Skip to main content
Log in

Biochemical, physiological, and structural effects of excess copper in plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Heavy metal pollution is one of the most troublesome environmental problems faced by mankind nowadays. Copper, in particular, poses serious problems due to its widespread industrial and agricultural use.

Unlike other heavy metals, such as cadmium, lead, and mercury, copper is not readily bioaccumulated and thus its toxicity to man and other mammals is relatively low. On the contrary, plants in general are very sensitive to Cu toxicity, displaying metabolic disturbances and growth inhibition at Cu contents in the tissues only slightly higher than the normal levels.

The reduced mobility of Cu in soil and sediments, due to its strong binding to organic and inorganic colloids, constitutes, in a way, a barrier to Cu toxicity in land plants. In aqueous media, however, plants are directly exposed to the harmful effects of Cu and, thus, algae and some species of aquatic higher plants are more easily subjected to Cu toxicity.

Excess Cu inhibits a large number of enzymes and interferes with several aspects of plant biochemistry, including photosynthesis, pigment synthesis, and membrane integrity. Perhaps its most important effect is associated with the blocking of photosynthetic electron transport, leading to the production of radicals which start peroxidative chain reactions involving membrane lipids.

Copper effects on plant physiology are wide ranging, including interference with fatty acid and protein metabolism and inhibition of respiration and nitrogen fixation processes. At the whole plant level Cu is an effective inhibitor of vegetative growth and induces general symptoms of senescence.

The high toxicity of Cu to plants has led to the evolution of several strategies of defense. Among the most important ones is the production of Cu-complexing compounds. Although the nature, structure, and function of these compounds is still controversial, they can be divided into two main groups: metallothionein-like compounds and phytochelatins. The latter appears to constitute the most widespread response of plants to stresses provoked by metals, including Cu.

Résumé

La pollution par métaux lourds c’est un des plus sérieux problèmes environmentalles de l’actualité. Le cuivre pose des problèmes très particuliers, en conséquence de sa vaste utilisation dans l’industrie et dans l’agriculture.

Au contraire d’autrex métaux, comme le cadmium, le plomb et le mércure, le cuivre n’est pas facilement accumulé par les organismes, et sa toxicité pour l’homme et pour les autres mammifères est relativement réduite. Les plantes sont, généralement, plus sensibles à la toxicité du Cu, par rapport aux animaux, et elles presentent des perturbations du métabolisme et inhibition du développement a partir de niveaux de Cu dans les tissues légèrement supérieurs aux normaux.

La faible mobilité du Cu dans le sol et dans les sediments, en conséquence des fortes liaisons qu’il établit avec les coloïdes organiques et inorganiques du sol, constitue, dans une certaine mesure, une barrière contre la toxicité du Cu, au moins dans les plantes terrestres. Dans le milieu aquatique les plantes sont directement exposées aux effets nuisibles du Cu, donc les algues et les plantes aquatiques en général sont très sensibles à ce metal.

L’excès de Cu inhibe un grand nombre d’enzymes et interfère avec plusieurs aspects de la biochimie végétale, nommément avec la photosynthèse, la synthèse de pigments et l’integrité des membranes biologiques. Le plus important de ces effets c’est peutêtre le blocage du transport photosynthétique d’électrons, conduisant à la production de radicaux qui constituent le premier pas d’une chaîne de réactions peroxydatives des lipides des membranes.

Le Cu a une vaste gamme d’éffets sur la physiologie végétale, nommément l’interference avec le métabolisme des acides gras et des protéines et l’inhibition de la respiration et des réactions de fixation d’azote. En considérant la plante comme un tout, le Cu est un efficace inhibiteur du développement et induit des symptomes de sénescence.

La considérable toxicité du Cu pour les plantes les a emmené à l’évolution de plusieurs stratégies de défense. Une des plus importantes c’est la production de substances qui compléxent le Cu en excès. La nature, structure et fonction de ces substances sont object de controverse, mais deux groupes ont été identifiés: les substances de la famille des métallothioneines et les phytochelatines. Apparement, les dernières sont produites par plusieurs espèces de plantes comme réponse à l’excès de métaux (nommément Cu) dans l’environement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Arnon, D. I. &P. R. Stout. 1939. The essentiality of certain elements in minute quantity for plants with special reference to copper. Pl. Physiol.14: 371–375.

    CAS  Google Scholar 

  • Asada, K., S. Kanematsu &K. Uchida. 1977. Superoxide dismutases in photosynthetic organisms. Arch. Biochem. Biophys.179: 243–256.

    PubMed  CAS  Google Scholar 

  • Baccini, P. 1985. Metal transport and metal/biota interactions in lakes. Environ. Technol. Letters6: 327–334.

    CAS  Google Scholar 

  • Baker, A. J., R. R. Brooks, A. J. Pease &F. Malaisse. 1983. Studies on copper and cobalt tolerance in three closely related taxa within the genusSilene L. (Caryophyllaceae) from Zaïre. Pl. & Soil73: 377–385.

