Skip to main content
Log in

Influence of environmental factors on the wood structure of living and fossil trees

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The mechanism of wood development records in varying degree the effects of both external and internal factors that are operating at the time of development. As a result, fossil woods spanning the last 370 million years represent a unique palaeo-environmental data-store. Data concerning external factors that can be reclaimed consist of: presence or absence of growth rings; ring widths; relative proportions of earlywood and latewood and the nature of the transition between them; “false” and “frost” rings and evidence of damage by animals or fire; occurrence of reaction wood. These effects have to be seen against a background of the influences of the internal factors.

The development of wood involves the action of plant growth regulators. The production of an entire season’s growth of wood depends on a supply of photosynthate, partly stored from the previous year, and the remainder directly from photosynthesis during the current one. In any population of trees of the same species there will be genetic variation which will lead to differences in the wood formed by the individual trees even if they have all grown in a largely similar environment. However the external factors exert a much greater influence than the internal ones.

Our earliest fossil woods (Upper Devonian) show either seasonless growth patterns or, if weak rings are perceptible, then the increments are extensive. This is consistent with the palaeo-equatorial position of all recorded Devonian woods. In the Carboniferous a few sites (marginal in the tropical belt?) show subdued (weak) growth rings. By the time of the Gondwana glaciation strong rings are shown in high southern latitudes, but most surprisingly there are sizeable increments well inside the palaeoantarctic circle. This phenomenon persists into the Mesozoic where lack of growth rings shows consistency with positions within the palaeo-equatorial latitudes. However occurrence of Cretaceous high latitude wood growth demonstrates that given an adequate ambient temperature, forest growth was possible close to both poles. It is shown that this is consistent with the total energy flux known to occur now in high latitudes.

Resumé

Le mécanisme de développement du bois enregistre à des degrés variables les effets des facteurs, à la fois externes et internes, opérant au moment du développement. C’est pourquoi les bois fossiles des dernières 370 millions d’années représentent un fonds d’information unique en ce qui concerne le paléo-environnement. Les informations qui ont pu être recueillies au sujet des facteurs externes sont les suivantes: la présence ou l’absence des zones d’accroissement; le diamètre des cernes; les proportions relatives du bois initial et du bois final et la nature de la transition entre eux; les “faux cernes” et les “cernes de gelée” et les traces de dommage causé par les animaux ou le feu; l’existence de bois de réaction. On doit analyser ces effets à la lumière des influences des facteurs internes.

Le développement du bois nécessite l’action de régulateurs de croissance des plantes. La production totale de bois pendant une saison depend de l’alimentation en produits de photosynthèse dont une partie provient des stocks de l’année précédente, le reste ayant été synthétisé pendant l’année en cours. Dans toutes les populations d’arbres d’une même espèce il existe des variations génétiques qui conduisent à des différences dans le bois formé par chaque arbre individuel même s’ils ont tous poussé dans un environnement semblable. Néanmoins les facteurs externes exercent une influence beaucoup plus importante que les facteurs internes.

Nos bois fossiles les plus anciens (Dévonien Supérieur) montrent soit des modèles de croissance qui ne tiennent pas compte des saisons, soit, si les cernes faibles sont visibles, ils sont larges. Ceci est compatible avec la position paléo-équatoriale de tous les bois Dévoniens observés. Pendant le Carbonifère, quelques sites (marginaux dans la ceinture tropicale?) montrent de faibles zones d’accroissement. A l’époque de la glaciation Gondwana, des cernes remarquables apparaissent dans les hautes latitudes méridionales, mais on observe avec surprise des accroissements de taille dans le cercle paléo-antarctique. Ce phénomène persiste pendant le Mesozoïque où l’absence des zones d’accroissement est compatible avec les positions dans les latitudes paléo-équatoriales. Cependant l’existence de forêts dans les hautes latitudes pendant le Crétacé démontre que si la température ambiante était adéquate, la pousse de forêts était possible près des deux pôles. On démontre que ceci est compatible avec le flux total d’énergie que l’on sait exister aujourd’hui dans les hautes latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Absalom, R. G. 1931.Calamopitys (Eristophyton) beinertiana (Goeppert) containing annual rings. Northw. Naturalist6: 70–74.

    Google Scholar 

  • Antevs, E. 1917. Jahresringe der Holzgewächse und die Bedeutung derselben als klimatischer Indikator. Progr. Rei Bot.5: 285–386.

    Google Scholar 

  • —. 1925. The climatologic significance of annual rings in fossil woods. Amer. J. Sci. 5th Ser.9: 296–302.

    Google Scholar 

  • —. 1953. Tree rings and seasons in past geological eras. Tree-Ring Bull.20: 17–19.

    Google Scholar 

  • Archer, R. R. andB. F. Wilson. 1970. Mechanics of the compression wood response. I. Preliminary analyses. Pl. Physiol.46: 550–556.

    Google Scholar 

  • ——. 1973. Mechanics of the compression wood response. II. On the location, action, and distribution of compression wood formation. Pl. Physiol.51: 777–782.

    Google Scholar 

  • Arnold, C. A. 1930. The genusCallixylon from the Upper Devonian of central and western New York. Pap. Michigan Acad. Sci.11: 1–50.

    Google Scholar 

  • —. 1931. OnCallixylon newberryi (Dawkins) Elkins et Wieland. Michigan Univ. Mus. Paleont. Contr.3: 207–232.

    Google Scholar 

  • —. 1934.Callixylon whiteanum sp. nov., from the Woodford Chert of Oklahoma. Bot. Gaz.96: 180–185.

    Google Scholar 

  • —. 1947. An introduction to paleobotany. McGraw-Hill Book Co., New York.

    Google Scholar 

  • —. 1952. Silicified plant remains from the Mesozoic and Tertiary of Western North America II. Some fossil woods from Northern Alaska. Pap. Michigan Acad. Sci.38: 9–20.

    Google Scholar 

  • Asama, K. 1982. Contributions to the geology and palaeontology of south-east Asia. CCXXII:Araucarioxylon from Khorat, Thailand. Geol. Palaeont. Southeast Asia23: 57–64.

    Google Scholar 

  • Avery, G. S., P. R. Burkholder andH. B. Creighton. 1937. Production and distribution of growth hormone in shoots ofAesculus andMalus, and its probable role in stimulating cambial activity. Amer. J. Bot.24: 51–58.

    CAS  Google Scholar 

  • Bailey, I. W. 1925. The spruce budworm biocoenose. 1. Frost rings as indicators of the chronology of specific biological events. Bot. Gaz.80: 93–101.

    Google Scholar 

  • — andA. F. Faull. 1934. The cambium and its derivative tissues. No. IX. Structural variability in the redwood,Sequoia sempervirens, and its significance in the identification of fossil woods. J. Arnold Arbor.15: 233–252.

    CAS  Google Scholar 

  • Baker, F. S. 1950. Principles of silviculture. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Balatinecz, J. J. andR. W. Kennedy. 1968. Mechanism of earlywood-latewood differentiation. Techn. Assoc. Pulp Paper Industr.51: 414–422.

    CAS  Google Scholar 

  • Bamberg, S., W. Schwarz andW. Tranquillini. 1967. Influence of daylength on the photosynthetic capacity of stone pine (Pinus cembra L.). Ecology48: 264–269.

    Google Scholar 

  • Bannan, M. W. 1962. The vascular cambium and tree-ring development. Pages 3–21in T. T. Kozlowski (ed.), Tree growth. Ronald Press, New York.

    Google Scholar 

  • — andW. L. Fry. 1957. Three Cretaceous woods from the Canadian Arctic. Canad. J. Bot.35: 327–337.

    Google Scholar 

  • Barber, C. A. 1898.Cupressinoxylon vectense, a fossil conifer from the Lower Greenland of Shanklin, in the Isle of Wight. Ann. Bot.12: 329–361.

    Google Scholar 

  • Barger, R. L. andP. F. Ffolliott. 1976. Factors affecting occurrence of compression wood in individual ponderosa pine trees. Wood Sci.8: 201–208.

    Google Scholar 

  • Barnes, R. D., J. J. Woodend, M. A. Schweppenhauser andL. J. Mullin. 1977. Variation in diameter growth and wood density in six-year-old provenance trials ofPinus caribaea Morelet on five sites in Rhodesia. Silvae Genet.26: 163–167.

    Google Scholar 

  • Barron, E. J. 1983. A warm, equable Cretaceous: The nature of the problem. Earth-Science Rev.19: 305–338.

