Skip to main content
Log in

Plant decomposition and soil respiration in terrestrial ecosystems

  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

This review deals with methodological approaches, measured rates, and environmental control of two major interdependent processes regulating the structure and function of terrestrial ecosystems, viz., plant decomposition and soil respiration.

Both these processes have been evaluated through indirect assessments as well as through direct measurements under the field conditions. The techniques used suffer in general from difficulties in creating conditions of natural environment during the process of measurement. Generalizations regarding the magnitude of rates in different ecosystems are difficult because of limited results or non-comparability of results from different methods.

Temperature and moisture and their interactions markedly influence both the processes. The surface feeders and soil animals have a marked influence on the decomposition. Partitioning of soil respiration into components due to live roots, microbes, and soil fauna has eluded a satisfactory solution so far.

Sommaire

Cette revue traite des approches méthodologiques, des vitesses mesurées et du contrôle des environs de deux procédés interdépendants principaux qui règlent la structure et la fonction des écosystèmes terrestes, viz, la décomposition des plantes et de la respiration du sol.

Ces deux procédés ont été évalués par des méthodes indirectes aussi bien que par des mesures directes sous le terrain. Les techniques employées souffrent en géneral des difficultés dans la création des conditions de l’environnement naturel pendant mesure. Des généralisations en ce qui concerne la grandeur des vitesses dans les différents écosystèmes sont difficiles parce que les différentes méthodes ne peuvent pas être comparées que d’une façon limitée ou non-comparable.

La température et l’humidité et leurs interactions ont une très grande influence sur les deux procédés. Les animaux et les plantes qui se nourrissent sur la surface et les animaux dans la terre ont une très grande influence sur la décomposition. La séparation de la respiration du sol en composantes causée par des microbes des racines vivantes et de la faune du sol a echappé à une solution satisfaite jusqu’à présent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alexander, M. 1961. Introduction to soil microbiology. John Wiley and Sons, Inc., New York. 472 pp.

    Google Scholar 

  • Alway, F. J., J. Kittredge, andW. J. Methley. 1933. Composition of the forest floor layers under different forest types of the same soil type. Soil Sci.36: 387–398.

    CAS  Google Scholar 

  • Anderson, J. M. 1973a. The breakdown and decomposition of sweet chestnut (Castanea sativa Mill) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils. I. Breakdown, leaching, and decomposition. Oecologia12: 251–274.

    Google Scholar 

  • Anderson, J. M. 1973b. The breakdown and decomposition of sweet chestnut (Castanea sativa Mill) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils. II. Changes in the carbon, hydrogen, nitrogen and polyphenol content. Oecologia12: 275–288.

    Google Scholar 

  • Anderson, J. M. 1973c. Carbon dioxide evolution from two temperate, deciduous woodland soils. J. Appl. Ecol.10: 361–378.

    Article  Google Scholar 

  • Anderson, I. M. 1975. Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. J. Anim. Ecol.44: 475–495.

    Article  Google Scholar 

  • Anderson, J. P. E., andK. H. Domsch. 1973. Quantification of bacterial and fungal contributions to soil respiration. Arch. Mikrobiol.93: 113–127.

    Article  CAS  Google Scholar 

  • Anderson, J. P. E., andK. H. Domsch. 1974. Use of selective inhibitors in the study of respiratory activities and shifts in bacterial and fungal populations in soil. Ann. Microbiol.24: 189–194.

    CAS  Google Scholar 

  • Anderson, J. P. E., andK. H. Domsch. 1975. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soil. Can. J. Microbiol.21: 314–322.

    PubMed  CAS  Google Scholar 

  • Ashton, D. H. 1975. Studies of litter inEucalyptus regnans forest. Aust. J. Bot.23: 413–433.

    Article  CAS  Google Scholar 

  • Attiwill, P. M. 1968. The loss of elements from decomposing litter. Ecology49: 142–145.

    Article  Google Scholar 

  • Ausmus, B. S. 1973. The use of the ATP assay in terrestrial decomposition studies.In: Modern methods in the study of microbial ecology, ed. by T. Rosswail. Bull. 17, Ecol. Res. Comm., Swed. Nat. Sci. Res. Counc., Stockholm. pp. 223–234.

    Google Scholar 

  • Ayres, K. W., R. G. Button, andE. de Jong. 1972. Soil morphology and soil physical properties. I. Soil aeration. Can. J. Soil Sci.52: 311–321.

    Google Scholar 

  • Ayres, K. W., R. G. Button, andE. de Jong. 1973. Soil morphology and soil properties. II. Mechanical impedance and moisture retention and movement. Can. J. Soil Sci.53: 9–20.

    Google Scholar 

  • Barakov, P. 1910. The carbon dioxide content of soils during different stages of growth of plants. J. Exp. Agron.11: 321–342.

    Google Scholar 

  • Barker, H. A., andT. C. Broyer. 1942. Notes on the influence of microorganisms on growth of squash plants in water culture with particular reference to manganese nutrition. Soil Sci.53: 467–477.

    Article  CAS  Google Scholar 

  • Bartos, D. L., andD. A. Jameson. 1974. A dynamic root model. Am. Midl. Nat.91: 499–504.

    Article  Google Scholar 

  • Bell, M. K. 1974. Decomposition of herbaceous litter.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 37–67.

    Google Scholar 

  • Berry, L. J., andW. E. Norris, Jr. 1949. Studies of onion root respiration. I. Velocity of oxygen consumption in different segments of roots at different temperatures as a function of partial pressure of oxygen. II. The effect of temperature on the apparent diffusion coefficient in different segments of the root tip. Biochim. Biophys. Acta3: 593–614.

    Article  CAS  Google Scholar 

  • Berthet, P. 1963. Mesure de la consommation d’oxygene des Oribatides (Acariens) de la litiere des forets.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 18–31.

    Google Scholar 

  • Bertrand, A. R., andH. Kohnke. 1957. Subsoil conditions and their effects on oxygen supply and the growth of corn roots. Soil Sci. Soc. Am. Proc.21: 135–140.

    Article  CAS  Google Scholar 

  • Birch, H. F. 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil10: 9–31.

    Article  CAS  Google Scholar 

  • Birch, L. C., andM. T. Friend. 1956. Humus decomposition in east Africa soils. Nature178: 500–501.

    Article  CAS  Google Scholar 

  • Bizzell, J. A., andT. L. Lyon. 1918. The effect of certain factors on the carbon dioxide content of soil air. J. Am. Soc. Agron.10: 97–112.

    CAS  Google Scholar 

  • Bleak, A. T. 1970. Disappearance of plant material under a winter snow cover. Ecology51: 915–917.

    Article  Google Scholar 

  • Bocock, K. L. 1963. The digestion and assimilation of food byGlomeris.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 85–91.

    Google Scholar 

  • Bocock, K. L. 1964. Changes in the amounts of dry matter, nitrogen, carbon, and energy in decomposing woodland leaf litter in relation to the activities of the soil fauna. J. Ecol.52: 273–284.

    Article  Google Scholar 

  • Bocock, K. L., andO. J. W. Gilbert. 1957. The disappearance of litter under different woodland conditions. Plant Soil9: 179–185.

    Article  Google Scholar 

  • Bocock, K. L., O. J. W. Gilbert, C. K. Capstick, D. C. Twinn, J. S. Waid, andM. J. Woodman. 1960. Changes in the leaf litter when placed on the surface of soils with contrasting humus types. 1. Losses in dry weight of oak and ash leaf litters. J. Soil Sci.11: 1–9.

    Article  CAS  Google Scholar 

  • Boois, H. M. de 1974. Measurement of seasonal variations in the oxygen uptake of various litter layers of an oak forest. Plant Soil40: 545–555.

    Article  Google Scholar 

  • Bourliere, F., andM. Hadley. 1970. The ecology of tropical savannas. Annu. Rev. Ecol. Syst.1: 125–152.

    Article  Google Scholar 

  • Boussingault, J. B., andB. Levy. 1853. Mémoire sur la composition de l’aire confine dans la terre vegétable. Ann. Chem. Phys.37: 5–50.

    Google Scholar 

  • Boyd, C. E. 1970. Losses of mineral nutrients during decomposition ofTypha latifolia. Arch. Hydrobiol.66: 511–517.