    CAS  Google Scholar 

  • Barua, B. &S. Jana. 1986. Effects of heavy metals on dark induced changes in Hill reaction activity, chlorophyll and protein contents, dry matter and tissue permeability in detachedSpinacia oleracea L. leaves. Photosynthetica20: 74–76.

    CAS  Google Scholar 

  • Baszynski, T., M. Król, Z. Krupa, M. Rnszkowska, U. Wojcieska &D. Wolinska. 1982. Photosynthetic apparatus of spinach exposed to excess copper. Z. Pflanzenphysiol.108: 385–395.

    CAS  Google Scholar 

  • Baylock, B. G., F. P. Frank &J. F. McCarthy. 1985. Comparative toxicity of copper and acridine to fish,Daphnia, and algae. Environ. Toxicol. Chem.4: 63–71.

    Google Scholar 

  • Beckett, R. P. &D. H. Brown. 1983. Natural and experimentally-induced zinc and copper resistance in the lichen genusPeltigera. Ann. Bot.52: 43–50.

    CAS  Google Scholar 

  • Berrow, M. L., J. C. Burridge &J. W. Leith. 1953. Soil drainage conditions and related plant trace element contents. J. Sci. Food Agric. 34: 53–54.

    Google Scholar 

  • Berry, C. R. 1985. Growth and heavy metal accumulation in pine seedlings grown with sewage sludge. J. Environ. Qual.14: 415–419.

    CAS  Google Scholar 

  • Berthet, B., C. Metayer, J. C. Amiard &C. Amiard-Triqnet. 1984. Étude de la forme physique et de la biodisponibilité du cuivre dans des systèmes culturaux expérimentaux; application à l’utilisation agricole de boues de station d’épuration. Water Air Soil Poll.23: 293–307.

    CAS  Google Scholar 

  • Bjerre, G. K. &H. H. Schierup. 1985a. Influence of waterlogging on availability and uptake of heavy metals by oat grown in different soils. Pl. & Soil88: 45–56.

    CAS  Google Scholar 

  • ——. 1985b. Uptake of six heavy metals by oat as influenced by soil type and additions of cadmium, lead, zinc and copper. Pl. & Soil88: 57–69.

    CAS  Google Scholar 

  • Bradley, R., A. J. Burt &D. J. Read. 1981. Mycorrhizal infection and resistance to heavy metal toxicity inCalluna vulgaris. Nature292: 335–337.

    CAS  Google Scholar 

  • Brix, H., J. E. Lyngby &H. H. Schierup. 1983. Eelgrass (Zostera marina L.) as an indicator organism of trace metals in the Limfjord, Denmark. Marine Environ. Res.8: 165–181.

    CAS  Google Scholar 

  • Brooks, R. R. &H. M. Crooks. 1980. Studies on uptake of heavy metals by the Scandinavian “kisplanten”Lychnis alpina andSilene dioica. Pl. & Soil54: 491–496.

    CAS  Google Scholar 

  • Brown, D. H. &R. P. Beckett. 1983. Differential sensitivity of lichens to heavy metals. Ann. Bot.52:51–57.

    CAS  Google Scholar 

  • Bryan, G. W. 1983. Brown seaweed,Fucus vesiculosus, and the gastropod,Littorina littoralis, as indicators of trace metal availability in estuaries. Sci. Total Environ.28: 91–104.

    CAS  Google Scholar 

  • Burton, K. W., E. Morgan &A. Roig. 1983. The influence of heavy metals upon the growth of sitka-spruce in south Wales forests. I. Upper critical and foliar concentrations. Pl. & Soil73: 327–336.

    CAS  Google Scholar 

  • -,- & -. The influence of heavy metals upon the growth of sitka-spruce in south Wales forests. II. Greenhouse experiments. Pl. & Soil 68: 271–282.

  • Campbell, P. G., A. Tessier, M. Bisson &R. Bougie. 1985. Accumulation of copper and zinc in the yellow water lily,Nuphar variegatum: Relationships to metal partitioning in the adjacent lake sediments. Canad. J. Fish Aquat. Sci.42: 23–32.

    CAS  Google Scholar 

  • Canterford, G. S. 1980. Formation and regeneration of abnormal cells of the marine diatomDitylum brightwellii (West) Grunow. J. Mar. Biol. Assoc. U.K.69: 243–253.

    Google Scholar 

  • Casterline, J. L. &N. M. Barnett. 1982. Cadmium-binding components in soybean plants. Pl. Physiol.69: 1004–1007.

    CAS  Google Scholar 

  • Chaney, W. R. &R. C. Strickland. 1984. Relative toxicity of heavy metals to red pine pollen germination and germ tube elongation. J. Environ. Qual.13: 391–394.

    CAS  Google Scholar 

  • Clarkson, D. T. &J. B. Hanson. 1980. The mineral nutrition of higher plants. Annual Rev. Pl. Physiol.31: 239–298.

    CAS  Google Scholar 

  • Cox, R. M. &T. C. Hutchinson. 1980. The response of root acid phosphatase activity to heavy metal stress in tolerant and non-tolerant clones of two grass species. New Phytol.86: 359–364.