    Google Scholar 

  • —,S. L. Thompson andS. H. Schneider. 1981. An ice-free Cretaceous? Results from climate model simulations. Science212: 501–508.

    PubMed  Google Scholar 

  • — andW. M. Washington. 1982. Cretaceous climate: A comparison of atmospheric simulations with the geologic record. Palaeogeogr. Palaeoclimatol. Palaeoecol.40: 103–133.

    Google Scholar 

  • Beck, C.B. 1953. A new root species ofCallixylon. Amer. J. Bot.40: 226–233.

    Google Scholar 

  • Berlyn, G. P. 1982. Morphogenetic factors in wood formation and differentiation. Pages 123–150in P. Baas (ed.), New perspectives in wood anatomy. Nijhoff-Junk, The Hague.

  • Beschel, R. E. andD. Webb. 1963. Growth ring studies on arctic willows. Pages 189–198in F. Müller (ed.), Axel Heiberg Island, Preliminary Report 1961–1962. McGill University, Montreal.

    Google Scholar 

  • Blackman, G. E. andJ. N. Black. 1959. Physiological and ecological studies in the analysis of plant environment. XII. The role of the light factor in limiting growth. Ann. Bot.23: 137–145.

    Google Scholar 

  • Blum, W. 1971. Experimental induction of reaction-wood formation in spruce and poplar. Ber. Schweiz. Bot. Ges.80: 225–251.

    CAS  Google Scholar 

  • Boeshore, I. andW. D. Gray. 1936. An Upper Cretaceous wood;Torreya antiqua. Amer. J. Bot.23: 524–528.

    Google Scholar 

  • Boureau, E. 1949.Dadoxylon (Araucarioxylon) teixeirae n. sp. Bois fossile du Jurassique superieur portugais. Comun. Serv. Geol. Portugal29: 187–194.

    Google Scholar 

  • —. 1950. Contribution à l’étude paléoxylogique de l’Indochine. Bull. Serv. Géol. Indochine29: 1–13.

    Google Scholar 

  • —. 1951. Étude paléoxylologie de l’Afrique du Nord (1): Présence deDadoxylon (Araucarioxylon)teixeirae Boureau dans le Haut Atlas de Maroc. Notes Mém. Serv. Mines Carte Géol. Maroc.4: 123–133.

    Google Scholar 

  • —. 1952. Étude des fossiles du Territoire du Tchad: 1.Protopodocarpoxylon rochii n. sp. Bois fossile mésozoïque. Bull. Mus. Hist. Nat. Paris, 2∘ Série24: 223–232.

    Google Scholar 

  • Boyce, S. G. andM. Kaeiser. 1961. Environment and genetic variability in the length of fibers of eastern cottonwood. Techn. Assoc. Pulp Paper Industr.44: 363–366.

    CAS  Google Scholar 

  • Boyd, J. D. 1973. Compression wood force generation and functional mechanics. New Zealand J. Forest. Sci.3: 240–258.

    Google Scholar 

  • —. 1977. Basic cause of differentiation of tension wood and compression wood. Austral. Forest Res.7: 121–143.

    Google Scholar 

  • Brett, D. W. 1983. Records of temperature and drought in London’s park trees. Arbor. Journal7: 63–71.

    Google Scholar 

  • British Columbia Forest Service. 1947. Yield Data. British Columbia Forest Service.

  • Brown, C. L. andJ. Klein. 1961. Observations on inheritance of wood specific gravity in seedling progeny of loblolly pine. J. Forest.59: 898–899.

    Google Scholar 

  • Brown, H. P. 1912. Growth studies in forest trees. I.Pinus rigida. Bot. Gaz.54: 386–403.

    Google Scholar 

  • —. 1915. Growth studies in forest trees. II.Pinus strobus. Bot. Gaz.59: 197–241.

    Google Scholar 

  • van Buijtenen, J. P. 1958. Experimental control of environmental factors and their effect upon some aspects of wood anatomy in loblolly pine. Techn. Assoc. Pulp Paper Industr.41: 175–178.

    Google Scholar 

  • —. 1962. Heritability estimates of wood density in loblolly pine. Techn. Assoc. Pulp Paper Industr.45: 602–605.

    Google Scholar 

  • Burdon, R. D. 1975. Compression wood inPinus radiata clones on four different sites. New Zealand J. Forest Sci.5: 152–164.

    Google Scholar 

  • Calder, M. G. 1953. A coniferous petrified forest in Patagonia. Bull. Brit. Mus. (Nat. Hist), Geology2: 99–138.

    Google Scholar 

  • Carlquist, S. 1977. Ecological factors in wood evolution: A floristic approach. Amer. J. Bot.64: 887–896.

    Google Scholar 

  • Cech, M. Y., R. W. Kennedy andJ. H. G. Smith. 1960. Variation in some quality attributes of one-year-old black cottonwood. Techn. Assoc. Pulp Paper Industr.43: 857–858.

    CAS  Google Scholar 

  • Chalk, L. 1927. The growth of the wood of ash (Fraxinus excelsior L. andF. oxycarpa Willd.) and Douglas fir (Pseudotsuga douglasii Carr.). Quart. J. Forest.21: 102–122.

    Google Scholar 

  • -. 1930. The formation of spring and summer wood in ash and Douglas fir. Oxford Forest. Mem. 10.

  • Chang, C. Y. 1929. A newXenoxylon from North China. Bull. Geol. Soc. China8: 243–251.

    Google Scholar 

  • Christie, R. L. 1964. Geological reconnaissance of northeastern Ellesmere Island, District of Franklin. Bull. Geol. Surv. Canada Memoir331: 1–77.

    Google Scholar 

  • Clark, J. 1961. Photosynthesis and respiration in white spruce and balsam fir. Techn. Publ. New York State Coll. Forest. No. 58. Syracuse, New York.

    Google Scholar 

  • Cooper, W. S. 1931. A third expedition to Glacier Bay, Alaska. Ecology12: 61–95.

    Google Scholar 

  • Coster, C. 1927–1928. Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen. Ann. Jard. Bot. Buitenzorg37: 49–160;38: 1–114.

    Google Scholar 

  • Cown, D. J. andM. L. Parker. 1979. Densitometric analysis of wood from five Douglasfir provenances. Silvae Genet.28: 48–53.

    Google Scholar 

  • Craighead, F. C. 1940. Some effects of artificial defoliation on pine and larch. J. Forest.38: 885–888.

    Google Scholar 

  • Creber, G. T. 1972. Gymnospermous wood from the Kimmeridgian of East Sutherland and from the Sandringham sands of Norfolk. Palaeontology15: 655–661.

    Google Scholar 

  • —. 1975. The effect of gravity and the earth’s rotation on the growth of wood. Pages 75–87in G. D. Rosenberg and S. K. Runcorn (eds.), Growth rhythms and history of the earth’s rotation. John Wiley, London.

    Google Scholar 

  • —. 1977. Tree rings: A natural data-storage system. Biol. Rev. Cambridge Philos. Soc.52: 349–383.

    Google Scholar 

  • Cronshaw, J. andP. R. Morey. 1965. Induction of tension wood by 2,3,5-tri-iodobenzoic acid. Nature205: 816–818.

    CAS  Google Scholar 

  • Dadswell, H. E. andA. B. Wardrop. 1960. Some aspects of wood anatomy in relation to pulping quality and to tree breeding. J. Austral. Pulp Paper Industr. Tech. Assoc.13: 161–173.

    CAS  Google Scholar 

  • Daubenmire, R. F. 1946. Radial growth of trees at different altitudes. Bot. Gaz.107: 462–467.

    Google Scholar 

  • —. 1949. Relation of temperature and daylength to the inception of tree growth in spring. Bot. Gaz.110: 464–475.

    Google Scholar 

  • Decker, J. P. 1944. Effect of temperature on photosynthesis and respiration in red and loblolly pines. PL Physiol.19: 679–688.

    CAS  Google Scholar 

  • Denne, M. P. 1971. Temperature and tracheid development inPinus sylvestris seedlings. J. Exp. Bot.22: 362–370.

    Google Scholar 

  • —. 1972. A comparison of root and shoot-wood development in conifer seedlings. Ann. Bot.36: 579–587.

    Google Scholar 

  • —. 1974. Effects of light intensity on tracheid dimensions inPinus sitchensis. Ann. Bot.38: 337–345.

