Talukder, G. Some aspects of aluminum toxicity in plants. Bot. Rev 54, 145–178 (1988). https://doi.org/10.1007/BF02858527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858527

Keywords

Navigation