    CAS  Google Scholar 

  • —. 1980b. Multiple metal tolerances in the grassDeschampsia cespitosa (L.) Beauv. from the Sudbury smelting area. New Phytol.84: 631–647.

    CAS  Google Scholar 

  • Daniel, G. F. &A. H. Chamberlain. 1981. Copper immobilization in fouling diatoms. Bot. Mar.24: 229–243.

    CAS  Google Scholar 

  • De Filippis, L. F. 1979. AThe effect of heavy metal compounds on the permeability ofChlorella cells. Z. Pflanzenphysiol.92: 39–49.

    Google Scholar 

  • Dhillon, K. S., B. A. Yagodeen &A. C. Pleshkov. 1983. Micronutrients and nitrogen metabolism. I. Effects of different levels of micronutrients on nitrogen constituents in maize plants. Pl. & Soil73: 355–363.

    CAS  Google Scholar 

  • Dijkshoorn, W., J. E. Lampe &L. W. Van Broekhoven. 1981. Influence of soil pH on heavy metals in ryegrass from sewage sludge amended soil. Pl. & Soil61: 277–284.

    CAS  Google Scholar 

  • Djingova, R., I. Kuleff, I. Penev &B. Sansoni. 1986. Bromine, copper, manganese and lead content of leaves ofTaraxacum officinale (dandelion). Sci. Total Environ.50: 197–208.

    Google Scholar 

  • Drifmeyer, J. E. &B. Reed. 1981. Geographic variability in trace element levels inSpartina alterniflora. Estuarine Coastal Shelf Sci.13: 709–716.

    CAS  Google Scholar 

  • —,G. W. Thayer, F. A. Cross &J. C. Zieman. 1980. Cycling of Mn, Fe, Cu and Zn by eelgrass,Zostera marina L. Amer. J. Bot.67: 1075–1088.

    Google Scholar 

  • El-Nennah, M., T. El-Kobbia, A. Shehata &I. El-Gamal. 1982. Effect of irrigation [of] loamy sand soil by sewage effluents on its content of some nutrients and heavy metals. Pl. & Soil65: 289–292.

    CAS  Google Scholar 

  • Fernandes, J. C. &F. Henriques. 1990. Heavy metal contents of paddy fields of Alcácer do Sal, Portugal. Sci. Total Environ.90: 89–97.

    PubMed  CAS  Google Scholar 

  • Folkeson, L. &E. Andersson-Bringmark. 1988. Impoverishment of vegetation in a coniferous forest polluted by copper and zinc. Canad. J. Bot.66: 417–428.

    CAS  Google Scholar 

  • Folsom, B. L., Jr.,C. R. Lee &D. J. Bates. 1981. Influence of disposal environment on availability and plant uptake of heavy metals in dredged material. Technical Report EL-81-12, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi. 158 pages.

    Google Scholar 

  • Forstner, U. &G. T. Wittmann. 1981. Metal pollution in the aquatic environment, 2nd ed. Springer-Verlag, Berlin. 486 pages.

    Google Scholar 

  • Foy, C. D., R. L. Chaney &M. C. White. 1978. The physiology of metal toxicity in plants. Annual Rev. Pl. Physiol.29: 511–566.

    CAS  Google Scholar 

  • Freedman, B. &T. C. Hutchinson. 1980. Effects of smelter pollutants on forest leaf litter decomposition near a nickel-copper smelter at Sudbury, Ontario. Canad. J. Bot.58: 1722–1736.

    CAS  Google Scholar 

  • Gallagher, J. L. &H. V. Kibby. 1980. Marsh plants as vectors in trace metal transport in Oregon tidal marshes. Amer. J. Bot.67: 1069–1074.

    Google Scholar 

  • Gekeler, W., E. Grill, E. L. Winnacker &M. H. Zenk. 1988. Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch. Microbiol.150: 197–202.

    CAS  Google Scholar 

  • Gildon, A. 1983. The relationship of vesicular-arbuscular mycorrhizal infection and copper nutrition. J. Sci. Food Agric.34: 56–57.

    Google Scholar 

  • Gonzalez, S. &E. Bergqvist. 1986. Evidencias de contaminación con metales pesados en un sector del secano costero de la V region. Agric. Técn. (Chile)46: 299–306.

    Google Scholar 

  • Goyal, R. &M. R. Seaward. 1981. Metal uptake in terricolous lichens. I. Metal localization within the thallus. New Phytol.89: 631–645.

    CAS  Google Scholar 

  • ——. 1982a. Metal uptake in terricolous lichens. II. Effects on the morphology ofPeltigera canina andPeltigera rufescens. New Phytol.90: 73–84.

    CAS  Google Scholar 

  • ——. 1982b. Metal uptake in terricolous lichens. III. Translocation in the thallus ofPeltigera canina. New Phytol.90: 85–98.

    CAS  Google Scholar 

  • Grill, E., W. Gekeler, E. L. Winnacker &M. H. Zenk. 1986a. Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales. FEBS Letters 205: 47–50.