    Google Scholar 

  • —. 1976a. Effects of environmental change on wood production and wood structure inPicea sitchensis seedlings. Ann. Bot.40: 1017–1028.

    Google Scholar 

  • —. 1976b. Wood production and structure in relation to bud activity in some softwood and hardwood species. Pages 204–221in P. Baas, A. J. Bolton and D. M. Catling (eds.), Wood structure in biological and technological research. Leiden Botanical Series. Leiden University Press, Dordrecht.

    Google Scholar 

  • — andR. S. Dodd. 1981. The environmental control of wood development. Pages 236–255in J. R. Barnett (ed.), Xylem cell development. Castle House Publications, Tunbridge Wells.

    Google Scholar 

  • — andC. J. Smith. 1971. Daylength effects on growth, tracheid development and photosynthesis in seedlings ofPicea sitchensis andPinus sylvestris. J. Exp. Bot.22: 347–361.

    Google Scholar 

  • — andJ. E. Wilson. 1977. Some quantitative effects of indoleacetic acid on the wood production and tracheid dimensions ofPicea. Planta134: 223–228.

    CAS  Google Scholar 

  • Dickinson, R. E. 1983. Land surfaces and climate-Surface albedos and energy balance. Pages 305–353in B. Saltzman (ed.), Theory of climate. Advances Geophysics 25. Academic Press, New York.

    Google Scholar 

  • Digby, J. andP. F. Wareing. 1966. The relationship between endogenous hormone levels in the plant and seasonal aspects of cambial activity. Ann. Bot.30: 607–622.

    CAS  Google Scholar 

  • Dinwoodie, J. M. 1963. Variation in tracheid length inPicea sitchensis Carr. Forest Products Research, Special Report No. 16.

  • Doley, D. andL. Leyton. 1968. Effects of growth regulating substances and water potential on the development of secondary xylem inFraxinus. New Phytol.67: 579–594.

    CAS  Google Scholar 

  • Doumani, G. A. andW. E. Long. 1962. The ancient life of the Antarctic. Sci. Amer.207(3): 168–184.

    Google Scholar 

  • Downs, R. J. andH. A. Borthwick. 1956. Effects of photoperiod on growth of trees. Bot. Gaz.117: 310–326.

    Google Scholar 

  • Duke, N. C., W. R. Birch andW. T. Williams. 1981. Growth rings and rainfall correlations in a mangrove tree of the genusDiospyros (Ebenaceae). Austral. J. Bot.29: 135–142.

    Google Scholar 

  • Elkington, T. T. andB. M. G. Jones. 1974. Biomass and primary productivity of birch (Betula pubescens s. lat.) in south-west Greenland. J. Ecol.62: 821–830.

    Google Scholar 

  • Elkins, M. G. andG. R. Wieland. 1914. Cordaitean wood from the Indiana black shale. Amer. J. Sci.38: 65–78.

    Google Scholar 

  • Elliott, G. K. 1970. Wood density in conifers. Technical Communication No. 8, Commonwealth Forestry Bureau, Oxford, England.

    Google Scholar 

  • Ermich, K. 1963. The inception and the end of the annual tree ring formation inFagus silvatica L.,Abies alba Mill. andPicea excelsa Link in the Tatra Mountains. Ekol. Polska, Ser. A11: 311–336.

    Google Scholar 

  • Evert, R. F. andT. T. Kozlowski. 1967. Effect of isolation of bark on cambial activity and development of xylem and phloem in trembling aspen. Amer. J. Bot.54: 1045–1055.

    Google Scholar 

  • —— andJ. D. Davis. 1972. Influence of phloem blockage on cambial growth ofAcer saccharum. Amer. J. Bot.59: 632–641.

    Google Scholar 

  • Farman, J. C. and R. A. Hamilton. 1978. Measurements of radiation at the Argentine Islands and Halley Bay. 1963–1972. Brit. Antarct. Surv., Scient. Rep. No. 99.

  • Fletcher, J. M. 1975. Relation of abnormal earlywood in oaks to dendrochronology and climatology. Nature254: 506–507.

    Google Scholar 

  • Fliehe, P. 1900. Note sur un bois fossile de Madagascar. Bull. Soc. Géol. France, 3∘ Série.28: 470–472.

    Google Scholar 

  • Ford, E. D., A. W. Robards andM. D. Piney. 1978. Influence of environmental factors on cell production and differentiation in the early wood ofPicea sitchensis. Ann. Bot.42: 683–692.

    Google Scholar 

  • Fowells, H. A. 1941. The period of seasonal growth of ponderosa pine and associated species. J. Forest.39: 601–608.

    Google Scholar 

  • Frakes, L. A. 1979. Climates throughout geologic time. Elsevier, Amsterdam.

    Google Scholar 

  • Francis, J. E. 1983. The dominant conifer of the Jurassic Purbeck Formation, England. Palaeontology26: 277–294.

    Google Scholar 

  • Fraser, D. A. 1956. Ecological studies of forest trees at Chalk River, Ontario, Canada. II. Ecological conditions and radial increment. Ecology37: 777–789.

    Google Scholar 

  • Freeland, R. O. 1952. Effect of age of leaves upon the rate of photosynthesis in some conifers. Pl. Physiol.27: 685–690.

    CAS  Google Scholar 

  • Frentzen, K. 1931. Die palaeogeographische Bedeutung des Auftretens von Zuwachszonen (Jahresringen) bei Holzern der SammelgattungDadoxylon Endl. aus dem Carbon und dem Rotliegenden des Oberrheingebietes. Zentralbl. Mineral., Teil 3, Hist. Regionale Geol. Paläont.1931B: 617–624.

    Google Scholar 

  • Fritts, H. C. 1962. The relation of growth ring widths in American beech and white oak to variations in climate. Tree-Ring Bull.25: 2–10.

    Google Scholar 

  • —. 1976. Tree rings and climate. Academic Press, Inc., New York.

    Google Scholar 

  • Fry, W. L. 1958. Petrified logs ofCupressinoxylon from the west shore of Chilko Lake, British Columbia. Bull. Geol. Surv. Canada48: 11–14.

    Google Scholar 

  • — andL. Chalk. 1957. Variation of density in the wood ofPinus patula grown in Kenya. Forestry30: 29–45.

    Google Scholar 

  • Fryer, J. H. andF. T. Ledig. 1972. Microevolution of the photosynthetic temperature optimum in relation to the elevational complex gradient. Canad. J. Bot.50: 1231–1235.

    Google Scholar 

  • Gassner, G. andF. Christiansen-Weniger. 1942. Dendroklimatologische Untersuchungen über die Jahresrigentwicklung der Kiefern in Anatolien. Nova Acta Leop.12: 1–137.

    Google Scholar 

  • Glerum, C. andJ. L. Farrar. 1966. Frost rings in the stems of some coniferous species. Canad. J. Bot.44: 879–886.

    Google Scholar 

  • Glock, W. S. 1937. Principles and methods of tree-ring analysis. Publ. Carnegie Inst. Wash. 486.

  • —. 1951. Cambial frost injuries and multiple growth layers at Lubbock, Texas. Ecology32: 28–36.

    Google Scholar 

  • -,R. A. Studhalter and S. R. Agerter. 1960. Classification and multiplicity of growth layers in the branches of trees at the extreme lower forest border. Smithsonian Misc. Collect. 140.

  • Goggans, J. F. 1962. The correlation, variation, and inheritance of wood properties in loblolly pine (Pinus taeda L.). North Carolina State Coll. School of Forestry, Tech. Rep. 14.

  • Goldring, W. 1921. Annual rings of growth in Carboniferous wood. Bot. Gaz.72: 326–330.

    Google Scholar 

  • Goldsmith, M. H. M. 1977. The polar transport of auxin. Ann. Rev. Pl. Physiol.28: 439–478.

    CAS  Google Scholar 

  • Gordon, J. C. andP. R. Larson. 1968. The seasonal course of photosynthesis, respiration and distribution of14C in youngPinus resinosa trees as related to wood formation. Pl. Physiol.43: 1617–1624.

    Google Scholar 

  • Gosz, J. R., R. T. Holmes, G. E. Likens andF. H. Bormann. 1978. The flow of energy in a forest ecosystem. Sci. Amer.238(3): 92–102.

    Google Scholar 

  • Gothan, W. 1907. Die fossilen Hölzer von König Karls Land. K. Svenska Vetensk-Akad. Handl.42: 1–41.

