Skip to main content
Log in

The evolution of pulse crops

  • Published:
Economic Botany Aims and scope Submit manuscript

Summary

From a consideration of evolution under domestication in the pulses a common pattern emerges. It is suggested that positive selection for a single character, namely, seed size, could have set in motion a complex of selection pressures that not only produced larger seeds and fruits but concomitantly produced a modified shoot architecture. The ultimate production of dwarf plants capable of free-standing growth effectively liberated pulses from dependence on other species for mechanical support and from the implications of their ancestral ecology.

Characteristic features of individual pulse species not found in their closest wild relatives can almost invariably be found in other members of the same tribe or elsewhere in the family. This suggests a deep underlying genetical homology in the family as a whole and that Vavilov’s law of homologous series could with benefit be extended beyond the cultigens and enable plant breeders to set themselves more ambitious yet realistic objectives. It appears that pulses have evolved not by producing novel characters under domestication, but rather novel combinations of characters already expressed in wild forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Boling, M., D. A. Sander and R. S. Matlock. 1961. Mungbean hybridization technique. Agron. J. 53: 54–55.

    Google Scholar 

  • Burkart, A. 1952. Las Leguminosas Argentinas. Acme Agency, Buenos Aires.

  • Burkart, A. and H. Brucher, 1953.Phaseolus aborigineusit Burkart, die mutmassliche andine Stammform der Kulturbohne. Züchter 23: 65–72.

    Article  Google Scholar 

  • Dana, S. 1966. Cross betweenPhaseolus aureusit Roxb. andP. riccardianusit Ten. Genet. iber. 18: 141–156.

    Google Scholar 

  • D’Cruz, R. and K. Chakravarty. 1961. Spontaneous allopolyploidy inArachisit. Indian Oilseeds J. 5: 55–57.

    Google Scholar 

  • De, D. N. and R. Krishnan. 1966a. Studies on pachytene and somatic chromosomes ofPhaseolus mungoit L. Genetica 37: 581–587.

    Article  Google Scholar 

  • — 1966b. Cytological studies of the hybridPhaseolus aureus X P. mungoit. Genetica 37:588–600.

    Article  Google Scholar 

  • Dhaliwal, A. S., L. H. Pollard and A. P. Lorz. 1962. Cytological behavior of an F3 species cross (Phaseolus lunatusit L. var. Fordhook XPhaseolus polystachyusit L.). Cytologia 27: 369–374.

    Google Scholar 

  • Faris, D. G. 1965. The origin and evolution of the cultivated forms ofVigna sinensisit. Can. J. Genet. Cytol. 7: 433–452.

    Google Scholar 

  • Gentry, H. S. 1969. Origin of the common bean,Phaseolus vulgarisit. Econ. Bot. 23: 55–69.

    Google Scholar 

  • Gibbons, R. W., A. H. Bunting and J. Smartt. 1972. The classification of varieties of groundnut (Arachis hypogaeait L. ) Euphytica 21: 78–85.

    Article  Google Scholar 

  • Gregory, W. C., M. P. Gregory, A. Krapovickas, B. W. Smith and J. A. Yarbrough. 1973. Structure and genetic resources of peanuts. Chapter 3 in Peanuts — Culture and Uses. American Peanut Research and Education Association, Stillwater, Oklahoma.

    Google Scholar 

  • Hadley, H. H. and T. Hymowitz. 1973. Speciation and cytogenetics. Chapter 3 in B. E. Caldwell (ed. ) Soybeans: Improvement, Production and Uses. American Society of Agronomy, Madison, Wis.

    Google Scholar 

  • Hammons, R. O. 1964. Krinkle, a dominant leaf marker in the peanutArachis hypogaea L. Crop Sci. 4: 22–24.

    Google Scholar 

  • Hawkes, J. G. 1970. The taxonomy of cultivated plants. Chapter 6 in O. H. Frankel and E. Bennett (eds.): Genetic Resources in Plants — Their Exploration and Conservation. IBP Handbook No. 11. Blackwell, Oxford.

    Google Scholar 

  • Hepper, F. N. 1963. Plants of the 1957–58 West African Expedition: II The Bambara groundnut (Voandzeia subterranea) and Kersting’s groundnut (Kerstingiella geocarpa) wild in West Africa. Kew Bull. 16: 395–407.

    Article  Google Scholar 

  • Hutchinson, I. B. 1969. The evolutionary diversity of pulses. Proc. Nutr. Soc. 29: 49–55.

    Article  Google Scholar 

  • Hymowitz, T. 1970. On the domestication of the soybean. Econ. Bot. 24: 408–421.

    Google Scholar 

  • Johnson, F. R. 1964. The peanut story. Johnson Publishing Co., Murfreesboro, North Carolina.

  • Kaplan, L. 1965. Archeology and domestication inAmerican Phaseolus. Econ. Bot. 19: 358–368.

    Google Scholar 

  • Kloz, J. and E. Klozová. 1968. Variability of proteins I and II in the seeds of species of the genusPhaseolus.In: J. G. Hawkes (ed.), Chemotaxonomy and Serotaxonomy. Academic Press, London.