    CAS  Google Scholar 

  • —,E. L. Winnacker &H. M. Zenk. 1985a. Phytochelatins: The principal heavy metal complexing peptides of higher plants. Science230: 674–676.

    PubMed  CAS  Google Scholar 

  • —,——. 1986b. Synthesis of seven different homologous phytochelatins in metal-exposedSchizosaccharomyces pombe cells. FEBS Letters197: 115–120.

    CAS  Google Scholar 

  • —,——. 1987. Phytochelatins, a class of heavy metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc. Nat. Acad. Sci. U.S.A.84: 439–443.

    CAS  Google Scholar 

  • —,——. 1988. Occurrence of heavy metal binding phytochelatins in plants growing in a mining refuse area. Experientia44: 539–540.

    CAS  Google Scholar 

  • —,M. H. Zenk &E. L. Winnacker. 1985b. Induction of heavy metal-sequestering phytochelatin by cadmium in cell cultures ofRauvolfia serpentina. Naturwissenschaften72: 432–433.

    CAS  Google Scholar 

  • Gupta, B. &S. Mukherji. 1977. Effects of toxic concentrations of copper on growth and metabolism of rice seedlings. Z. Pflanzenphysiol.82: 95–106.

    Google Scholar 

  • Gupta, S. L. 1986. Copper uptake and inhibition of growth, photosynthetic pigments and macromolecules in the cyanobacteriumAnacystis nidulans. Photosynthetica20: 447–453.

    CAS  Google Scholar 

  • Gupta, U. C. 1979. Copper in agricultural crops. Pages 255–288in J. O. Nriagu (ed.), Copper in the environment. Part I: Ecological cycling. John Wiley & Sons, New York.

    Google Scholar 

  • Hall, A. 1980. Heavy metal co-tolerance in a copper-tolerant population of the marine fouling alga,Ectocarpus siliculosus (Dillw.) Lyngbie. New Phytol.58: 73–78.

    Google Scholar 

  • Hardiman, R. T., A. Banin &B. Jacoby. 1984a. The effect of soil type and degree of metal contamination upon uptake of Cd, Pb and Cu in bush beans (Phaseolus vulgaris L.). Pl. & Soil81: 3–15.

    CAS  Google Scholar 

  • —,B. Jacoby &A. Banin. 1984b. Factors affecting the distribution of cadmium, copper and lead and their effect upon zinc content in bush beans (Phaseolus vulgaris L.). Pl. & Soil81: 17–27.

    CAS  Google Scholar 

  • Heale, E. L. &D. P. Ormrod. 1983. Effects of nickel and copper on seed germination and growth and development of seedlings ofAcer ginnala, Betula papyrifera, Picea abies andPinus banksiana. Reclam. Reveget. Res.2: 41–54.

    CAS  Google Scholar 

  • Henriques, F. 1984. Effects of copper and iron deficiency on sugar beet chloroplasts ultrastructure. Actas del Congreso Iberico de Microscopia Electronica. Page 75. Ronda, España.

  • —. 1989. Effects of copper deficiency on the photosynthetic apparatus of sugar beet (Beta vulgaris L.). J. Pl. Physiol.135: 453–458.

    CAS  Google Scholar 

  • Ho, Y. B. 1984. Zn and Cu concentrations inAscophyllum nodosum andFucus vesiculosus (Phaeophyta, Fucales) after transplantation to an estuary contaminated with mine wastes. Pages 329–337in M. H. Wong, P. J. Say & B. A. Whitton (eds.), Ecological aspects of solid waste disposal. Chinese University of Hong Kong, Shatin, Hong Kong.

    Google Scholar 

  • Hogan, G. D. &W. E. Rauser. 1981. Role of copper binding, absorption and translocation in copper tolerance ofAgrostis gigantea Roth. J. Exp. Bot.32: 27–36.

    CAS  Google Scholar 

  • Howeler, R. H. 1983. Análisis del tejido vegetal en el diagnóstico de problemas nutricionales algunos cultivos tropicales. Centro Internacional de Agricultura Tropical. Cali, Colombia. 28 pages.

  • Humphreys, M. O. &M. K. Nicholls. 1984. Relationships between tolerance to heavy metals inAgrostis capillaris L. (A. tenuis Sibth). New Phytol.98: 177–190.

    Google Scholar 

  • Iglesias, A. A. &C. S. Andreo. 1984. Inhibition ofZea mays phosphoenolpyruvate carboxylase by copper and cadmium ions. Photosynthetica18: 134–138.

    CAS  Google Scholar 

  • Iu, K. L., I. D. Pulford &H. J. Duncan. 1981. Influence of waterlogging and lime or organic matter additions on the distribution of trace metals in an acid soil. II. Zinc and copper. Pl. & Soil 59: 327–333.

    CAS  Google Scholar 

  • Jackson, P. J., K. Barton, C. M. Naranjo, L. O. Sillerud, J. Trewhella, K. Watt, K. Robinson & N. J. Robinson. 1985. Structural characterization of metal binding complexes from cadmium resistantDatura innoxia cells. First International Congress of Plant Molecular Biology, Oct. 27–Nov. 2, 1985. Savannah, Georgia.