    Google Scholar 

  • —. 1911. Die Jahresringlosigkeit der paläozoischen Baume und die Bedeutung dieser Erscheinung für die Beurteilung des Klimas dieser Perioden. Naturwiss. Wochenschr.10: 1–13.

    Google Scholar 

  • Green, H. V. and J. Worrall. 1963. Wood quality studies. Part 1. Scanning microphotometer for automatically measuring and recording certain wood characteristics. Pulp Paper Research Inst. Canada, Tech. Rep. No. 331.

  • Gustafson, F. G. 1938. Influence of the length of day on the dormancy of tree seedlings. Pl. Physiol.13: 655–658.

    CAS  Google Scholar 

  • Häbjørg, A. 1978. Photoperiodic ecotypes in Scandinavian trees and shrubs. Norges Landbrukshogskole Meldinger57: 2–20.

    Google Scholar 

  • Hall, D. O. 1978. Solar energy through biology: Could it be a practical energy source? Pages 9–38in H. Clijsters, M. Van Poncke and R. Marcelle (eds.), Biological solar energy conversion. Limburgs Universitair Centrum, Netherlands.

    Google Scholar 

  • Harris, E. H. M. 1955. The effect of rainfall on the late wood of Scots pine and other conifers in East Anglia. Forestry28: 136–140.

    Google Scholar 

  • Hartig, R. 1885. Holz der deutschen Nadelwaldbaume. Berlin.

  • Hatch, M. D. andK. T. Glasziou. 1963. Sugar accumulation cycle in sugar cane. II. Relationship of invertase activity to sugar content and growth rate in storage tissue of plants grown in controlled environments. Pl. Physiol.38: 344–348.

    CAS  Google Scholar 

  • Helms, J. A. 1965. Diurnal and seasonal patterns of net assimilation in Douglas-fir,Pseudotsuga menziesii (Mirb.) Franco, as influenced by environment. Ecology46: 698–708.

    Google Scholar 

  • —. 1970. Summer net photosynthesis of ponderosa pine in its natural environment. Photosynthetica4: 243–253.

    Google Scholar 

  • Hueg, O. A. 1942. The Downtonian and Devonian Flora of Spitzbergen. Norges Svalb. Ishavs-Undersok.83: 1–128.

    Google Scholar 

  • Holden, R. 1913. Some fossil plants from eastern Canada. Ann. Bot.27: 243–255.

    Google Scholar 

  • —. 1917. On the anatomy of two palaeozoic stems from India. Ann. Bot.31: 315–326.

    Google Scholar 

  • Hollis, C. A. andH. B. Tepper. 1971. Auxin transport within intact dormant and active white ash shoots. Pl. Physiol.48: 146–149.

    CAS  Google Scholar 

  • Honda, S. 1896. Besitzen die Kiefernadeln ein mehrjähriges Wachstum? Bull. Imp. Univ. Coll. Agr.2: 391–392.

    Google Scholar 

  • Hoskins, J. T. andA. T. Cross. 1951. The structure and classification of four plants from the New Albany shale. Amer. Midl. Naturalist46: 684–716.

    Google Scholar 

  • Hylander, C. J. 1922. A Mid-DevonianCallixylon. Amer. J. Sci.4: 315–321.

    Google Scholar 

  • Jahnke, L. S. andD. B. Lawrence. 1965. Influence of photosynthetic crown structure on potential productivity of vegetation, based primarily on mathematical models. Ecology46: 319–326.

    Google Scholar 

  • Jefferson, T. H. 1982. Fossil forests from the Lower Cretaceous of Alexander Island, Antarctica. Palaeontology25: 681–708.

    Google Scholar 

  • Jensen, K. N. 1982. Growth rings in Pennsylvanian fossil wood found in Oklahoma. Oklahoma Geol. Notes42: 7–10.

    Google Scholar 

  • Kennedy, R. W. andJ. L. Farrar. 1965. Tracheid development in tilted seedlings. Pages 419–453in W. A. Coté Jr. (ed.), Cellular ultra-structure of woody plants. Syracuse Univ. Press, New York.

    Google Scholar 

  • Kennett, J. P. 1977. Cenozoic evolution of antarctic glaciation, the circum-antarctic ocean, and their impact on global paleoceanography. J. Geophys. Res.82: 3843–3860.

    CAS  Google Scholar 

  • Khudayberdyev, R. 1962.Ginkgo wood from the Upper Cretaceous of south-west Kyzylkum. Dokl. Akad. Nauk SSSR145: 422–424.

    Google Scholar 

  • Kienholz, R. 1934. Leader, needle, cambial and root growth of certain conifers and their interrelations. Bot. Gaz.96: 73–92.

    Google Scholar 

  • Kittredge, J. 1944. Estimation of the amount of foliage of trees and stands. J. Forest.42: 905–912.

    Google Scholar 

  • Klem, G. G. 1957. The quality of Norway spruce (Picea abies) of Norwegian and German origin. Meddeland. Norske Skogforsoksv.14: 285–315.

    Google Scholar 

  • —,F. Løschbrandt andO. Bade. 1945. Undersokelser av granwirke i forbindelse med slipeog sulfitkokeforsok. Meddeland. Norske Skogforsøksv.9: 1–127.

    CAS  Google Scholar 

  • Knigge, W. andC. Koltzenburg. 1964. Bestimmung der Früholz-Spätholzgrenze in Nadelholzjahrringen mit Hilfe eines Teilchengrössen-Analysators. Holz als Roh- und Werkstoff22: 249–254.

    Google Scholar 

  • Koehler, A. 1938. Wood quality-A reflection of growth environment. J. Forest.36: 867–869.

    Google Scholar 

  • Kossovich, N. L. 1935. On differences in the anatomical structure of the northern and southern sides in the wood of conifers. (English summary.) Bot. Zhurn. SSSR20: 471–472.

    Google Scholar 

  • Kozlowski, T. T. 1962. Photosynthesis, climate and tree growth. Pages 149–164in T. T. Kozlowski (ed.), Tree growth. Ronald Press, New York.

    Google Scholar 

  • —. 1982. Water supply and tree growth. Part I. Water deficits. Forest. Abstr.43: 57–95.

    Google Scholar 

  • Kramer, P. J. 1936. Effect of variation in length of day on growth and dormancy of trees. PL Physiol.11: 127–137.

    CAS  Google Scholar 

  • —. 1943. Amount and duration of growth of various species of tree seedlings. Pl. Physiol.18: 239–251.

    CAS  Google Scholar 

  • —. 1957. Some effects of various combinations of day and night temperatures and photoperiod on the height growth of loblolly pine seedlings. Forest Sci.3: 45–55.

    Google Scholar 

  • — andW. S. Clark. 1946. A comparison of photosynthesis in individual and entire seedlings at various light intensities. Pl. Physiol.22: 51–57.

    Google Scholar 

  • — andJ. P. Decker. 1944. Relation between light intensity and rate of photosynthesis in loblolly pine and certain hardwoods. Pl. Physiol.19: 350–358.

    CAS  Google Scholar 

  • Krames, K. 1952. Geologischer Kompass. Pure Appl. Geophys.22: 57–62.

    Google Scholar 

  • —. 1956. Stubbenuntersuchungen im Braunkohlentagebau der Grube Berrenrath. Braunkohle8: 329–336.

    Google Scholar 

  • Kraus, G. 1874. Einige Bemerkungen über Alter Wachstumverhaltnisse ostgronlandischer Holzgewachse, in Die Zweite deutsche Nordpolarfahrt in den Jahren 1869 und 1870. 2, 1. Leipzig.

  • —. 1883. Das mehrjahrige Wachsen der Kiefernadeln. Abh. Naturf. Ges. Halle 16: 361–372.

    Google Scholar 

  • —. 1899. Nord und Sud im Jahrring. Pages 130–136in Festschrift zur Feier ihres funfzigjahrigen bestehens. Physikalisch-Medizinischen Gesellschaft, Wurzburg.

    Google Scholar 

  • Kraus, J. F. andS. H. Spurr. 1961. Relationship of soil moisture to the springwoodsummerwood transition in southern Michigan red pine. J. Forest.59: 510–511.

    Google Scholar 

  • Kräusel, R. andK. P. Jain. 1963. New fossil coniferous woods from the Rajmahal Hills, Bihar, India. Palaeobotanist12: 59–67.

    Google Scholar 

  • — andP. Range. 1928. Beitrage zur Kenntniss der Karrooformation Deutsch-Sudwest Afrikas. Beitr. Geol. Erforsch. Dsch. Sch. Geb.20: 1–55.