    Google Scholar 

  • Boynton, D., andO. C. Compton. 1944. Normal seasonal changes of oxygen and carbon dioxide percentages in gas from the larger pores of three orchard subsoils. Soil Sci.57: 107–117.

    Article  CAS  Google Scholar 

  • Boynton, D., andW. Reuther. 1939. Seasonal variation of oxygen and carbon dioxide in three different orchard soils during 1938 and its possible significance. Am. Soc. Hort. Sci. Proc.36: 1–6.

    CAS  Google Scholar 

  • Bray, J. R., andE. Gorham. 1964. Litter production in the forests of the world. Adv. Ecol. Res.2: 101–157.

    Google Scholar 

  • Broadfoot, W. M., andW. H. Pierre. 1939. Forest soil studies: 1. Relation of rate of decomposition of tree leaves to their acid-base balance and other chemical properties. Soil Sci.48: 329–348.

    Article  CAS  Google Scholar 

  • Brown, A., andA. Macfadyen. 1969. Soil carbon dioxide output and small scale vegetation pattern in a Calluna heath. Oikos20: 8–15.

    Article  CAS  Google Scholar 

  • Brown, R., andD. Broadbent. 1950. The development of cells in the growing zones of the root. J. Exp. Bot.1: 249–263.

    Article  Google Scholar 

  • Buckingham, E. 1904. Contribution to our knowledge of the aeration of soils. U.S. Dep. Agric. Bull., Soils Bull. 25.

  • Bunt, J. S., andA. D. Rovira. 1954. Oxygen uptake and carbon dioxide evolution of heat-sterilized soil. Nature173: 1242.

    Article  CAS  Google Scholar 

  • Burges, A. 1967. The decomposition of organic matter in the soil.In: Soil biology, ed. by A. Burges and F. Raw. Academic Press, London. pp. 479–492.

    Google Scholar 

  • Caldwell, R. 1963. Observations on the fungus flora of decomposing beech litter in soil. Trans. Br. Mycol. Soc.46: 249–261.

    Google Scholar 

  • Carré, C. G. 1964. Fungus decomposition of beech cupules. Trans. Br. Mycol. Soc.47: 437–444.

    Google Scholar 

  • Chase, F. E., andP. H. H. Gray. 1957. Application of the Warburg respirometer in studying respiratory activity in soil. Can. J. Microbiol.3: 335–349.

    Google Scholar 

  • Chester, C. G. C. 1950. On the succession of microfungi associated with the decay of logs and branches. Trans. Lines. Nat. Union12: 129–135.

    Google Scholar 

  • Clark, F. E. 1949. Soil microorganisms and plant roots. Adv. Agron.1: 241–288.

    CAS  Google Scholar 

  • Clark, F. E. 1967. Bacteria in soil.In: Soil biology, ed. by A. Burges and F. Raw. Academic Press, London. pp. 15–49.

    Google Scholar 

  • Clark, F. E. 1969. The microflora of grassland soils and some microbial influences on ecosystem functions.In: The grassland ecosystem: A preliminary synthesis. A supplement, ed. by R. L. Dix and R. G. Beidleman. Range Sci. Dep. Sci. Ser. No. 2 Supplement. Colorado State Univ., Fort Collins. pp. 361–376.

    Google Scholar 

  • Clark, F. E., andD. C. Coleman. 1972. Secondary productivity below ground in Pawnee grassland. US/IBP Grassland Biome Tech. Rep. No. 169. Colorado State Univ., Fort Collins. 23 pp.

    Google Scholar 

  • Clark, F. E., andE. A. Paul. 1970. The microflora of grassland. Adv. Agron.22: 375–435.

    Article  CAS  Google Scholar 

  • Clements, F. E. 1921. Aeration and air content. Carnegie Inst. Wash. Pub. No. 315, Washington, D.C. 183 pp.

    Google Scholar 

  • Clymo, R. S. 1965. Experiments on breakdown of Sphagnum in two bogs. J. Ecol.53: 747–758.

    Article  Google Scholar 

  • Coldwell, B. B., andW. A. DeLong. 1950. Studies on the composition of deciduous forest tree leaves before and after partial decomposition. Sci. Agric.30: 456–466.

    Google Scholar 

  • Coleman, D. C. 1973a. Soil carbon balance in a successional grassland. Oikos24: 195–199.

    Article  CAS  Google Scholar 

  • Coleman, D. C. 1973b. Compartmental analysis of “total soil respiration”: an exploratory study. Oikos24: 361–366.

    Article  Google Scholar 

  • Coleman, D. C. 1976. A review of root production processes and their influence on soil biota in terrestrial ecosystems.In: The role of terrestrial and aquatic organisms in decomposition processes, ed. by J. M. Anderson and A. Macfadyen. Blackwell Sci. Pub., Oxford. pp. 417–434.

    Google Scholar 

  • Coleman, D. C., R. Andrews, J. E. Ellis, andJ. S. Singh. 1976. Energy flow and partitioning in selected man-managed and natural ecosystems. Agro-Ecosystems3: 45–54.

    Article  Google Scholar 

  • Cornforth, I. S. 1970. Leaf fall in a tropical rain forest. J. Appl. Ecol.7: 603–608.

    Article  Google Scholar 

  • Crapo, N. L., andR. G. Bowmer. 1973. Comparative respiratory rates in roots of detopped and intact corn. Oikos24: 465–468.

    Article  Google Scholar 

  • Crapo, N. L., andD. C. Coleman. 1972. Root distribution and respiration in a Carolina old field. Oikos23: 137–139.

    Article  Google Scholar 

  • Crosby, J. S. 1961. Litter-and-duff fuel in shortleaf pine stands in southeast Missouri. Central States For. Exp. Stn. Tech. Paper 178. U.S. For. Serv. Columbus, Ohio. 10 pp.

    Google Scholar 

  • Crossley, D. A., Jr., andM. P. Hoglund. 1962. A litter bag method for the study of microarthropods inhabiting leaf litter. Ecology43: 571–573.

    Article  Google Scholar 

  • Crossley, D. A., Jr., and M. Witkamp. 1964. Forest soil mites and mineral cycling. Acarologia, fasc. h.s.1964: 137–145.

  • Cruz, A. A. de la, andB. C. Gabriel. 1974. Caloric, elemental, and nutritive changes in decomposingJuncus roemerianus leaves. Ecology55: 882–886.

    Article  Google Scholar 

  • Curry, J. P. 1969. The decomposition of organic matter in soil. Part I. The role of fauna in decaying grassland herbage. Soil Biol. Biochem.1: 253–258.

    Article  Google Scholar 

  • Dahlman, R. C., andC. L. Kucera. 1965. Root productivity and turnover in native prairie. Ecology46: 84–89.

    Article  Google Scholar 

  • Dahlman, R. C., and C. L. Kucera. 1969. Carbon-14 cycling in the root and soil components of a prairie ecosystem.In: Proc. 2nd Nat. Symp. on Radioecology, ed. by D. J. Nelson and F. C. Evans. Div. Tech. Inf., USAEC TID-4500 (Conf-670503), Springfield, Va. pp. 652–660.

  • Daubenmire, R., andD. C. Prusso. 1963. Studies on the decomposition rates of tree litter. Ecology44: 589–592.

    Article  CAS  Google Scholar 

  • Davidson, J. L., andF. L. Milthorpe. 1966. The effect of defoliation on the carbon balance inDactylis glomerata. Ann. Bot.30: 185–198.

    CAS  Google Scholar 

  • Déhérain, P. P., andE. de Moussey. 1896. Sur l’oxydation de la matière organique de sol. Ann. Agron.22: 305–337.

    Google Scholar 

  • De Jong, E., andH. J. V. Schappert. 1972. Calculation of soil respiration and activity from CO2 profiles in the soil. Soil Sci.113: 328–333.

    Article  Google Scholar 

  • De Jong, E., H. J. V. Schappert, andK. B. MacDonald. 1974. Carbon dioxide evolution from virgin and cultivated soil as affected by management practices and climate. Can. J. Soil Sci.54: 299–307.

    Article  Google Scholar 

  • Dickinson, C. H. 1974. Decomposition of plant litter in soil.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 633–658.