  • —,C. J. Unkefer, J. A. Doolen, K. Watt &N. J. Robinson. 1987. Poly(γ-glutamylcysteinyl) glycine: Its role in cadmium resistance in plant cells. Proc. Nat. Acad. Sci. U.S.A.84: 6619–6623.

    CAS  Google Scholar 

  • Jagtap, T. G. 1983. Metal distribution inHalophila becarii (Aschers.) and surrounding environment along the central west coast of India. Mahasagar-Bull. Nat. Inst. Oceanogr.16: 429–434.

    CAS  Google Scholar 

  • Jana, S. &M. A. Choudhuri. 1982. Senescence in submerged aquatic angiosperms: Effects of heavy metals. New Phytol.90: 477–484.

    CAS  Google Scholar 

  • Jardim, W. F. &H. W. Pearson. 1984. A study of the copper-complexing compounds released by some species of cyanobacteria. Water Res.18: 985–989.

    CAS  Google Scholar 

  • Jarvis, S. C. &D. C. Whitehead. 1981. The influence of some soil and plant factors on the concentration of copper in perennial ryegrass. Pl. & Soil60: 275–286.

    CAS  Google Scholar 

  • ——. 1983. The absorption, distribution and concentration of copper in white clover grown on a range of soils. Pl. & Soil75: 427–434.

    CAS  Google Scholar 

  • Kashyap, A. K. &S. L. Gupta. 1982. Effect of lethal copper concentrations on nitrate uptake, reduction and nitrite release inAnacystis nidulans. Z. Pflanzenphysiol.107: 289–294.

    CAS  Google Scholar 

  • Kiekens, L., A. Cottenie &G. Van Landschoot. 1984. Chemical activity and biological effects of sludge-born heavy metals and inorganic metal salts added to soils. Pl. & Soil79: 89–99.

    CAS  Google Scholar 

  • Kuwabara, J. S. 1986. Physico-chemical processes affecting copper, tin and zinc toxicity to algae: A review. Pages 129–143in L. V. Evans and K. D. Hoadland (eds.), Algal biofouling. Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  • — &H. V. Leland. 1986. Adaptation ofSelenastrum capricornutum (Chlorophyceae) to copper. Environ. Toxicol. Chem.5: 197–203.

    CAS  Google Scholar 

  • Larcher, W. 1980. Ecological plant physiology, 2nd ed. Springer-Verlag, Berlin. 303 pp.

    Google Scholar 

  • Lastra, O., A. Chueca, C. González, M. Lachica &J. L. Gorge. 1987. El cobre como nutriente de la planta. Anales Edafol. Agrobiol.46: 1005–1020.

    CAS  Google Scholar 

  • Lepp, N. W. 1979. Cycling of copper in woodland ecosystem. Pages 289–323in J. O. Nriagu (ed.), Copper in the environment. Part I: Ecological cycling. John Wiley & Sons, New York.

    Google Scholar 

  • —,N. M. Dickinson &K. L. Ormand. 1984. Distribution of fungicide-derived copper in soils, litter and vegetation of different aged stands of coffee (Coffea arabica L.) in Kenya. Pl. & Soil77: 263–270.

    CAS  Google Scholar 

  • Lerch, K. 1980. Copper metallothionein, a copper-binding protein fromNeurospora crassa. Nature284: 368–371.

    PubMed  CAS  Google Scholar 

  • Les, A. &R. W. Walker. 1984. Toxicity and binding of copper, zinc, and cadmium by the blue-green alga,Chroococcus paris. Water Air Soil Pollut.23: 129–139.

    CAS  Google Scholar 

  • Lipman, C. B. &G. McKinney. 1931. Proof of the essential nature of copper for higher green plants. Pl. Physiol.6: 539–599.

    Google Scholar 

  • Lolkema, P. C., M. H. Donker, A. J. Schouten &W. H. Ernst. 1984. The possible role of metallothioneins in copper tolerance ofSilene cucubalus. Planta162: 174–179.

    CAS  Google Scholar 

  • Lumsden, B. R. &T. M. Florence. 1983. A new algal assay procedure for the determination of the toxicity of copper species in seawater. Environ. Tech. Letters4: 271–276.

    CAS  Google Scholar 

  • Luoma, S. N., G. W. Bryan &D. J. Langsten. 1982. Scavenging of heavy metals from particulates by brown seaweed. Marine Pollut. Bull.13: 394–396.

    CAS  Google Scholar 

  • Lyngby, J. E. &H. Brix. 1984. The uptake of heavy metals in eelgrassZostera marina and their effect on growth. Ecol. Bull.36: 81–89.

    CAS  Google Scholar 

  • Malaisse, F. &R. R. Brooks. 1982. Colonisation of modified metalliferous environments in Zaïre by copper flowerHaumaniastrum katangense. Pl. & Soil64: 289–293.

    CAS  Google Scholar 

  • Mankovská, B. &Z. Kyselová. 1987. Obsah taxkych kovov v lisajnikochz oblasti Tatranského Parku. Biológia42: 893–901.