    Google Scholar 

  • Krystofovich, A. 1932. Les bois fossiles comme indicateurs des points cardinaux dans le passé géologique et la théorie de Wegener. Izv. Akad. Nauk SSSR Ser. 7, Otd. Nat. Nauk 3.

  • Kurssanow, A. L. 1933. Über den Einfluss der Kohlenhydrate auf den Tagesverlauf der Photosynthese. Planta20: 535–548.

    Google Scholar 

  • Lacey, W. S. 1953. Scottish Lower Carboniferous plants:Eristophyton waltoni sp. nov. andEndoxylon zonatum (Kidston) Scott from Dunbartonshire. Ann. Bot.17: 579–596.

    Google Scholar 

  • La Grange, J. J. 1963. Trans-Antarctic Expedition 1955–58 Scientific Report No. 13. Meteorology 1. Shackleton. Southice and the journey across Antarctica. Trans-Antarctic Expedition Committee.

  • Larson, P. R. 1957. Effect of environment on the percentage of summerwood and specific gravity of slash pine. Bull. Yale Univ. School Forest. 63.

  • —. 1960. A physiological consideration of the springwood-summerwood transition in red pine. Forest Sci.6: 110–122.

    CAS  Google Scholar 

  • —. 1962. The indirect effect of photoperiod on tracheid diameter inPinus resinosa. Amer. J. Bot.49: 132–137.

    Google Scholar 

  • —. 1963. The indirect effect of drought on tracheid diameter in red pine. Forest Sci.9: 52–62.

    Google Scholar 

  • —. 1964a. Some indirect effects on wood formation. Pages 345–365in M. H. Zimmermann (ed.), The formation of wood in forest trees. Academic Press, Inc., New York.

    Google Scholar 

  • —. 1964b. Contribution of different aged needles to growth and wood formation of young red pines. Forest Sci.10: 224–238.

    Google Scholar 

  • —. 1967. Effects of temperature on the growth and wood formation of tenPinus resinosa sources. Silvae Genet.16: 58–65.

    Google Scholar 

  • -Larson, P. R. 1969. Wood formation and the concept of wood quality. Bull. Yale Univ. School Forest.74.

  • Leakey, R. R. B., V. R. Chapman andK. A. Longman. 1975. Studies on root initiation and bud growth in nine clones ofTriplochiton scleroxylon K. Schum. Pages 86–92in Proceedings Symposium on the variation and breeding systems ofTriplochiton scleroxylon K. Schum. Forest Research Insitute of Nigeria, Ibadan.

    Google Scholar 

  • Ledig, F. T. andD. B. Botkin. 1974. Photosynthetic CO2-uptake and the distribution of photosynthate as related to growth of larch and sycamore progenies. Silvae Genet.23: 188–192.

    Google Scholar 

  • Leikola, M. 1969. The influence of environmental factors on the diameter growth of young trees. Acta Forest. Fenn.92: 1–44.

    Google Scholar 

  • Lemoigne, Y. andH. Tyroff. 1967. Caractères anatomiques d’un fragment de bois appartenant a l’espèceWalchia (Lebachia) piniformis du Permien d’Allemagne. Compt. Rend. Hebd. Séances Acad. Sci.265: 595–597.

    Google Scholar 

  • Lepekhina, V. G. 1972. Woods of palaeozoic pycnoxylic gymnosperms with special reference to North Eurasia representatives. Palaeontographica B138: 44–106.

    Google Scholar 

  • Liese, W. andH. E. Dadswell. 1959. Über den Einfluss der Himmelsrichtung auf die Länge von Holzfasern und Tracheiden. Holz als Roh- und Werkstoff17: 421–427.

    Google Scholar 

  • Linzon, S. N. 1958. The effect of artificial defoliation of various ages of leaves upon white pine growth. Forest. Chron.34: 51–56.

    Google Scholar 

  • Liphschitz, N., S. Lev-Yadun andY. Waisel. 1981. The annual rhythm of activity of the lateral meristems (cambium and phellogen) inCupressus sempervirens L. Ann. Bot.47: 485–496.

    Google Scholar 

  • Little, C. H. A. 1981. Effect of cambial dormancy state on the transport of (l-14C)indol-3-ylacetic acid inAbies balsamea shoots. Canad. J. Bot.59: 342–348.

    CAS  Google Scholar 

  • — andP. F. Wareing. 1981. Control of cambial activity and dormancy inPicea sitchensis by indol-3-ylacetic and abscisic acids. Canad. J. Bot.59: 1480–1493.

    CAS  Google Scholar 

  • Lodewick, J. E. 1931. Some effects of irrigation and fertilisation on the size of longleaf pine needles. Forest Worker7: 12–13.

    Google Scholar 

  • Long, A. G. 1979. Observations on the Lower Carboniferous genusPitus Witham. Trans. Roy. Soc. Edinburgh70: 111–127.

    Google Scholar 

  • Longman, K. A. 1969. The dormancy and survival of plants in the humid tropics. Symp. Soc. Exp. Biol.23: 471–488.

    PubMed  CAS  Google Scholar 

  • —. 1978. Control of shoot extension and dormancy: External and internal factors. Pages 465–495in P. B. Tomlinson and M. H. Zimmermann (eds.), Tropical trees as living systems. Proc. 4th Cabot Symp., Harvard Forest. Cambridge University Press, New York.

    Google Scholar 

  • —,R. R. B. Leakey andM. P. Denne. 1979. Genetic and environmental effects on shoot growth and xylem formation in a tropical tree. Ann. Bot.44: 377–380.

    Google Scholar 

  • Lotan, J. E. andR. Zahner. 1963. Shoot and needle responses of 20-year-old red pine to current soil moisture regimes. Forest Sci.9: 497–506.

    Google Scholar 

  • Mädel, E. 1960. Monimiaceen-Hölzer aus den oberkretazischen Umzamba-Schichten von Ost-Pondoland (S-Africa). Senckenberg. Leth.41: 331–391.

    Google Scholar 

  • Maheshwari, H. K. 1972. Permian wood from Antarctica and revision of some Lower Gondwana wood taxa. Palaeontographica B138: 1–43.

    Google Scholar 

  • Marchenko, I. S. 1974. Interaction of woody plants. Lesnoe Khozyaistvo11: 37–45. (In Russian. Forest. Abstr. 1977, 38, No. 3379.)

    Google Scholar 

  • —. 1975. The mutual effect of woody plants. Lesnoe Khozyaistvo12: 44–48. (In Russian. Forest. Abstr. 1977. 38, No. 3380.)

    Google Scholar 

  • Matten, L. C. andH. P. Banks. 1967. Relationship between the Devonian progymnosperm generaSphenoxylon andTetraxylopteris. Bull. Torrey Bot. Club94: 321–323.

    Google Scholar 

  • Mayr, H. 1893. Das Harz der deutschen Nadelwaldbaume. Z. Forstund Jagd.25: 313–324, 389–417, 565–593, 654–670.

    Google Scholar 

  • McKimmy, M. D. andD. D. Nicholas. 1971. Genetic differences in wood traits among half-century-old families of Douglas-fir. Wood & Fiber2: 347–355.

    Google Scholar 

  • McKinnell, F. H. andK. R. Shepherd. 1971. The effect of moisture availability on density variation within the annual ring of radiata pine. J. Inst. Wood Sci.5: 25–29.

    Google Scholar 

  • McMahon, T. A. 1975. The mechanical design of trees. Sci. Amer.233(1): 93–102.

    Google Scholar 

  • Meissner, R. 1894. Studien über das mehrjährige Wachstem der Kiefernadeln. Bot. Z.52: 55–82.

    Google Scholar 

  • Middendorff, A. T. V. 1867. Die Gewächse Sibiriens.In Reise in den aussersten Norden und Osten Sibiriens. 4. 1. St. Petersburg.

  • Mikola, P. 1962. Temperature and tree growth near the northern timber line. Pages 265–287in T. T. Kozlowsi (ed.), Tree growth. Ronald Press, New York.

    Google Scholar 

  • Millar, A. 1980. Annual rings of birch [Betula pubescens ssp.tortuosa (Ledeb.) Nijman]. Climate and defoliation: An exploratory study. Merlewood Research and Development Paper No. 77, Merlewood Research Station, Grange-over-Sands, England.