    Google Scholar 

  • Domsch, K. H. 1962. Bodenatmung. Sammelbericht über methoden und Ergebnisse. Zentralbl. Bakteriol. Parasitenkd. Abt. II.116: 33–78.

    Google Scholar 

  • Douglas, L. A., andJ. C. F. Tedrow. 1959. Organic matter decomposition rates in arctic soils. Soil Sci.88: 305–312.

    CAS  Google Scholar 

  • Drobnik, J. 1962. The effect of temperature on soil respiration. Folia Microbiol.7: 132–140.

    Google Scholar 

  • Edwards, C. A. 1974. Macroarthropods.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 533–554.

    Google Scholar 

  • Edwards, C. A., andG. W. Heath. 1963. The role of soil animals in break-down of leaf material.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 76–84.

    Google Scholar 

  • Edwards, C. A., D. E. Reichte, andD. A. Crossley, Jr. 1970. The role of soil invertebrates in turnover of organic matter and nutrients.In: Analysis of temperate forest ecosystems, ed. by D. E. Reichle. Springer-Verlag, New York. pp. 147–172.

    Google Scholar 

  • Edwards, N. T., andP. Sollins. 1973. Continuous measurement of carbon dioxide evolution from partitioned forest floor components. Ecology54: 406–412.

    Article  CAS  Google Scholar 

  • Elkan, G. H., andW. E. C. Moore. 1960. The effects of temperature, moisture, and initial levels of organic matter upon differential microbial counts, CO2 activity, and organic matter decomposition in soil. J. Elisha Mitchell Sci. Soc.76: 134–140.

    Google Scholar 

  • Ellis, R. C. 1969. The respiration of the soil beneath someEucalyptus stands as related to the productivity of the stands. Aust. J. Soil Res,7: 349–357.

    Article  Google Scholar 

  • Epstein, E., andH. Kohnke. 1957. Soil aeration as affected by organic matter application. Soil Sci. Soc. Am. Proc.21: 585–588.

    Article  CAS  Google Scholar 

  • Falconer, J. G., J. W. Wright, andH. W. Beall. 1933. The decomposition of certain types of forest litter under field conditions. Am. J. Bot.20: 196–203.

    Article  CAS  Google Scholar 

  • Fehér, D. 1933. Untersuchungen über die Mikrobiologie des Waldbodens. Julius Springer, Berlin. 272 pp.

    Google Scholar 

  • Fehér, D., andG. Sommer. 1928. Investigation on the carbon-nourishment of the forest. II. Biochem. Z.199: 253–271.

    Google Scholar 

  • Fenton, R. T. 1958. A laboratory study of nitrogen mobilization during litter decomposition. Plant Soil9: 202–214.

    Article  CAS  Google Scholar 

  • Floate, M. J. S. 1970. Decomposition of organic materials from hill soils and pastures. II. Comparative studies of the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep feces. Soil Biol. Biochem.2: 173–185.

    Article  CAS  Google Scholar 

  • Frankland, I. C. 1974. Decomposition of lower plants.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 3–36.

    Google Scholar 

  • Fred, E. B., and E. B. Hart. 1915. The comparative effect of phosphates and sulfates on soil bacteria. Wisc. Agric. Exp. Stn. Res. Bull. 35.

  • Froment, A. 1972. Soil respiration in a mixed oak forest. Oikos23: 273–277.

    Article  Google Scholar 

  • Froment, A., andF. Mommaerts-Billiot. 1969. La respiration du sol, l’azote minéral et la décomposition des feuilles de chêne et de hêtre en relation avec les facteurs de l’environnement. Bull. Soc. R. Bot. Belg.102: 387–410.

    Google Scholar 

  • Furr, J. R., andW. W. Aldrich. 1943. Oxygen and carbon dioxide changes in the soil atmosphere of an irrigated date garden on calcareous very fine sandy loam soil. Am. Hort. Sci. Proc.42: 46–52.

    CAS  Google Scholar 

  • Gaarder, T. 1957. Studies in soil respiration in western Norway, the Bergen district. Univ Bergen Arbok Naturvitensk Rekke 3: 24 pp.

  • Gaastra, P. 1963. Climatic control of photosynthesis and respiration.In: Environmental control of plant growth, ed. by L. T. Evans. Academic Press, New York. pp. 113–140.

    Google Scholar 

  • Garrett, S. D. 1956. Biology of root infecting fungi. Cambridge Univ. Press, London. 292 pp.

  • Gilbert, O., andK. L. Bocock. 1960. Changes in the leaf litter when placed on the surface of soils with contrasting humus types. II. Changes in the nitrogen content of oak and ash litter. J. Soil Sci.11: 10–19.

    Article  CAS  Google Scholar 

  • Golley, F. B. 1965. The structure and function of an old-field broomsedge community. Ecol. Monogr.35: 113–131.

    Article  Google Scholar 

  • Gosz, J. R., G. E. Likens, andF. H. Bormann. 1973. Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecol. Monogr.43: 173–191.

    Article  Google Scholar 

  • Gray, P. H. H. andR. H. Wallace. 1957. Correlation between bacterial numbers and carbon dioxide in a field soil. Can. J. Microbiol.3: 191–194.

    CAS  Google Scholar 

  • Gray, T. R. G., andS. T. Williams. 1971. Microbial productivity in soil.In: Microbes and microbial productivity, ed. by D. Hughes and A. H. Rose. 21st Symp. Soc. Gen. Microbiol. Cambridge Univ. Press, London. pp. 255–286.

    Google Scholar 

  • Griffin, D. M. 1972. Ecology of soil fungi. Chapman and Hall, London. 193 pp.

    Google Scholar 

  • Gupta, S. R., andJ. S. Singh. 1977a. Decomposition of litter in a tropical grassland. Pedobiologia17: 330–333.

    Google Scholar 

  • Gupta, S. R., andJ. S. Singh. 1977b. Effect of alkali concentration, volume and absorption area on the measurement of soil respiration in a tropical sward. Pedobiologia17: 233–239.

    CAS  Google Scholar 

  • Gustafson, F. G. 1943. Decomposition of the leaves of some forest trees under field conditions. Plant Physiol.18: 704–707.

    PubMed  CAS  Google Scholar 

  • Haber, W. 1958. Ökologische Untersuchungen der Bodenatmung. Flora146: 109–157.

    Google Scholar 

  • Harding, D. J. F., andR. A. Stuttard. 1974. Microarthropods.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 489–532.

    Google Scholar 

  • Harris, D. G., andC. H. M., van Bavel. 1957. Root respiration of tobacco, corn, and cotton plants. Agron. J.49: 182–184.

    Article  Google Scholar 

  • Healey, I. N. 1967. The population metabolism ofOnychiurus procampatus Gisin (Collembola).In: Progress in soil biology, ed. by O. Graff and J. E. Satchell. Braunschweig, Vieweg and Sohn, Amsterdam. pp. 127–137.

    Google Scholar 

  • Heath, G. W., and H. G. C. King. 1964. The palatability of litter to soil fauna. Proc. 8th Int. Congr. Soil Sci., Bucharest. pp. 979–986.

  • Heath, G. W., M. K. Arnold, andC. A. Edwards. 1966. Studies in leaf litter breakdown. 1. Breakdown rates among leaves of different species. Pedobiologia6: 1–12.

    Google Scholar 

  • Heath, G. W., C. A. Edwards, andM. K. Arnold. 1964. Some methods for assessing the activity of soil animals in the breakdown of leaves. Pedobiologia4: 80–87.

    Google Scholar 

  • Heck, A. F. 1929. A method for the determination of total carbon and also for the estimation of carbon dioxide evolved from soils. Soil Sci.28: 225–232.

    Article  CAS  Google Scholar 

  • Hödgkinson, K. C., andJ. A. Veale. 1966. The distribution of photosynthate within Lucerne as influenced by illumination. Aust. J. Biol. Sci.19: 15–21.

    Google Scholar 

  • Hopkins, B. 1966. Vegetation of the Olokemeji Reserve, Nigeria. IV. The litter and soil with special reference to their seasonal changes. J. Ecol.54: 687–703.

    Article  Google Scholar 

  • Hudson, H. J. 1962. Succession of microfungi on aging leaves ofSaccharum officinarum. Trans. Br. Mycol. Soc.45: 395–423.