    Google Scholar 

  • Marquenie-Van der Werff, M. &W. H. Ernst. 1979. Kinetics of copper and zinc uptake by leaves and roots of an aquatic plant,Elodea nuttallii. Z. Pflanzenphysiol.92: 1–10.

    CAS  Google Scholar 

  • Mattoo, A. K., J. E. Baker &M. Lieberman. 1983. Copper-induced ethylene production bySpirodela oligorrhiza is a consequence of singlet oxygen mediated membrane damage. Pl. Physiol. Suppl.72: 39.

    Google Scholar 

  • —,— &H. E. Moline. 1986. Induction by copper ions of ethylene production inSpirodela oligorrhiza: Evidence for a pathway independent of 1-aminocyclopropane-l-carboxylic acid. J. Pl. Physiol.123: 193–202.

    CAS  Google Scholar 

  • McColl, J. G. 1981. Trace elements in the hydrological cycle of a forest ecosystem. Pl. & Soil62: 337–349.

    CAS  Google Scholar 

  • McNair, M. R. 1981. The uptake of copper by plants ofMimulus guttatus differing in genotype primarily at a single major copper tolerance locus. New Phytol.88: 723–730.

    Google Scholar 

  • Moore, J. W. &S. Ramamoorthy. 1984. Heavy metals in natural waters—Applied monitoring and impact assessment. Springer-Verlag, New York. 268 pp.

    Google Scholar 

  • Mouvet, C. 1984. Accumulation of chromium and copper by the aquatic mossFontinalis antipyretica L. ex Hedw. transplanted in a metal-contaminated river. Environ. Tech. Lett.5: 541–548.

    CAS  Google Scholar 

  • Junda, I. M. &V. Hudnik. 1986. Growth response ofFucus vesiculosus to heavy metals, singly and in dual combinations, as related to accumulation. Bot. Marina29: 401–412.

    Google Scholar 

  • Nriagu, J. O. 1979. The global copper cycle. Pages 1–17in J. O. Nriagu (ed.), Copper in the environment. Part I: Ecological cycling. John Wiley and Sons, New York.

    Google Scholar 

  • Olaofe, O., E. O. Oladeji &O. I. Ayodeji. 1987. Metal contents of some cocoa beans produced in Ondo State, Nigeria. J. Sci. Food Agric.41: 241–244.

    CAS  Google Scholar 

  • Palma, J. M., M. Gómez, J. Yañez &L. A. Del Rio. 1987. Increased levels of peroxisomal active oxygen-related enzymes in copper-tolerant pea plants. Pl. Physiol.85: 570–574.

    CAS  Google Scholar 

  • Peterson, H. G., F. P. Healey &R. Wagemann. 1984. Metal toxicity to algae: A highly pH-dependent phenomenon. Canad. J. Fish Aquatic Sci.41: 974–979.

    CAS  Google Scholar 

  • Rachlin, J. W., T. E. Jensen, M. Baxter &V. Jani. 1982a. Utilization of morphometric analysis in evaluating response ofPlectonema boryanum (Cyanophyceae) to exposure to eight heavy metals. Arch. Environ. Contamin. Toxicol.11: 323–333.

    CAS  Google Scholar 

  • —,— &B. Warkentine. 1982b. The growth response of the green alga (Chlorella saccharophyla) to selected concentrations of the heavy metals Cd, Cu, Pb and Zn. Pages 145–154in D. D. Hemphill (ed.), Trace substances in environmental health, XVI. A symposium. University of Missouri, Columbia.

    Google Scholar 

  • —,——. 1983a. The growth response of the diatomNavicula incerta to selected concentrations of the metals: Cadmium, copper, lead and zinc. Bull. Torrey Bot. Club110: 217–223.

    CAS  Google Scholar 

  • —,B. Warkentine &T. E. Jensen. 1983b. The response of the marine diatomNitzschia closterium to selected concentrations of the divalent cations Cd, Cu, Pb and Zn. Pages 72–81in D. D. Hemphill (ed.), Trace substances in environmental health, XVII. A symposium. University of Missouri, Columbia.

    Google Scholar 

  • Ragsdale, H. L. &A. Thorhaug. 1980. Trace metal cycling in the U.S. coastal zone: A synthesis. Amer. J. Bot.67: 1102–1112.

    CAS  Google Scholar 

  • Ramakrishna, R. S. &S. Palmakumbura. 1987. Varietal variation and correlation of trace metal levels with “catechins” and caffeine in Sri Lanka tea. J. Sci. Food Agric.38: 331–339.

    Google Scholar 

  • Rauser, W. E. 1983. Estimating thiol-rich copper-binding protein in small root samples. Z. Pflanzenphysiol.112: 69–77.

    CAS  Google Scholar 

  • —. 1984a. Isolation and partial purification of cadminum-binding proteins from roots of the grassAgrostis gigantea. Pl. Physiol.74: 1025–1029.

    CAS  Google Scholar 

  • —. 1984b. Partial purification and characterization of copper-binding proteins from roots ofAgrostis gigantea. J. Pl. Physiol.115: 143–152.