    Google Scholar 

  • Miller, D. H. 1955. Snow cover and climate in the Sierra Nevada, California. Univ. Calif. Publ.Geogr.11: 1–218.

    Google Scholar 

  • Monteith, J. L. 1965. Light distribution and photosynthesis in field crops. Ann. Bot.29: 17–37.

    Google Scholar 

  • —. 1973. Principles of environmental physics. Edward Arnold, London.

    Google Scholar 

  • Mooney, H. A. andW. D. Billings. 1961. Comparative physiological ecology of arctic and alpine populations ofOxyria digyna. Ecol. Monogr.31: 1–29.

    Google Scholar 

  • —— andR. Brayton. 1966. Field measurements of the metabolic responses of bristlecone pine and big sagebrush in the White Mountains. Bot. Gaz.127: 105–113.

    Google Scholar 

  • — andM. West. 1964. Photosynthetic acclimation of plants of diverse origin. Amer. J. Bot.51: 825–827.

    Google Scholar 

  • Mork, E. 1928. Der Qualität des Fichtenholzes unter besonderer Rucksichtnahme auf Shief- und Papierholz. Papierfabrikant26: 741–747.

    CAS  Google Scholar 

  • Müller, D. 1928. Die Kohlensäureassimilation bei arktischen Pflanzen und die Abhangigkeit der Assimilation von der Temperatur. Planta6: 22–39.

    Google Scholar 

  • Negri, G. 1914. Sopra alenni legni fossili del Gebel Tripolitano. Bull. Soc. Geol. Ital.33: 321–344.

    Google Scholar 

  • Neilson, R. E., M. M. Ludlow andP. G. Jarvis. 1972. Photosynthesis in Sitka spruce [Picea sitchensis (Bong.) Carr.]. II Response to temperature. J. Appl. Ecol.9: 721–745.

    Google Scholar 

  • Newman, I. V. 1956. Pattern in meristems of vascular plants. 1. Cell partition in living apices and in the cambial zone in relation to the concepts of initial cells and apical cells. Phytomorphology6: 1–19.

    Google Scholar 

  • Nicholls, J. W. P. 1971. The effect of environmental factors on wood characteristics. 1. The influence of irrigation onPinus radiata from South Australia. Silvae Genet.20: 26–33.

    Google Scholar 

  • — andA. G. Brown. 1971. The ortet-ramet relationship in wood characteristics ofPinus radiata. J. Austral. Pulp Paper Industr. Tech. Assoc.25: 200–209.

    Google Scholar 

  • —— andL. A. Pederick. 1974. Wood characteristics of sexually and vegetatively reproducedPinus radiata. Austral. J. Bot.22: 19–27.

    Google Scholar 

  • —,C. K. Pawsey andA. G. Brown. 1976. Further studies on the ortet-ramet relationship in wood characteristics ofPinus radiata. Silvae Genet.25: 73–79.

    Google Scholar 

  • — andH. D. Waring. 1977. The effect of environmental factors on wood characteristics. IV. Irrigation and partial draughtingof Pinus radiata. Silvae Genet.26: 107–111.

    Google Scholar 

  • — andJ. P. Wright. 1976. The effect of environmental characters on wood characteristics. III. The influence of climate and site on youngPinus radiata material. Canad. J. For. Res.6: 113–121.

    Google Scholar 

  • Nishida, M. 1973. On some petrified plants from the Cretaceous of Choshi, Chiba Prefecture VI. Bot. Mag.86: 189–202.

    Google Scholar 

  • Njoku, E. 1963. Seasonal periodicity in the growth and development of some forest trees in Nigeria. I. Observations on mature trees. J. Ecol.51: 617–624.

    Google Scholar 

  • —. 1964. Seasonal periodicity in the growth and development of some forest trees in Nigeria. II. Observations on seedlings. J. Ecol.52: 19–26.

    Google Scholar 

  • O’Neil, L. C. 1962. Some effects of artificial defoliation on the growth of jack pine (Pinus banksiana Lamb.). Canad. J. Bot.40: 273–280.

    Google Scholar 

  • Orman, H. R. 1958. The physical and mechanical properties of New Zealand grown Douglas-fir. Part II. The mechanical properties of New Zealand grown Douglas-fir. New Zealand Forest Serv. Tech. Paper No.24: 41–86.

  • Oswald, H. 1969. Conditions forestières et potentialité de l’épicéa en haute ardèche. Ann. Sci. Forest.26: 183–224.

    Google Scholar 

  • Ovington, J. D. 1961. Some aspects of energy flow in plantations ofPinus sylvestris L. Ann. Bot.25: 12–20.

    Google Scholar 

  • — andH. A. I. Madgwick. 1959. The growth and composition of natural stands of birch. 1. Dry-matter production. PL & Soil10: 271–283.

    CAS  Google Scholar 

  • Paul, B. H. and R. O. Marts. 1954. Controlling the proportion of summerwood in longleaf pine. U.S.D.A. Forest Prod. Lab., Madison For. Serv., Rep. No. 1988.

  • Pharis, R. P., H. Hellmers andE. Schuurmans. 1970. Effects of subfreezing temperatures on photosynthesis of evergreen conifers under controlled environment conditions. Photosynthetica4: 273–279.

    Google Scholar 

  • Phelps, J. E., M. Saniewski, M. Smolinski, J. Peniazek andE. A. McGinnes, Jr. 1974. A note on the structure of morphactin-induced wood in two coniferous species. Wood & Fiber6: 13–17.

    Google Scholar 

  • Philipson, J. J. andM. P. Courts. 1980. Effects of growth hormone application on the secondary growth of roots and stems inPicea sitchensis (Bong.) Carr. Ann. Bot.46: 747–755.

    CAS  Google Scholar 

  • Pisek, A., W. Larcher andR. Unterholzner. 1967. Kardinale Temperatur-bereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. I. Temperaturminimum der Nettoassimilation, Gefrier- und Frostschadensbereiche der Blätter. Flora B.157: 239–264.

    Google Scholar 

  • ——,W. Moser andI. Pack. 1969. Kardinale Temperatur-bereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhängigkeit und optimaler Temperaturbereich der Netto-Photosynthese. Flora B.158: 110–128.

    Google Scholar 

  • Pole, M. 1982. The geology of Slope Point to Curio Bay. Unpublished Ms. Geology Department, Otago University, Otago, New Zealand.

  • Polge, H. 1966. Établissement des courbes de variations de la densité du bois par exploration densitométrique de radiographies prélevés à la tarière sur des arbres vivants. Applications dans les domaines technologique et physiologique. Thèse Docteur ès sciences appliquées. Ann. Sci. Forest.23: 1–206.

    Google Scholar 

  • — andR. Keller. 1968. Influence de l’appraisionnement en eau sur la structure interne des accroissements annuels. Ann. Sci. Forest.25: 125–133.

    Google Scholar 

  • Potonié, H. 1902. Fossile Hölzer aus der oberen Kreide Deutsch-Ostafrikas, in Die Reisen der Bergassessors Dr. Dantz in Deutsch-Ostafrika in den Jahren 1898–1900. Mitt. Deuts. Schutzgeb. Bd. 15 Heft4: 227–230.

    Google Scholar 

  • Prasad, M. N. V. andS. Chandra. 1980.Palaeospiroxylon-A new gymnospermous wood from Raniganj coalfield, India. Palaeobotanist26: 230–236.

    Google Scholar 

  • Priestley, J. H. 1930. Studies in the physiology of cambial activity. III. The seasonal activity of the cambium. New Phytol.29: 316–354.

    Google Scholar 

  • — andL. I. Scott. 1936. A note upon summer wood production in the tree. Proc. Leeds Philos. Lit. Soc. Science Section3: 235–248.

    Google Scholar 

  • Princes Risborough. 1972. Reaction wood (tension wood and compression wood). Technical Note No. 57, Princes Risborough Lab., Build. Res. Estab., Princes Risborough, Bucks., England. H.M.S.O. London.

    Google Scholar 

  • Promnitz, L. C. 1975. A photosynthate allocation model for tree growth. Photosynthetica9: 1–15.

    Google Scholar 

  • Rabinowitch, E. I. 1951. Photosynthesis and related processes. Vol. 2. Pt.1. Spectroscopy and fluorescence of photosynthetic pigments; kinetics of photosynthesis. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Ramanujam, C. G. K. andW. N. Stewart. 1969. Fossil woods of Taxodiaceae from the Edmonton Formation (Upper Cretaceous) of Alberta. Canad. J. Bot.47: 115–124.