    Google Scholar 

  • Humfeld, H. 1930. A method for measuring carbon dioxide evolution from soil. Soil Sci.30: 1–9.

    Article  CAS  Google Scholar 

  • Ino, Y., andM. Monsi. 1969. An experimental approach to the calculation of CO2 amount evolved from several soils. Jap. J. Bot.20: 153–188.

    CAS  Google Scholar 

  • Ivarson, K. C., andF. J. Sowden. 1959. Decomposition of forest litter: I. Production of ammonia and nitrate nitrogen, changes in microbial population, and the rate of decomposition. Plant Soil11: 237–248.

    Article  Google Scholar 

  • Jenny, H., S. P. Gessel, andF. T. Bingham. 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci.68: 419–432.

    Article  CAS  Google Scholar 

  • Jensen, V. 1974. Decomposition of angiosperm tree leaf litter.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 69–104.

    Google Scholar 

  • Johnston, J. W., Jr. 1935. The macrofauna of soils as affected by certain coniferous and hardwood types on the Harvard Forest. Ph.D. Thesis, Harvard Univ., Cambridge, Mass. 114 pp.

    Google Scholar 

  • Jorgensen, J. R., andC. G. Wells. 1973. The relationship of respiration in organic and mineral soil layers to soil chemical properties. Plant Soil39: 373–387.

    Article  CAS  Google Scholar 

  • Kanemasu, E. T., W. L. Powers, andJ. W. Sij. 1974. Field chamber measurements of CO2 flux from soil surface. Soil Sci.118: 233–237.

    Article  CAS  Google Scholar 

  • Kärenlampi, L. 1971. Weight loss of leaf litter on forest soil surface in relation to weather at Kevo station, Finnish Lapland. Rep. Kevo Subarct. Res. Stn.8: 101–103.

    Google Scholar 

  • Keller, T. 1967. Root respiration of young conifers. Proc. 14th Congr. Inst. Union For. Res. Organ. Munich23: 329–340.

    Google Scholar 

  • Kendrick, W. B. 1959. The time factor in decomposition of coniferous leaf litter. Can. J. Bot.37: 907–912.

    Google Scholar 

  • Kendrick, W. B., andA. Burges. 1962. Biological aspects of the decay ofPinus sylvestris leaf litter. Nova Hedwigia4: 313–342.

    Google Scholar 

  • King, H. G. C., andG. W. Heath. 1967. The chemical analysis of small samples of leaf material and the relationship between the disappearance and composition of leaves. Pedobiologia7: 192–197.

    Google Scholar 

  • Kirita, H. 1971a. Re-examination of the absorption method of measuring soil respiration under field conditions. II. Effect of the size of the apparatus on CO2-absorption rates. Jap. J. Ecol.21: 37–42.

    Google Scholar 

  • Kirita, H. 1971b. Re-examination of the absorption method of measuring soil respiration under field conditions. III. Combined effect of the covered ground area and the surface area of KOH solution on CO2-absorption rates. Jap. J. Ecol.21: 43–47.

    Google Scholar 

  • Kirita, H. 1971c. Re-examination of the absorption method of measuring soil respiration under field conditions. IV. An improved absorption method using a disc of plastic sponge as absorbent holder. Jap. J. Ecol.21: 119–127.

    Google Scholar 

  • Kirita, H. 1971d. Studies of soil respiration in warm-temperature evergreen broadleaf forests of southwestern Japan. Jap. J. Ecol.21: 230–244.

    Google Scholar 

  • Kirita, H. andK. Hozumi. 1966. Re-examination of the absorption method for measuring soil respiration under field conditions. Physiol. Ecol.14: 23–31.

    Google Scholar 

  • Kitazawa, Y. 1967. Community metabolism of soil invertebrates in forest ecosystems of Japan.In: Secondary productivity of terrestrial ecosystems, ed. by K. Petrusewicz. Panstwowe Wydawnictwo Naukowe, Warsaw. pp. 649–661.

    Google Scholar 

  • Klein, D. A. 1972. System analysis of decomposer functions in the grassland ecosystem. US/IBP Grassland Biome Tech. Rep. No. 201. Colorado State Univ., Fort Collins. 95 pp.

    Google Scholar 

  • Koelling, M. R., andC. L. Kucera. 1965. Production and turnover relationships in native tallgrass prairie. Iowa State J. Sci.39: 387–392.

    Google Scholar 

  • Koepf, H. 1953. Die Temperature Zeit — Abhängigkeit der Bodenatmung. Z. Pflanzenernähr Düng. Bodenkd.61: 29–48.

    Article  Google Scholar 

  • Koepf, H. 1954. Die biologische Aktivität des Bodens und ihre experimentelle Kennzeichnung. Z. Pflanzenernähr. Düng. Bodenkd.64: 138–146.

    Article  Google Scholar 

  • Kowal, N. E. 1969. Effect of leaching on pine litter decomposition rates. Ecology50: 739–740.

    Article  CAS  Google Scholar 

  • Krzysch, G. 1965. Zun Dynamik der Bodenatmung während der Vegetationszeit. Z. Acker. Pflanzenbau.122: 108–140.

    Google Scholar 

  • Kucera, C. L., andD. L. Kirkham. 1971. Soil respiration studies in tallgrass prairie in Missouri. Ecology52: 912–915.

    Article  CAS  Google Scholar 

  • Kucera, C. L., R. C. Dahlman, andM. R. Koelling. 1967. Total net productivity and turnover on energy basis for tallgrass prairie. Ecology48: 536–541.

    Article  Google Scholar 

  • Kurcheva, G. F. 1960. The role of invertebrates in the decomposition of the oak leaf litter. Pochvovedenie4: 16–23.

    Google Scholar 

  • Lamotte, M. 1975. The structure and function of a tropical savannah ecosystem.In: Tropical ecological systems, ed. by F. B. Golley and E. Medina. Ecological Studies, vol. 11. Springer-Verlag, New York. pp. 179–222.

    Google Scholar 

  • Lang, G. E. 1973. Litter accumulation through ecosystem development. Ph.D. Thesis, Rutgers Univ., New Brunswick, N.J. 105 pp.

    Google Scholar 

  • Lang, G. E. 1974. Litter dynamics in a mixed oak forest on the New Jersey Piedmont. Bull. Torrey Bot. Club101: 277–286.

    Article  Google Scholar 

  • Lau, E. 1906. Beiträge zur kenntnis der Zusammensetzung der im ackerboden befindlich luft. C. Hinstorffs Buchdr., Rostock, D.D.R. 34 pp.

  • Laudelout, H., andJ. Meyer. 1954. Les cycles d’éléments minérales et de matiére organique en foret equatoriale Congolaise. Trans. 5th Int. Cong. Soil Sci.2: 267–272.

    CAS  Google Scholar 

  • Lauenroth, W. K. 1970. Dynamics of dry-matter production in a mixed grass prairie in western North Dakota. M.S. Thesis, North Dakota State Univ., Fargo. 102 pp.

    Google Scholar 

  • Leather, I. W. 1915. Soil gases. Mem. Dep. India, Pusa, Chem. Ser.4: 85–134.

    CAS  Google Scholar 

  • Lee, K. E., andT. G. Wood. 1971. Termites and soils. Academic Press, London and New York. 251 pp.

    Google Scholar 

  • Lemmerman, O., K. Aso, H. Fischer, andL. Fresenius. 1911. Untersuchungen über die Zersetzung der Kohlenstoffverbindungen Verschiedene organischer Substanzen im Boden, Speziele unter dem Einfluss von Kalk. Landwirtsch. Jahrb. Schweiz Annu. Agric. Suisse41: 217–256.

    Google Scholar 

  • Levin, G. V., J. R. Clendenning, E. W. Chappell, A. H. Heim, andF. Rocek. 1964. A rapid method for detection of microorganisms by ATP assay; its possible application in virus and cancer studies. BioScience14: 37–38.

    Article  Google Scholar 

  • Lieth, H., andR. Ouellette. 1962. Studies on the vegetation of the Gaspé Peninsula. 2. The soil respiration of some plant communities. Can. J. Bot.40: 127–140.

    Google Scholar 

  • Lofty, J. R. 1974. Oligochaetes.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 467–488.