    CAS  Google Scholar 

  • — &N. R. Curvetto. 1980. Metallothionein occurs in roots ofAgrostis tolerant to excess copper. Nature287: 563–564.

    CAS  Google Scholar 

  • Reese, R. N. &G. J. Wagner. 1987. Effects of buthionine sulfoximine on Cd-binding peptide levels in suspension-cultured tobacco cells treated with Cd, Zn, or Cu. Pl. Physiol.77: 574–577.

    Google Scholar 

  • Reilly, C. 1972. Amino-acids and amino acid-copper complexes in water-soluble complexes in water-soluble extracts of copper-tolerant and non-tolerantBecium homblei. Z. Pflanzenphysiol.66: 294–296.

    Google Scholar 

  • Robinson, N. J. &P. J. Jackson. 1986. “Metallothionein-like” metal complexes in angiosperms; their structure and function. Physiol. Pl.67: 499–506.

    CAS  Google Scholar 

  • —,K. Barton, C. M. Naranjo, L. O. Sillerud, J. Trewhella, K. Watt &P. J. Jackson. 1987. Characterisation of metal binding peptides from cadmium resistant plant cells. Experientia Suppl.52: 323–327.

    PubMed  CAS  Google Scholar 

  • Salomons, W. &U. Forstner. 1984. Metals in the hydrocycle. Springer-Verlag, Berlin. 349 pp.

    Google Scholar 

  • Sanders, J. R., T. M. Adams &B. T. Christensen. 1986a. Extractability and bioavailability of zinc, cadmium and copper in three Danish soils sampled five years after application of sewage sludge. J. Sci. Food Agric.37: 1155–1164.

    CAS  Google Scholar 

  • —,S. P. McGrath &T. M. Adams. 1986b. Zinc, cadmium and nickel concentrations in ryegrass grown on sewage sludge-contaminated soils of different pH. J. Sci. Food Agric.37: 961–968.

    CAS  Google Scholar 

  • Sandmann, G. &P. Boger. 1980a. Copper deficiency and toxicity inScenedesmus. J. Pflanzenphysiol.98: 53–59.

    CAS  Google Scholar 

  • ——. 1980b. Copper-mediated lipid peroxidation processes in photosynthetic membranes. Pl. Physiol.66: 797–800.

    CAS  Google Scholar 

  • Scarpom, L. &P. Perucci. 1984. Effect of some metals and related metal-organic compounds on ALA-dehydratase activity of corn. Pl. & Soil79: 69–75.

    Google Scholar 

  • Schecher, W. D. &C. T. Driscoll. 1985. Interactions of copper and lead withNostoc muscorum. Water Air Soil Pollut.24: 85–101.

    CAS  Google Scholar 

  • Schrimpf, E. 1984. Air pollution patterns in two cities of Colombia, S.A., according to trace substances content of an epiphyte (Tillandsia recurvata L.). Water Air Soil Pollut.24: 85–101.

    Google Scholar 

  • Shkolnik, M. Y. 1984. Trace elements in plants. Elsevier, Amsterdam. 463 pp.

    Google Scholar 

  • Sicko-Goad, L. 1982. A morphometric analysis of algal response to low dose, short-term heavy metal exposure. Protoplasma110: 75–86.

    CAS  Google Scholar 

  • — &E. F. Stoermer. 1979. A morphometric study of lead and copper effects inDiatoma tenue (Bacillariophyta). J. Phycol.15: 316–331.

    CAS  Google Scholar 

  • Simeoni, L. A., K. A. Barbarick &B. R. Sabey. 1984. Effect of small-scale composting of sewage sludge on heavy metal availability to plants. J. Environ. Qual.13: 264–268.

    Google Scholar 

  • Simmers, J. W., B. L. Folsom, Jr., C. R. Lee & D. J. Bates. 1981. Field survey of heavy metal uptake by naturally occurring saltwater and freshwater marsh plants. Technical Report EL-81-5, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi. 161 pp.

  • Smilde, K. W. 1981. Heavy metal accumulation in crops grown on sewage sludge amended with metal salts. Pl. & Soil62: 3–14.

    CAS  Google Scholar 

  • Smith, K. L., G. W. Bryan &J. L. Harwood. 1985. Changes in endogenous fatty acids and lipid synthesis associated with copper pollution inFucus. J. Exp. Bot.36: 663–669.

    CAS  Google Scholar 

  • —,A. C. Hann &J. L. Harwood. 1986. The subcellular localisation of adsorbed copper andFucus. Physiol. Pl.66: 692–698.

    CAS  Google Scholar 

  • Smith, M. A. 1983. The effect of heavy metal on the cytoplasmic fine structure ofSkeletonema costatum (Bacillariophyta). Protoplasma116: 14–23.

    CAS  Google Scholar 

  • Sommer, A. L. 1931. Copper as an essential for plant growth. Pl. Physiol.6: 339–345.

    CAS  Google Scholar 

  • Soon, Y. K., T. E. Bates &J. R. Moyer. 1980. Land application of chemically treated sewage sludge. III. Effects on soil and plant heavy metal content. J. Environ. Qual.13: 497–504.