    Google Scholar 

  • Read, C. G. 1932.Pinoxylon dakotense from the Cretaceous of the Black Hills. Bot. Gaz.93: 173–189.

    Google Scholar 

  • Reinders-Gouwentak, C. A. 1941. Cambial activity as dependent on the presence of growth hormone and the non-resting condition of stems. Proc. Ned. Akad. Weteusch. Amst.44: 654–662.

    Google Scholar 

  • Richardson, S. D. 1964. The external environment and tracheid size in conifers. Pages 367–388in M. H. Zimmermann (ed.), The formation of wood in forest trees. Academic Press, Inc., New York.

    Google Scholar 

  • — andJ. M. Dinwoodie. 1960. Studies on the physiology of xylem development. Part I. The effect of night temperature on tracheid size and wood density in conifers. J. Inst. Wood Sci.1: 3–13.

    Google Scholar 

  • Robards, A. W. 1965. Tension wood and eccentric growth in crack willow (Salix fragilis L.). Ann. Bot.29: 419–431.

    Google Scholar 

  • —. 1969. The effect of gravity on the formation of wood. Sci. Prog.57: 513–532.

    Google Scholar 

  • —,E. Davidson andP. Kidwai. 1969. Short-term effects of some chemicals on cambial activity. J. Exp. Bot.20: 912–921.

    CAS  Google Scholar 

  • Roberts, L. W. 1976. Cytodifferentiation in plants: Xylogenesis as a model system. Cambridge University Press, Cambridge and London.

    Google Scholar 

  • Roggeveen, P. M. 1932. Mesozoisches Koniferenholz (Protocupressinoxylon malayense n. sp.) ven der Insel Soegi in Riouw-Archipel, Niederlandisch Ost-Indien. Proc. kon. Acad. Wetensch. Amsterdam35: 580–584.

    Google Scholar 

  • Russell, R. S. 1940. Physiological and ecological studies on an arctic vegetation. III. Observations on carbon assimilation, carbohydrate storage and stomatal movement in relation to the growth of plants on Jan Mayen Island. J. Ecol.28: 289–309.

    CAS  Google Scholar 

  • Salisbury, F. B. 1981. Responses to photoperiod. Pages 135–167in O. L. Lange, P. S. Nobel, C. B. Osmond and H. Zeigler (eds.), Physiological plant ecology I. Springer-Verlag, Berlin.

    Google Scholar 

  • Sasaki, Y., T. Okyama andY. Kikata. 1978. The evolution process of the growth stress in the tree. The surface stresses on the tree. Wood Res.24: 149–157.

    Google Scholar 

  • Savidge, R. A. andP. F. Wareing. 1981a. Plant-growth regulators and the differentiation of vascular elements. Pages 192–235in J. R. Barnett (ed.), Xylem cell development. Castle House Publications, Tunbridge Wells.

    Google Scholar 

  • ——. 1981b. A tracheid-differentiation factor from pine needles. Planta153: 395–404.

    CAS  Google Scholar 

  • Schreiner, E. J. 1958. Possibilities for genetic improvement in the utilisation potentials of forest trees. Silvae Genet.7: 122–128.

    Google Scholar 

  • Schulman, E. 1951. Tree-ring indices of rainfall, temperature and river flow. Pages 1024–1029in Meteorological Society (eds.), Compendium of meteorology, Meteorological Society Boston.

  • Schultze-Motel, J. 1966. Gymnospermen-Hölzer aus den oberkretazischen Umzamba-Schichtem von Ost-Pondoland (S-Afrika). Senckenberg. Leth.47: 279–337.

    Google Scholar 

  • Schweitzer, H.-J. 1968. Die Flora des oberen Perms in Mitteleuropa. Naturwiss. Rundschau21: 93–102.

    Google Scholar 

  • Seward, A. C. andJ. Walton. 1923. On fossil plants from the Falkland Islands. Quart. J. Geol. Soc. London79: 313–333.

    Google Scholar 

  • Sheldrake, A. R. andD. H. Northcote. 1968. The production of auxin by tobacco internode tissues. New Phytol.67: 1–11.

    CAS  Google Scholar 

  • Shepherd, K. R. andK. S. Rowan. 1967. Indoleacetic acid in cambial tissue of radiata pine. Austral. J. Biol. Sci.20: 637–646.

    CAS  Google Scholar 

  • Shilkina, I. A. 1963. A new conifer genusYatsenkoxylon sibiricum gen. et sp. nov. Dokl. Akad. Nauk SSSR148: 163–165.

    Google Scholar 

  • Shimakura, M. 1936. Studies on fossil woods from Japan and adjacent lands. Contribution I. Some Jurassic woods from Japan and Manchoukuo. Sci. Rep., Tôhoku Imp. Univ., 2nd Ser.18: 267–310.

    Google Scholar 

  • —. 1937. Studies on fossil woods from Japan and adjacent lands. Contribution II. The Cretaceous woods from Japan, Saghalien and Manchoukuo. Sci. Rep., Tôhoku Imp. Univ., 2nd Ser.19: 1–73.

    Google Scholar 

  • Shininger, T. L. 1979. The control of vascular development. Annual Rev. Pl. Physiol.30: 313–337.

    CAS  Google Scholar 

  • Shroder, J. F. andM. Schwarzbach. 1981. Comments and reply on ‘Axes of elongation of petrified stumps in growth position as possible indicators of paleosouth, Alaska Peninsula.” Geology10: 436–437.

    Google Scholar 

  • Sitholey, R. V. 1940. Jurassic plants from Afghan-Turkistan. Mem. Geol. Serv. India, Palaeont. Indica 29, Mem. No. 1.

  • Skene, D. S. 1969. The period of time taken by cambial derivatives to grow and differentiate into tracheids inPinus radiata D. Don. Ann. Bot.33: 253–262.

    Google Scholar 

  • —. 1972. The kinetics of tracheid development inTsuga canadensis Carr. and its relation to tree vigour. Ann. Bot.36: 179–187.

    Google Scholar 

  • Slatyer, R. O. andP. J. Ferrar. 1977. Altitudinal variation in the photosynthetic characteristics of snow gum,Eucalyptus pauciflora Sieb. ex Spreng. II. Effects of growth temperature under controlled conditions. Austral. J. Pl. Physiol.4: 289–299.

    CAS  Google Scholar 

  • — andP. A. Morrow. 1977. Altitudinal variation in the photosynthetic characteristics of snow gum,Eucalyptus pauciflora Sieb. ex Spreng. I. Seasonal changes under field conditions in the Snowy Mountains area of South-eastern Australia. Austral. J. Bot.25: 1–20.

    Google Scholar 

  • Smirnoff, L. andW. Connelly. 1980. Axes of elongation of petrified stumps in growth position as possible indicators of paleosouth, Alaska Peninsula. Geology8: 547–548.

    Google Scholar 

  • Smith, A. G., A. M. Hurley andJ. C. Briden. 1981. Phanerozoic paleo-continental world maps. Cambridge University Press, Cambridge.

    Google Scholar 

  • Smith, C. J., R. W. Wellwood andG. K. Elliott. 1977. Effects of nitrogen feriliser and current climate on wood properties of Corsican pine [Pinus nigra var.maritima (Ait.) Melv.]. Forestry50: 117–138.

    Google Scholar 

  • Smith, D. M. 1955. A comparison of two methods for determining the specific gravity of small samples of second growth Douglas fir. U.S.D.A. Forest Serv. Dept. Publ. No. 2033.

  • Smolinski, M., M. Saniewski andJ. Pieniazek. 1974. The suppression of tension wood formation in bent shoots ofAesculus hippocastanum L. by morphactin 3456. Bull. Acad. Polon. Sci., Ser. Sci. Biol.22: 809–812.

    CAS  Google Scholar 

  • Söding, H. 1936. Über den Einfluss von Wuchsstof auf das Dickenwachstum der Baume. Ber. Deutsch. Bot. Ges.54: 291–304.

    Google Scholar 

  • Squillace, A. E. andR. T. Bingham. 1958. Localized ecotypic variation in western white pine. Forest Sci.4: 20–24.

    Google Scholar 

  • Stopes, M. C. 1916. An early type of the Abietineae (?) from the Cretaceous of New Zealand. Ann. Bot.30: 111–125.

    Google Scholar 

  • Timell, T. E. 1978. Ultrastructure of compression wood inGinkgo biloba. Wood Sci. and Techn.12: 89–103.