    Google Scholar 

  • Lundegårdh, H. 1921. Ecological studies in the assimilation of certain forest plants and shore plants. Sven. Bot. Tidskr.15: 46–94.

    Google Scholar 

  • Lundegårdh, H. 1922. Neue apparate zur analyse des Kohlensäuregehalts der Luft. Biochem. Z.131: 109.

    Google Scholar 

  • Lundegardh, H. 1924. Der Kreislauf der Kohlensäure in der Natur. Gustav Fischer, Jena. 308 pp.

  • Lundegårdh, H. 1927. Carbon dioxide evolution of soil and crop growth. Soil Sci.23: 417–453.

    Article  Google Scholar 

  • Lundegårdh, H. 1957. Klima und Boden in ihrer Wirkung auf das Pflanzenleben. Gustav Fischer, Jena. 583 pp.

    Google Scholar 

  • Lunt, H. A. 1935. Effect of weathering upon dry matter and composition of hardwood leaves. J. For.33: 607–609.

    CAS  Google Scholar 

  • Macfadyen, A. 1963. The contribution of the microfauna to total soil metabolism.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 3–16.

    Google Scholar 

  • Macfadyen, A. 1970. Soil metabolism in relation to ecosystem energy flow and to primary and secondary production.In: Methods of study in soil ecology, ed. by J. Phillipson. IBP/UNESCO Symp. Paris. pp. 167–172.

    Google Scholar 

  • Madge, D. S. 1965. Leaf fall and litter disappearance in a tropical forest. Pedobiologia5: 273–288.

    Google Scholar 

  • Makarov, B. N. 1958. Diurnal variation in soil respiration and in the carbondioxide content of the layer of air next to the soil. Soils and Fert. 21, No. 978. (Abstr.). [Also: 1968. Bibliography on Soil Respiration (1967–1957) 1215, No. 69. Commonw. Bur. of Soils, Harpenden, England. (Abstr.).]

  • Makarov, B. N. 1960. Respiration of soil and composition of soil air on drained peat bog soils. Sov. Soil Sci.1960(2): 154–160.

    Google Scholar 

  • Malone, C. R., andD. E. Reichle. 1973. Chemical manipulation of soil biota in a fescue meadow. Soil Biol. Biochem.5: 629–639.

    Article  CAS  Google Scholar 

  • Marsh, F. W. 1928. A laboratory apparatus for the measurement of carbon dioxide evolved from soils. Soil Sci.25: 253–261.

    Article  CAS  Google Scholar 

  • Mason, C. F. 1974. Mollusca.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 555–592.

    Google Scholar 

  • McKinley, A. D. 1931. Effect of sorghum plants on biological activities in the soil. Soil Sci.32: 469–480.

    Article  CAS  Google Scholar 

  • Medina, E., andM. Zelwer. 1972. Soil respiration in tropical plant communities.In: Papers from a symposium on tropical ecology with an emphasis on organic productivity, ed. by P. M. Golley and F. B. Golley. Univ. Georgia, Athens. pp. 245–269.

    Google Scholar 

  • Melin, E. 1930. Biological decomposition of some types of litter from North American forests. Ecology11: 72–101.

    Article  CAS  Google Scholar 

  • Meyer, L., dandH. Koepf. 1960. Das Kohlendioxyd und die Kohlensäure im Boden. Handb. Pflanzenphysiologie5: 24–46.

    Google Scholar 

  • Mikola, P. 1954. Kokeellisia tutkimuksia metsäkarikkeiden hajaantumisnopeudesta. Commun. Inst. For. Fenn.43: 1–50.

    Google Scholar 

  • Millar, C. S. 1974. Decomposition of coniferous leaf litter.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 105–125.

    Google Scholar 

  • Mina, V. N. 1962. Comparison of methods for determining the intensity of soil respiration. Sov. Soil Sci.1962(10): 1188–1192.

    Google Scholar 

  • Minderman, G., andJ. C. Vulto. 1973a. Comparison of techniques for the measurement of carbon dioxide evolution from soil. Pedobiologia13: 73–80.

    Google Scholar 

  • Minderman, G., andJ. C. Vulto. 1973b. Carbon dioxide production by tree roots and microbes. Pedobiologia13: 337–343.

    Google Scholar 

  • Möller, J. 1879. Über die freie Kohlensäure im Boden. Forsch. Gebiete Agric. Physiol.2: 329–338.

    Google Scholar 

  • Monteith, J. L. 1963. Gas exchange of plant communities.In: Environmental control of plant growth, ed. by L. T. Evans. Academic Press, New York. pp. 95–112.

    Google Scholar 

  • Monteith, J. L., G. Sceicz, andK. Yabuky. 1964. Crop photosynthesis and the flux of carbon dioxide below the canopy. J. Appl. Ecol.1: 321–337.

    Article  CAS  Google Scholar 

  • Murphy, P. W. 1962. A radioisotope method for determination of rate of disappearance of leaf litter in woodland.In: Progress in soil zoology, ed. by P. W. Murphy. Butterworths Sci. Publ., London. pp. 357–363.

    Google Scholar 

  • Neales, T. F., andJ. A. Davies. 1966. The effect of photoperiod duration upon the respiratory activity of the roots of wheat seedlings. Aust. J. Biol. Sci.19: 471–480.

    Google Scholar 

  • Newton, J. D. 1923. Measurement of the carbon dioxide evolved from the roots of various crop plants. Sci. Agric.4: 268–274.

    Google Scholar 

  • Nielsen, C. O. 1961. Respiratory metabolism of some populations of enchytraeid worms and freeliving nematodes. Oikos12: 17–35.

    Article  Google Scholar 

  • Nilovskaya, N. T., V. K. Kovalenko, andV. V. Laptev. 1970. Uptake and liberation of carbon dioxide by plants and microorganisms under artificial environmental conditions. Fiziol Rast.17: 680–685.

    CAS  Google Scholar 

  • Nömmik, A. 1938. Uber die Zersetzungsgeschwindigkeit des gesfallenen laubes und der Koniferennadeln and über den schwung einiger in ihnen enthaltenen Elemente. Z. Pflanzenernähr. Düng. Bodenkd.8: 77–100.

    Google Scholar 

  • Nye, P. H. 1961. Organic matter and nutrient cycles under moist tropical forests. Plant Soil13: 333–346.

    Article  CAS  Google Scholar 

  • Nykvist, N. 1961. Leaching and decomposition of litter. IV. Experiments on needle litter ofPicea abies. Oikos12: 264–279.

    Article  Google Scholar 

  • O’Connor, F. B. 1963. Oxygen consumption and population metabolism of Enchytraeidae.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 32–48.

    Google Scholar 

  • Odum, E. P. 1971. Fundamentals of ecology. W. B. Saunders Co., Philadelphia. 574 pp.

    Google Scholar 

  • Odum, E. P., andA. A. de la Cruz. 1963. Detritus as a major component of ecosystems. BioScience13: 39–40.

    Google Scholar 

  • Odum, H. T., andC. F. Jordan. 1970. Metabolism and evapotranspiration of the lower forest in a giant plastic cylinder.In: A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico, ed. by H. T. Odum. Div. Tech. Information, USAEC, Washington, D.C. pp. I-165 to I-189.

    Google Scholar 

  • Odum, H. T., A. Lugo, G. Cintrón, andC. F. Jordan. 1970. Metabolism and evapotranspiration of some rain forest plants and soil.In: A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico, ed. by H. T. Odum. Div. Tech. Information, USAEC, Washington, D.C. pp. I-103 to I-124.

    Google Scholar 

  • Ohmasa, M., andK. Mori. 1937. The amount of fall and decomposition of leaf litter of the forest trees of Japan. Bull. For. Exp. Stn. Tokyo-Fu3: 39–107.

    Google Scholar 

  • Old, S. M. 1969. Microclimates, fire and plant production in an Illinois prairie. Ecol. Monogr.34: 355–384.

    Article  Google Scholar 

  • Olson, I. S. 1963. Energy storage and balance of producers and decomposers in ecological systems. Ecology44: 322–331.

    Article  Google Scholar 

  • Olson, J. S., andD. A. Crossley, Jr. 1963. Tracer studies of the breakdown of forest litter.In: Radioecology, ed. by V. Schultz and A. W. Klements, Jr. Reinhold Publ. Co., New York. pp. 411–416.