    Google Scholar 

  • Stevenson, F. J. 1986. Cycles of soil—Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons. New York. 380 pp.

    Google Scholar 

  • Stiborová, M., M. Doubravová, A. Brezinová &A. Friedrich. 1986a. Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley (Hordeum migare L.). Photosynthetica20: 418–425.

    Google Scholar 

  • —,R. Hrodmádková &S. Leblová. 1986b. Effects of ions of heavy metals on the photosynthetic characteristics of maize (Zea mays L.) Biológia41: 1221–1228.

    Google Scholar 

  • — &S. Leblová. 1985. Heavy metal inactivation of maize (Zea mays L.) phosphoenolpyruvate carboxylase isoenzymes. Photosynthetica19: 500–503.

    Google Scholar 

  • Stokes, P. M. &S. I. Dreier. 1981. Copper requirement of a copper-tolerant isolate ofScenedesmus and the effect of copper depletion on tolerance. Canad. J. Bot.59: 1817–1823.

    CAS  Google Scholar 

  • Stromberg, A. L., D. D. Hemphill &V. V. Volk. 1984. Yield and elemental concentration of sweet corn growth on tannery waste-amended soil. J. Environ. Qual. 13: 162–166.

    Google Scholar 

  • Tanaka, J. &M. Ichikuni. 1982. Monitoring of heavy metals in airborne particles by using bark samples of Japanese cedar collected from the metropolitan region of Japan. Atmospher. Environ.16: 2015–2018.

    CAS  Google Scholar 

  • Tukendorf, A. 1987. Copper binding in roots by cytosol proteins in vitro. J. Pl. Physiol.130: 201–209.

    CAS  Google Scholar 

  • — &T. Baszynski. 1985. Partial purification and characterization of copper-binding protein from roots ofAvena sativa grown on excess copper. J. Pl. Physiol.120: 57–63.

    CAS  Google Scholar 

  • —,A. Lyszcz &T. Baszynski. 1984. Copper binding proteins in spinach tolerant to excess copper. J. Pl. Physiol.115: 351–360.

    CAS  Google Scholar 

  • Tyler, G. 1980. Metals in sporophores of Basidiomycetes. Trans. British Mycol. Soc.74: 41–49.

    CAS  Google Scholar 

  • —. 1982. Accumulation and exclusion of metals inCollybia peronata andAmanita rubescens. Trans. British Mycol. Soc.79: 239–245.

    CAS  Google Scholar 

  • —. 1984. The impact of heavy metal pollution on forests: A case study of Gusum, Sweden. Ambio13: 18–24.

    CAS  Google Scholar 

  • Uribe, E. G. &B. Stark. 1982. Inhibition of photosynthetic energy conversion by cupric ion. Pl. Physiol.69: 1040–1045.

    CAS  Google Scholar 

  • Van den Burg, J. 1983. Copper uptake by some forest tree species from an acid sandy soil. Pl. & Soil.75:213–219.

    Google Scholar 

  • Wallace, A. &W. L. Berry. 1983. Shift in threshold toxicity levels in plants when more than one trace metal contaminates simultaneously. Sci. Total Environ.28: 257–268.

    CAS  Google Scholar 

  • —,E. M. Romney &G. V. Alexander. 1984. Multiple trace element toxicities in plants. J. Pl. Nutr.3: 257–263.

    Google Scholar 

  • —,—,—,S. M. Soufi &P. M. Patel. 1977. Some interactions in plants among cadmium, other heavy metals, and chelating agents. Agron. J.69: 18–19.

    CAS  Google Scholar 

  • Welsh, P. R. &P. Denny. 1979. The translocation of lead and copper in two submerged aquatic angiosperm species. J. Exp. Bot.30: 339–345.

    Google Scholar 

  • White, M. C., R. L. Chaney &A. M. Decker. 1981. Metal complexation in xylem fluid. III. Electrophoretic evidence. Pl. Physiol.67: 311–315.

    CAS  Google Scholar 

  • Wolter, K., U. Rabsch, P. Krischker &A. G. Davies. 1984. Influence of low concentrations of cadmium, copper and zinc on phytoplankton of natural water samples. Marine Ecol.—Progress Series19: 67–173.

    Google Scholar 

  • Wong, M. H. &A. D. Bradshaw. 1982. A comparison of the toxicity of heavy metals, using root elongation of ryegrass,Lolium perenne. New Phytol.91: 255–261.

    CAS  Google Scholar 

  • Woolston, M. E., W. B. Breck &G. W. Van Loon. 1982. A sampling study of the brown seaweedAscophyllum nodosum as a marine monitor for trace metals. Water Res.16: 687–691.

    CAS  Google Scholar 

  • Wu, L. &J. Antonovics. 1978. Zinc and copper tolerance ofAgrostis stolonifera L. in tissue culture. Amer. J. Bot.65: 268–271.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, J.C., Henriques, F.S. Biochemical, physiological, and structural effects of excess copper in plants. Bot. Rev 57, 246–273 (1991). https://doi.org/10.1007/BF02858564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858564

Keywords

Navigation