    Google Scholar 

  • Tomlinson, P. B. andF. C. Craighead, Sr. 1972. Growth-ring studies on the native trees of sub-tropical Florida. Pages 39–51in A. K. M. Ghouse and M. Yunus (eds.). K. A. Chowdhury commemoration volume. Tata McGraw-Hill, New Delhi.

    Google Scholar 

  • Torrey, J. G., D. E. Fosket andP. K. Hepler. 1971. Xylem formation: A paradigm of cytodifferentiation in higher plants. Amer. Sci.59: 338–352.

    Google Scholar 

  • Townsend, A. M., J. W. Hanover andB. V. Barnes. 1972. Altitudinal variation in photosynthesis, growth and monoterpene composition of western white pine (Pinus monticola Dougl.) seedlings. Silvae Genet.21: 133–139.

    Google Scholar 

  • Tranquillini, W. 1955. Die Bedeutung des Lichtes und der Temperatur für die Kohlensäureassimilation vonPinus cembra L. Jungwuchs an einem hochalpinem Standort. Planta46: 154–178.

    CAS  Google Scholar 

  • —. 1979. Physiological ecology of the alpine timberline. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • — andK. Holzer. 1958. Über des Gefrieren und Auftauen von Coniferennadeln. Ber. Deutsch. Bot. Ges.71: 143–156.

    Google Scholar 

  • Trenard, Y. andP. Guéneau. 1975. Relation between longitudinal growth stresses and tension wood inFagus sylvatica. Holzforschung29: 217–223.

    Google Scholar 

  • Tynan, E. J. 1959. Occurrence ofCordaites michiganensis in Oklahoma. Oklahoma Geol. Notes19: 43–46.

    Google Scholar 

  • Unger, F. 1859. Der versteinerte Wald bei Cairo und einige andere Lager verkieselten Holzen in Ägypten. Akad. Wiss. Wien. Sitzungsber.33: 209–233.

    Google Scholar 

  • Vaartaja, O. 1959. Evidence of photoperiodic ecotypes in trees. Ecol. Monogr.29: 91–111.

    Google Scholar 

  • —. 1962. Ecotypic variation in photoperiodism of trees with special reference toPinus resinosa andThuja occidentalis. Canad. J. Bot.40: 849–856.

    Google Scholar 

  • Vince-Prue, D. 1975. Photoperiodism in plants. McGraw-Hill Book Co., London.

    Google Scholar 

  • Voegeli, H. andO. Reinhart. 1956. Ergebnisse von Jahrringmessungen aus gleichaltrigen Föhrebestanden. Schweiz. Z. Forstwesen107: 407–415.

    Google Scholar 

  • Vowinckel, T., W. C. Oechel andW. G. Boll. 1975. The effect of climate on the photosynthesis ofPicea mariana at the subarctic tree-line. I. Field measurements. Canad. J. Bot.53: 604–620.

    CAS  Google Scholar 

  • Wareing, P. F. 1951a. Growth studies in woody species. IV. The initiation of cambial activity in ring-porous species. Physiol. Pl.4: 546–562.

    Google Scholar 

  • —. 1951b. Growth studies in woody species. III. Further photoperiodic effects inPinus silvestris. Physiol. Pl.4: 41–56.

    Google Scholar 

  • —. 1953. Growth studies in woody species. V. Photoperiodism in dormant buds ofFagus sylvatica L. Physiol. Pl.6: 692–705.

    Google Scholar 

  • —. 1958. The physiology of cambial activity. J. Inst. Wood Sci.1: 34–42.

    Google Scholar 

  • —,C. E. A. Hanney andJ. Digby. 1964. The role of endogenous hormones in cambial activity and xylem differentiation. Pages 323–344in M. H. Zimmermann (ed.), The formation of wood in forest trees. Academic Press, Inc., New York.

    Google Scholar 

  • — andD. L. Roberts. 1956. Photoperiodic control of cambial activity inRobinia pseudacacia L. New Phytol.55: 356–366.

    Google Scholar 

  • Warren-Wilson, J. 1964. Annual growth ofSalix arctica in the high-arctic. Ann. Bot.28: 71–76.

    Google Scholar 

  • —. 1966. An analysis of plant growth and its control in arctic environments. Ann. Bot.30: 383–402.

    Google Scholar 

  • Westing, A. H. 1965. Formation and function of compression wood in gymnosperms. Bot. Rev.31: 381–480.

    Google Scholar 

  • —. 1968. Formation and function of compression wood in gymnosperms. Bot. Rev.34: 51–78.

    Google Scholar 

  • Whitmore, F. W. andR. Zahner. 1964. Indoleacetic acid synthesis by polyphenols in the extraction ofPinus phloem and cambial tissue. Science145: 166–167.

    PubMed  CAS  Google Scholar 

  • —— 1966. Development of the xylem ring in stems of young red pine trees. Forest Sci.12: 198–210.

    Google Scholar 

  • Wight, W. 1933. Radial growth of the xylem and starch reservesof Pinus sylvestris. New Phytol.32: 77–96.

    Google Scholar 

  • Williams, S. 1930. The geological collection from the South Central Sahara made by Mr. F. Rodd. III. Fossil wood. Quart. J. Geol. Soc. London86: 408–409.

    Google Scholar 

  • Wilson, B. F., T. J. Wodzicki andR. Zahner. 1966. Differentiation of cambial derivatives: Proposed terminology. Forest Sci.12: 438–440.

    Google Scholar 

  • Wilson, L. R. 1963. A new species ofDadoxylon from the Seminole Formation (Pennsylvanian) of Oklahoma. Oklahoma Geol. Notes23: 215–220.

    Google Scholar 

  • Wodzicki, T. J. 1964. Photoperiodic control of natural growth substances and wood formation in larch (Larix decidua DC.). J. Exp. Bot.15: 584–599.

    CAS  Google Scholar 

  • —. 1968. On the question of occurrence of indole-3-acetic acid inPinus silvestris. Amer. J. Bot.55: 564–571.

    CAS  Google Scholar 

  • —. 1971. Mechanism of xylem differentiation inPinus silvestris L. J. Exp. Bot.22: 670–687.

    Google Scholar 

  • — andA. B. Wodzicki. 1973. Auxin stimulation of cambial activity inPinus sylvestris. II. Dependence upon basipetal transport. Physiol. Pl.29: 288–297.

    CAS  Google Scholar 

  • Zahner, R. 1963. Internal moisture stress and wood formation in conifers. Forest Prod. J.13: 240–247.

    Google Scholar 

  • —. 1968. Water deficits and growth of trees. Pages 191–254in T. T. Kozlowski (ed.), Water deficits and plant growth. Academic Press, Inc., New York.

    Google Scholar 

  • —,J. E. Lotan andW. D. Baughman. 1964. Earlywood-latewood features of red pine grown under simulated drought and irrigation. Forest Sci.10: 361–369.

    Google Scholar 

  • — andW. W. Oliver. 1962. The influence of thinning and pruning on the date of summerwood initiation in red and jack pines. Forest Sci.8: 51–63.

    Google Scholar 

  • Zajaczkowski, S. 1973. Auxin stimulation of cambial activity inPinus sylvestris. I. The differential cambial response. Physiol. Pl.29: 281–287.

    CAS  Google Scholar 

  • Zalessky, M. 1909. Communication preliminaire sur un nouveauDadoxylon provenant du Dévonien supérieur du bassin du Donetz. Bull. Acad. Imp. Sci. Saint Pétersbourg26: 1175–1178.

    Google Scholar 

  • —. 1911. Étude sur l’anatomie duDadoxylon tchihatcheffi Goeppert. Mém. Comité Géol. Russe, Saint Pétersbourg68: 18–29.

    Google Scholar 

  • Zimmermann, W. A. 1936. Untersuchungen über die räumliche und zietliche Berteilung des Wuchsstoffen bei Bäumen. Z. Bot.30: 209–252.

    CAS  Google Scholar 

  • Zobel, B. J. 1964. Breeding for wood properties in forest trees. Unasylva18: 89–103.

    Google Scholar 

  • — andR. R. Rhodes. 1957. Specific gravity indices for use in breeding loblolly pine. Forest Sci.3: 281–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creber, G.T., Chaloner, W.G. Influence of environmental factors on the wood structure of living and fossil trees. Bot. Rev 50, 357–448 (1984). https://doi.org/10.1007/BF02862630

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02862630

Keywords

Navigation