    Google Scholar 

  • Osman, A. M. 1971. Root respiration of wheat plants as influenced by age, temperature and irradiation of shoot. Photosynthetica5: 107–112.

    CAS  Google Scholar 

  • Osman, A. M., andF. L. Milthorpe. 1971. Photosynthesis of wheat leaves in relation to age, illumination and nutrient supply. 1. Techniques. Photosynthetica5: 55–60.

    Google Scholar 

  • Ovington, J. D. 1962. Quantitative ecology and the woodland ecosystem concept. Adv. Ecol. Res.1: 103–192.

    Article  Google Scholar 

  • Parkinson, D. 1973. Techniques for the study of soil fungi. Bull. Ecol. Res. Commun. (Stockholm)17: 29–36.

    Google Scholar 

  • Parkinson, D., andE. Coups. 1963. Microbial activity in a podzol.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 167–175.

    Google Scholar 

  • Parkinson, D., andW. B. Kendrick. 1960. Investigations of soil microhabitats.In: The ecology of soil fungi, ed. by D. Parkinson and J. S. Waid. Liverpool Univ. Press, Liverpool. pp. 22–28.

    Google Scholar 

  • Payne, W. J. 1970. Energy yields and growth of heterotrophs. Annu. Rev. Microbiol.24: 17–52.

    Article  PubMed  CAS  Google Scholar 

  • Perel, T. S., andD. F. Sokolov. 1964. The quantity value of the rain wormsLumbricus terrestris Linne (Lumbricidae, Oligocheta): Participation in the forest fall decomposition. Zool. J.42: 1618–1625.

    Google Scholar 

  • Phillipson, J. 1965. Respiratory metabolism of the terrestrial isopodOniscus asellus L. Oikos16: 78–87.

    Article  Google Scholar 

  • Priesner, E. 1961. Nahrungswahl und Nahrungsverarbeitung bei der Larve vonTipula maxima. Pedobiologia1: 25–37.

    Google Scholar 

  • Pugh, G. J. F. 1958. Leaf-litter fungi found onCarex paniculata L. Trans. Br. Mycol. Soc.41: 185–195.

    Google Scholar 

  • Pugh, G. J. F. 1970. A study of fungi in the rhizosphere and the root surface of plants growing in primitive soils.In: Methods of study in soil ecology, ed. by J. Phillipson. IBP/UNESCO Symp. Paris. pp. 159–164.

    Google Scholar 

  • Pugh, G. J. F. 1974. Terrestrial fungi.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 303–336.

    Google Scholar 

  • Raw, F. 1962. Studies of earthworm populations in orchards. I. Leaf burial in apple orchards. Ann. Appl. Biol.50: 389–404.

    Article  Google Scholar 

  • Redmann, R. E. 1974. Photosynthesis, plant respiration, and soil respiration measured with controlled environment chambers in the field: III. Soil respiration. Can. Comm. for IBP, Matador Project, Tech. Rep. No. 60. 37 pp.

  • Redmann, R. E. 1975. Production ecology of grassland plant communities in western North Dakota. Ecol. Monogr.45: 83–106.

    Article  Google Scholar 

  • Reichle, D. E. 1968. Relation of body size to food intake, oxygen consumption, and trace element metabolism in forest floor arthropods. Ecology49: 538–542.

    Article  Google Scholar 

  • Reichle, D. E. 1971. Energy and nutrient metabolism of soil and litter invertebrates.In: Productivity of forest ecosystems, ed. by P. Duvigneaud. UNESCO, Paris. pp. 465–477.

    Google Scholar 

  • Reichle, D. E., B. E. Dinger, N. T. Edwards, W. F. Harris, andP. Sollins. 1973. Carbon flow and storage in forest ecosystems.In: Carbon and the biosphere, ed. by G. M. Woodwell. USAEC CONF-720510, U.S. Document Printing Office, Springfield, Va. pp. 345–365.

    Google Scholar 

  • Reichle, D. E., J. F. McBrayer, andB. S. Ausmus. 1975. Ecological energetics of decomposer invertebrates in deciduous forest and total respiration budget.In: Progress in soil zoology, ed. by J. Vanêk. Academia Publishing House of Slovak Academy of Sciences, Prague. pp. 283–292.

    Google Scholar 

  • Reiners, W. A. 1968. Carbon dioxide evolution from the floor of three Minnesota forests. Ecology49: 471–483.

    Article  Google Scholar 

  • Renters, W. A., andN. M. Reiners. 1970. Energy and nutrient dynamics of forest floors in three Minnesota forests. J. Ecol.58: 497–519.

    Article  Google Scholar 

  • Richard, F. 1945–46. Der biologische Abbau von Zellulose und Eiweiss-Testschnüren im Boden von Wald- und Rasengesellschaften. Mitt. Schweig. Anst. Forstl. Versuchw.24(1): 297–397.

    Google Scholar 

  • Rochow, J. J. 1974. Litter fall relations in a Missouri forest. Oikos25: 80–85.

    Article  Google Scholar 

  • Romell, L. G. 1922. Luftvaxlingen i marken som ekologisk faktor. Medd. Statens. Skogsforskningsinst.19: 125–360.

    Google Scholar 

  • Romell, L. G. 1932. Mull and duff as biotic equilibria. Soil Sci.34: 161–188.

    Article  CAS  Google Scholar 

  • Russell, E. J., andA. Appleyard. 1915. The atmosphere of the soil, its composition and causes of variation. J. Agric. Sci.7: 1–44.

    CAS  Google Scholar 

  • Russell, E. W. 1961. Soil conditions and plant growth. Longmans, Green and Co., London.

    Google Scholar 

  • Saito, T. 1956. Microbial decomposition of beech litter. Ecol. Rev.14: 141–147.

    CAS  Google Scholar 

  • Saito, T. 1957. Chemical changes in beech litter under microbiological conditions. Ecol. Rev.14: 209–216.

    CAS  Google Scholar 

  • Saito, T. 1966. Sequential pattern of decomposition of beech litter with special reference to microbial succession. Ecol. Rev.16: 245–254.

    Google Scholar 

  • Saito, T. 1975. Soil respiration ofMiscanthus sinensis grassland in Kawatabi IBP area.In: Ecological studies in Japanese grasslands with special refence to the IBP area: Productivity of terrestrial communities, ed. by M. Numata. Jap. Comm., Int. Biol. Prog. Univ. Tokyo, Japan. pp. 223–225.

    Google Scholar 

  • Satchell, J. E. 1967. Lumbricidae.In: Soil biology, ed. by A. Burges and F. Raw. Academic Press, London. pp. 259–322.

    Google Scholar 

  • Satchell, J. E. 1971. Feasibility study of an energy budget for Meathop wood.In: Productivity of forest ecosystems, ecology and conservation, No. 4, ed. by P. Duvigneaud. UNESCO, Paris. pp. 619–630.

    Google Scholar 

  • Satchell, J. E. 1974. Litter-interface of animate/inanimate matter.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. xiii-xliv.

    Google Scholar 

  • Satchell, J. E., andD. G. Lowe. 1967. Selection of leaf litter byLumbricus terrestris.In: Progress in soil biology, ed. by O. Graff and J. E. Satchell. Braunschweig, Vieweg and Sohn, Amsterdam. pp. 102–119.

    Google Scholar 

  • Schulze, E. 1967. Soil respiration of tropical vegetation types. Ecology48: 652–653.

    Article  Google Scholar 

  • Shanks, R. E., andI. S. Olson. 1961. First year breakdown of leaf litter in southern Appalachian forests. Science134: 194–195.

    Article  PubMed  CAS  Google Scholar 

  • Shaver, G. R., andW. D. Billings. 1975. Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. Ecology56: 401–409.

    Article  Google Scholar 

  • Shields, J. A., E. A. Paul, W. E. Lowe, andD. Parkinson. 1973. Turnover of microbial tissue in soil under field conditions. Soil Biol. Biochem.5: 753–764.

    Article  Google Scholar 

  • Sims, P. L., andI. S. Singh. 1971. Herbage dynamics and net primary production in certain ungrazed and grazed grasslands in North America.In: Preliminary analysis of structure and function in grasslands, ed. by N. R. French. Range Sci. Dep. Sci. Ser. No. 10. Colorado State Univ., Fort Collins, pp. 59–124.