    Google Scholar 

  • Krapovickas, A. 1969. The origin, variability and spread of the groundnut (Arachis hypogaea).In: P. J. Ucko and G. W. Dimbleby (eds.), The Domestication and Exploitation of Plants and Animals. Duckworth, London.

    Google Scholar 

  • — 1974. Evolution of the genusArachis.In: R. Moav (ed.), Agricultural Genetics — Selected Topics. J. Wiley, London.

    Google Scholar 

  • Krapovickas, A. and V. A. Rigoni. 1957. Nuevas especies deArachis vinculadas al problem del origén del mani. Darwiniana 11: 431–455.

    Google Scholar 

  • Krapovickas, A., A. Fernandez and P. Seeligman. 1974. Recuperación de la fertilidad en un hibrido interespecifico estéril deArachis (Leguminosae). Bonplandia 3: 129–142.

    Google Scholar 

  • Krishnan, R. and D. N. De. 1965. Studies on pachytene and somatic chromosomes ofPhaseolus aureus. Nucleus 8: 7–16.

    Google Scholar 

  • — 1968a. Cytogenetical studies inPhaseolus. I. AutotetraploidPhaseolus aureus X a tetraploid species ofPhaseolus and the backcrosses. Ind. J. Genet. PI. Breed. 28: 12–22.

    Google Scholar 

  • — 1968b. Cytogenetical studies inPhaseolus. II.Phaseolus mungo X tetraploidPhaseolus species and the amphidiploid Ind. J. Genet. PI. Breed. 28: 23–30.

    Google Scholar 

  • Lantz, E. M., H. W. Gough and A. M. Campbell. 1958. Nutrients in beans, effect of variety, location and years on the protein and amino acid content of dried beans. Agr. Fd. Chem. 6: 58–60.

    Article  CAS  Google Scholar 

  • Le Marchand, G. 1971. Observations sur quelques hybrides dans le genrePhaseolus I. Le probléme des incompatibilités interspecifiques. Bull. Rech. agron. Gembloux 6: 441–452.

    Google Scholar 

  • Maréchal, R. 1969. Données cytologiques sur les espèces de la sous-tribu desPapilionaceaePhaseoleaePhaseolinae Première série. Bull. Jard. bot. nat. Belg. 39: 125–165.

    Article  Google Scholar 

  • — 1970. Deuxié me série. Bull. Jard. bot. nat. Belg. 40: 307–348.

    Article  Google Scholar 

  • — 1971. Observations sur quelques hybrides dans le genrePhaseolus II. Les phénomènes méiotiques. Bull. Rech. agron. Gembloux 6: 461–489.

    Google Scholar 

  • Miranda, C. S. 1968. Origen dePhaseolus vulgaris L. Frijol común) Agron. trop. 18: 191–205.

    Google Scholar 

  • -. 1974. Evolutionary genetics of wild and cultivatedPhaseolus vulgaris L. andPhaseolus vulgaris L. andPhaseolus coccineus L. Ph.D. thesis, University Library, Cambridge.

  • Prain, D. 1903. Bengal Plants. Newman, Calcutta.

  • Purseglove, I. W. 1974. Tropical Crops: Dicotyledons Vol. I. Longman, London.

  • Smartt, J. 1969. Evolution of AmericanPhaseolus beans under domestication.In: P. J. Ucko and G. W. Dimbleby (eds.), The Domestication and Exploitation of Plants and Animals. Duckworth, London.

    Google Scholar 

  • — 1970. Interspecific hybridization between cultivated American species of the genusPhaseolus. Euphytica 19: 480–489.

    Article  Google Scholar 

  • Smartt, I. and W. C. Gregory. 1967. Interspecific cross-compatibility between the cultivated peanutArachis hypogaea L. and other members of the genusArachis. Oléagineux 22: 455–459.

    Google Scholar 

  • Smartt, I. and N. Haq. 1972. Fertility and segregation of the amphidiploidPhaseolus vulgaris L. X P.coccineus L. and its behaviour in backcrosses. Euphytica 21: 496–501.

    Article  Google Scholar 

  • Sun, S. M., R. C. McLeester, F. A. Bliss and T. C. Hall. 1974. Reversible and irreversible dissociation of globulins fromPhaseolus vulgaris seed. J. Biol. Chem. 249: 2118–2121.

    PubMed  CAS  Google Scholar 

  • van der Maesen,L. I. G. 1972.Cicer L., a monograph of the genus with special reference to the chick pea (Cicer arietinum L. ), its ecology and cultivation. Meded. Landb. Hoogesch. Wageningen.

    Google Scholar 

  • Verdcourt, B. 1971. Leguminosae ( Part 4 ) subfamily Papilionoideae.In: E. Milne-Redhead and R. M. Polhill (eds.), Flora of Tropical East Africa. Crown Agents, London.

    Google Scholar 

  • Zohary, D. 1972. The wild progenitor and the place of origin of the cultivated lentil:Lens culinaris Econ. Bot. 26: 326–332.

    Google Scholar 

  • Zohary, D. and M. Hopf. 1973. Domestication of pulses in the Old World. Science 182: 887–894.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smartt, J. The evolution of pulse crops. Econ Bot 32, 185–198 (1978). https://doi.org/10.1007/BF02866872

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02866872

Keywords

Navigation