    Google Scholar 

  • Singh, I. S. 1962. Preliminary studies on the humus status of some forest communities of Bashahr Himalayas. Proc. Natl. Acad. Sci. India32B: 403–407.

    Google Scholar 

  • Singh, I. S. 1968. Net aboveground community productivity in the grasslands at Varanasi.In: Proceedings of the symposium on recent advances in tropical ecology, ed. by R. Misra and B. Gopal. ISTE, Varanasi. pp. 631–654.

    Google Scholar 

  • Singh, J. S., andD. C. Coleman. 1973. A technique for evaluating functional root biomass in grassland ecosystems. Can. J. Bot.51: 1867–1870.

    Google Scholar 

  • Singh, I. S., andD. C. Coleman. 1974. Distribution of photo-assimilated14carbon in the root system of a shortgrass prairie. J. Ecol.62: 359–365.

    Article  CAS  Google Scholar 

  • Singh, J. S., andD. C. Coleman. 1977. Evaluation of functional root biomass and translocation of photoassimilated14C in a shortgrass prairie ecosystem.In: The belowground system: A synthesis of plant-associated processes, ed. by J. K. Marshall. Range Sci. Dep. Sci. Ser. No. 26. Colorado State Univ., Fort Collins. pp. 123–131.

    Google Scholar 

  • Singh, J. S., andP. S. Yadava. 1974. Seasonal variation in composition, plant biomass, and net primary productivity of a tropical grassland at Kurukshetra, India. Ecol. Monogr.44: 351–376.

    Article  Google Scholar 

  • Singh, J. S., W. K. Lauenroth, andR. K. Steinhorst. 1975. Review and assessment of various techniques for estimating net aerial primary productivity in grasslands from harvest data. Bot. Rev.41: 181–232.

    Google Scholar 

  • Singh, K. P. 1968. Litter production and nutrient turnover in deciduous forests of Varanasi. Proc. Symp. Recent Adv. Trop. Ecol. pp. 655–665.

  • Singh, K. P. 1969. Nutrient concentration in leaf litter of ten important tree species of deciduous forests at Varanasi. Trop. Ecol.10: 83–95.

    Google Scholar 

  • Smith, F. B., andP. E. Brown. 1931. Soil respiration. J. Am. Soc. Agron.23: 909–916.

    CAS  Google Scholar 

  • Smith, F. B., andP. E. Brown. 1932. Further studies of soil respiration. J. Am. Soc. Agron.24: 577–583.

    CAS  Google Scholar 

  • Smith, F. B., andP. E. Brown. 1933. The diffusion of carbon dioxide through soils. Soil Sci.35: 413–421.

    Article  CAS  Google Scholar 

  • Sollins, P. 1972. Organic matter model and budget for a southern AppalachianLiriodendron forest. ORNL-IBP Memo Rep. 71. Oak Ridge Nat. Lab., Tenn. 86 pp.

  • Sparrow, E. B., andK. G. Doxtader. 1973. Adenosine Triphosphate (ATP) in grassland soil: Its relationship to microbial biomass and activity. US/IBP Grassland Biome Tech. Rep. No. 224. Colorado State Univ., Fort Collins. 161 pp.

    Google Scholar 

  • Starkey, R. L. 1929. Some influences of the development of higher plants upon the micro-organisms in the soil: 3. Influence of the stage of plant growth upon some activities of the organisms. Soil Sci.27: 433–444.

    Google Scholar 

  • Stenina, T. A. 1964. Decomposition of plant residues in arable podzolic soils. Sov. Soil Sci.1964(1): 74–80.

    Google Scholar 

  • Stevenson, I. L. 1956. Some observations on the microbial activity in a remoistened air-dried soil. Plant Soil8: 170–182.

    Article  Google Scholar 

  • Stille, B. 1938. Untersuchungen liber Bedeutung der Rhizosphäre. Arch. Mikrobiol.9: 477–485.

    Article  Google Scholar 

  • Stoklasa, J. 1911. Methoden zur Bestimmung der Atmungsintensität der Bakterien im Boden. Z. Landw. Versuch. Oesterr14: 1243–1279.

    Google Scholar 

  • Stoklasa, J., andA. Ernest. 1905. Uber den Ursprung, die Menge und die Bedeutung des Kohlendioxyds in Boden. Cent. Bakteriol.14: 723–736.

    CAS  Google Scholar 

  • Stotzky, G. 1960. A simple method for the determination of the respiratory quotient of soils. Can. J. Microbiol.6: 439–452.

    PubMed  CAS  Google Scholar 

  • Swaby, R. J., andB. I. Passey. 1953. A sample macro-respirometer for studies in soil microbiology. Aust. J. Agric. Res.4: 334–339.

    Article  CAS  Google Scholar 

  • Tesařová, M., and J. Gloser. 1972. Soil respiration in a moist meadow plant community.In: Ecosystem Study on Grassland Biome in Czechoslovakia, ed. by M. Rychnovská. IBP/PT-PP Rep. No. 2. Brno, Czechoslovakia.

  • Thomas, W. A. 1968. Decomposition of loblolly pine needles with and without the addition of dogwood leaves. Ecology49: 568–571.

    Article  Google Scholar 

  • Thomas, W. A. 1969. Accumulation and cycling of calcium by dogwood trees. Ecol. Monogr.39: 101–120.

    Article  Google Scholar 

  • Turpin, H. W. 1920. The carbon dioxide of the soil air. Cornell Univ., Agric. Exp. Stn. Memo.32: 315–362.

    Google Scholar 

  • Tyler, G. 1971. Distribution and turnover of organic matter and minerals in a shore meadow ecosystem. Oikos22: 265–291.

    Article  CAS  Google Scholar 

  • Van Cleave, K. 1971. Energy and weight loss functions for decomposing foliage in birch and aspen forests in interior Alaska. Ecology52: 720–723.

    Article  Google Scholar 

  • Van Cleave, K., andD. Sprague. 1971. Respiration rates in the forest floor of birch and aspen stands in interior Alaska. Arct. Alp. Res.3: 17–26.

    Article  Google Scholar 

  • Van Der Drift, J. 1963. The disappearance of litter in mull and mor in connection with weather conditions and the activity of the macrofauna.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 125–133.

    Google Scholar 

  • Van Der Drift, J., andM. Witkamp. 1960. The significance of the break-down of oak litter byEniocyla pusilla. Burm. Arch. Neerland Zool.13: 486–492.

    CAS  Google Scholar 

  • Van Schreven, D. A. 1967. The effect of intermittent drying and wetting of a calcareous soil on carbon and nitrogen mineralization. Plant Soil26: 14–32.

    Article  Google Scholar 

  • Voigt, G. K. 1965. Nitrogen recovery from decomposing tree leaf tissue and forest humus. Soil Sci. Soc. Am. Proc.29: 756–759.

    Article  CAS  Google Scholar 

  • Waid, J. S. 1957. Distribution of fungi with decomposing tissues of ryegrass roots. Trans. Br. Mycol. Soc.40: 391–406.

    Article  Google Scholar 

  • Waid, J. S. 1974. Decomposition of roots.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 175–211.

    Google Scholar 

  • Waksman, S. A., andF. C. Gerretsen. 1931. Influence of temperature and moisture upon the nature and extent of decomposition of plant residues by microorganisms. Ecology12: 33–60.

    Article  CAS  Google Scholar 

  • Waksman, S. A., andR. L. Starkey. 1924. Microbiological analysis of soil as an index of soil fertility: VII. Carbon dioxide evolution. Soil Sci.17: 141–161.

    CAS  Google Scholar 

  • Waksman, S. A., andF. G. Tenney. 1928. Composition of natural organic materials and their decomposition in the soil. III. The influence of nature of plants upon the rapidity of its decomposition. Soil Sci.26: 155–171.

    Article  CAS  Google Scholar 

  • Waksman, S. A., F. G. Tenney, andK. R. Stevens 1928. The role of microorganisms in the transformation of organic matter in forest soil. Ecology9: 126–144.

    Article  CAS  Google Scholar 

  • Wallis, G. W., andS. A. Wilde. 1957. Rapid method for the determination of carbon dioxide evolved from forest soils. Ecology38: 359–361.

    Article  CAS  Google Scholar 

  • Walter, H. 1952. Eine einfache Methode zur ökologischen Erfassung des CO2-Faktors am Standort. Ber. Dtsch. Bot. Ges.65: 175–182.

    Google Scholar 

  • Walter, H. 1960. Grundlagen der Pflanzenverbreitung, Teil. 1. Standortlehre. Eugen Ulmer Verlag, Stuttgart. 525 pp.

    Google Scholar 

  • Walter, H., and W. nHaber. Über die Intensität der Bodenatmung mit Bermerkungen zu den Lundegardhschen Werten. Ber. Dtsch. Bot. Ges.70: 257–282.

  • Wanner, H. 1970. Soil respiration, litter fall and productivity of tropical rain forest. J. Ecol.58: 543–547.

    Article  Google Scholar 

  • Warembourg, F. R., andE. A. Paul. 1973. The use of C14O2 canopy techniques for measuring carbon transfer through the plant-soil system. Plant Soil38: 331–345.

    Article  CAS  Google Scholar 

  • Weaver, J. E. 1947. Rate of decomposition of roots and rhizomes of certain range grasses in undisturbed prairie soil. Ecology28: 221–240.

    Article  Google Scholar 

  • Weaver, R. W. 1974. Simple, inexpensive apparatus for simultaneous collection of CO2 evolved from numerous soil. Soil Sci. Soc. Am. Proc.38: 853.

    Article  CAS  Google Scholar 

  • Webster, J. 1956. Succession of fungi on decaying cocksfoot culms. I. J. Ecol.44: 517–544.

    Google Scholar 

  • Webster, I. 1957. Succession of fungi on decaying cocksfoot culms. II. J. Ecol.45: 1–30.

    Article  Google Scholar 

  • Wiant, H. V. 1967a. Influence of temperature on the rate of soil respiration. J. For.65: 489–490.

    Google Scholar 

  • Wiant, H. V. 1967b. Influence of moisture content on “soil respiration.” J. For.65: 902–903.

    Google Scholar 

  • Wiant, H. V. 1967c. Contribution of roots to forest “soil respiration.” Adv. Frontiers Plant Sci.18: 136–138.

    Google Scholar 

  • Wiegert, R. G. 1974. Litterbag studies for microarthropod populations in three South Carolina old fields. Ecology55: 94–102.

    Article  Google Scholar 

  • Wiegert, R. G., D. C. Coleman, andE. P. Odum. 1970. Energetics of the littersoil subsystem.In: Methods of study in soil ecology, ed. by J. Phillipson. IBP/UNESCO Symp., Paris. pp. 93–98.

    Google Scholar 

  • Wiegert, R. G., andF. C. Evans. 1964. Primary production and disappearance of dead vegetation on an old field in southeastern Michigan. Ecology45: 49–63.

    Article  Google Scholar 

  • Wiegert, R. G., andJ. T. McGinnis. 1975. Annual production and disappearance of detritus on three South Carolina old fields. Ecology56: 129–140.

    Article  Google Scholar 

  • Wiegert, R. G., andP. Murphy. 1970. Effect of season, species, and location on the disappearance rate of leaf litter in a Puerto Rican rain forest.In: A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico, ed. by H. T. Odum. Div. Tech. Information, USAEC, Washington, D.C. pp. 101–104.

    Google Scholar 

  • Wildung, R. E., T. R. Garland, andR. L. Buschbom. 1975. The interdependence effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol. Biochem.7: 373–378.

    Article  CAS  Google Scholar 

  • Williams, S. T., andT. R. G. Gray. 1974. Decomposition of the litter on the soil surface.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York, pp. 611–632.

    Google Scholar 

  • Witkamp, M. 1963. Microbial population of leaf litter in relation to environmental conditions and decomposition. Ecology44: 370–377.

    Article  Google Scholar 

  • Witkamp, M. 1964. Environmental influences on microbial populations and activity of the forest floor. Trans. 8th Int. Cong. Soil Sci.3: 647–654.

    Google Scholar 

  • Witkamp, M. 1966a. Decomposition of leaf litter in relation to environmental conditions, microflora and microbial respiration. Ecology47: 194–201.

    Article  Google Scholar 

  • Witkamp, M. 1966b. Rates of carbon dioxide evolution from the forest floor. Ecology47: 492–494.

    Article  Google Scholar 

  • Witkamp, M. 1969. Cycles of temperature and carbon dioxide evolution from litter and soil. Ecology50: 922–924.

    Article  Google Scholar 

  • Witkamp, M., andD. A. Crossley, Jr, 1966. The role of arthropods and microflora in breakdown of white oak litter. Pedobiologia6: 293–303.

    Google Scholar 

  • Witkamp, M., andM. L. Frank. 1967. Retention and loss of cesium-137 by components of the groundcover in a pine (Pinus virginiana L.) stand. Health Phys.13: 985–990.

    Article  PubMed  CAS  Google Scholar 

  • Witkamp, M., andM. L. Frank. 1969. Evolution of CO2 from litter, humus, and subsoil of a pine stand. Pedobiologia9: 358–365.

    Google Scholar 

  • Witkamp, M., andJ. S. Olson. 1963. Breakdown of confined and nonconfined oak litter. Oikos14: 138–147.

    Article  Google Scholar 

  • Witkamp, M., andJ. Van Der Drift. 1961. Breakdown of forest litter in relation to environmental factors. Plant Soil15: 295–311.

    Article  CAS  Google Scholar 

  • Wittich, W. 1939. Untersuchungen über den Verlauf der Streuzersetzungen auf einem Boden mit Mullzustand. 1. Forstarchiv15: 96–111.

    CAS  Google Scholar 

  • Wittingham, W. F., and L. Baker. 1972. Microfungal population changes associated with the decomposition of oak forest leaf litter. Eastern Deciduous Forest Biome Memo. Rep. No. 72. 105 pp.

  • Wollny, E. 1831. Untersuchungen über den Einfluss der physikalischen Eigenschaften des Bodens auf dessen Gehalt an freier Kohlensaure. Forsch. Gebiete Agric. Phys.4: 1–28.

    Google Scholar 

  • Wood, T. G. 1976. The role of termites (Isoptera) in decomposition processes.In: The role of terrestrial and aquatic organisms in decomposition processes, ed. by J. M. Anderson and A. Macfadyen. Blackwell Sci. Pub., Oxford. pp. 145–168.

    Google Scholar 

  • Woodford, E. K., andF. G. Gregory. 1948. Preliminary results obtained with an apparatus for the study of salt uptake and root respiration of whole plants. Ann. Bot.12: 335–370.

    CAS  Google Scholar 

  • Woodwell, G. M., andW. R. Dykeman. 1966. Respiration of forest measured by carbon dioxide accumulation during temperature inversions. Science154: 1031–1034.

    Article  PubMed  CAS  Google Scholar 

  • Woodwell, G. M., andT. G. Marples. 1968. The influence of chronic gamma irradiation on production and decay of litter and humus in an oak-pine forest. Ecology49: 456–464.

    Article  Google Scholar 

  • Yamane, I., and K. Sato. 1971. Decay of litter ofMiscanthus sinensis andSasa palmata in Kawatabi IBP area.In: Grassland ecosystem studies, ed. by M. Numata. Jap. Comm., Int. Biol. Prog., Grassland Project. 51 pp.

  • Yastrebov, M. T. 1958. Effect of the major biological factors on air composition of alluvial soils in the Klyaz’ma River flood plain. Sov. Soil Sci.1958(10): 1155–1162.

    Google Scholar 

  • Yemm, E. W. 1965. The respiration of plants and their organs.In: Plant physiology, vol. IV-A. Metabolism: Organic nutrition and nitrogen metabolism, ed. by F. C. Steward. Academic Press, Inc., New York. pp. 231–310.

    Google Scholar 

  • Zlotin, R. I. 1970. Invertebrate animals as a factor of the biological turnover. IV Colloq. Int. de la Faune du Sol, Dijon 1970, Paris19H: 455–462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Requests for reprints should addressed to Ms. Nancy Wilson, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado 80523, U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J.S., Gupta, S.R. Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev 43, 449–528 (1977). https://doi.org/10.1007/BF02860844

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860844

Keywords

Navigation