Skip to main content
Log in

Post-irradiation modulation of ionizing radiation damage to plants

  • Interpreting Botanical Progress
  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  • Adams, J. D. &R. A. Nilan. 1958. After effects of ionizing radiation in barley. II. Modification by storage of X-irradiated seeds in different concentrations of oxygen. Rad. Res.8: 111–122.

    CAS  Google Scholar 

  • ——, &H. M. Gunthardt. 1955. After effects of ionizing radiation in barley. I. Modification by storage of X-rayed seeds in oxygen and nitrogen. A preliminary note. Northwest Sci.20: 101–108.

    Google Scholar 

  • Adler, H. I. &A. A. Hardigree. 1965. Post irradiation growth, division and recovery in bacteria. Rad. Res.25: 92–102.

    CAS  Google Scholar 

  • ——. 1966. Recovery of irradiated cells promoted by unirradiated bacteria. Rad. Res. Suppl.6: 212–219.

    Google Scholar 

  • Alexander, P. &J. T. Lett. 1967. Effects of ionizing radiation on biological macromolecules. Pp. 267–365.In:M. Florkin &E. A. Stotz (eds.), Comprehensive Biochemistry. Vol. 27. Elsevier Publ. Co., N. Y.

    Google Scholar 

  • Alper, T. 1952. Indirect inactivation of bacteriophage during and after exposure to ionizing radiation. Disc. Faraday Soc.12: 234.

    Google Scholar 

  • —. 1956. The modification of damage caused by primary ionization of biological targets. Rad. Res.5: 573–586.

    CAS  Google Scholar 

  • —. 1963. Lethal mutations and cell death. Physics in Med. Biol.8: 365–385.

    Google Scholar 

  • — &N. E. Gillies. 1958. “Restoration” ofEscherichia coli strain B after irradiation: Its dependence on suboptimal growth conditions. J. Gen. Microbiol.18: 461–472.

    PubMed  CAS  Google Scholar 

  • ——. 1960. The relationship between growth and survival after irradiation ofEscherichia coli strain B and two resistant mutants. J. Gen. Microbiol.22: 113–128.

    PubMed  CAS  Google Scholar 

  • Anderson, L. F. 1955. Effects of centrifugation on X-ray-induced chromatid aberrations inTradescantia irradiated in air and nitrogen. Genetics (Abstr.)40: 563.

    Google Scholar 

  • Anderson, E. H. &D. Billin. 1955. The effect of temperature on X-ray-induced mutability inEscherichia coli. J. Bact.70: 35–43.

    PubMed  CAS  Google Scholar 

  • Bacq, Z. M. 1965. Chemical Protection Against Ionizing Radiation. C. C. Thomas Co., Springfield, Ill.

    Google Scholar 

  • — &P. Alexander. 1961. Fundamentals of Radiobiology. Second Ed. Pergamon Press, N. Y.

    Google Scholar 

  • — &R. Gouthier. 1968. Mechanism of action of sulfur-containing radioprotectants. Brookhaven Sympos. Biol.20: 241–255.

    Google Scholar 

  • Bailey, P. C. &S. Wolff. 1964. A comparison of X-ray- and ultra-violet-induced aberrations in pollen tube chromosomes ofTradescantia. II. Influence of protein synthesis inhibitors. Rad. Bot.4: 121–125.

    CAS  Google Scholar 

  • Bair, W. J. &J. N. Stannard. 1953. Role of electrolytes and starvation in altering the apparent radiosensitivity of baker’s yeast. J. Gen. Physiol.38: 493–504.

    Google Scholar 

  • Barber, A. A. &K. M. Wilbur. 1959. The effect of X-irradiation on the antioxidant activity of mammalian tissues. Rad. Res.10: 167–175.

    CAS  Google Scholar 

  • Barnothy, M. F. (ed.). 1964. Biological Effects of Magnetic Fields. Plenum Press, N. Y.

    Google Scholar 

  • Beatty, A. V. 1968. The effect of exogenous nucleosides and nucleotides on recovery of X-ray-induced chromosome breaks. Brookhaven Sympos. Biol.20: 98–110.

    Google Scholar 

  • — &J. W. Beatty. 1960a. Potassium gluconate and ATP effects on chromosome aberration yield. Proc. Nat. Acad. Sci. (Wash.)46: 1488–1492.

    CAS  Google Scholar 

  • ——. 1960b. Postirradiation effects on chromosome aberrations inTradescantia microspores. Genetics45: 331–344.

    PubMed  CAS  Google Scholar 

  • ——. 1962. Metabolic repair of radiation-induced chromosome damage. Rad. Bot.2: 65–69.

    CAS  Google Scholar 

  • ——. 1963. Radiation recovery enhanced through inhibitors of protein synthesis and amino acids. Proc. Nat. Acad. Sci. (Wash.)49: 434–439.

    CAS  Google Scholar 

  • ——. 1967. Radiation repair of chromosome breaks as affected by constituents of nucleic acids. Rad. Bot.7: 29–34.

    CAS  Google Scholar 

  • Bell, S. &S. Wolff. 1964. Studies on the mechanism of the effect of fluorodeoxyuridine on chromosomes. Proc. Nat. Acad. Sci. (Wash.)51: 195–202.

    CAS  Google Scholar 

  • Belokonskii, I. &G. Rusev. 1959. Significance of oxidizing processes for early radiation reactions. Biofizika4: 204–208.

    Google Scholar 

  • Belquez, A. 1955. Action des rayons X surCrepis zacentha L. Babe.: Influence de différents facteurs sur le taux de léthalité cellulaire produit par les rayons X. C. R. Acad. Sci. (Paris)241: 900–902.

    Google Scholar 

  • Bentler, E., M. J. Rabson, &L. O. Jacobson. 1954. Prolongation of the lag phase of irradiatedEscherichia coli. Proc. Soc. Exp. Biol. Med.85: 682–684.

    Google Scholar 

  • Berg, C. C., R. A. Nilan, &C. F. Konzak. 1965. Factors affecting the mutagenic action of oxygen in barley seeds. Mutation Res.2: 263–273.

    PubMed  CAS  Google Scholar 

  • Bergbusch, V. L. &R. S. Caldecott. 1963. The effects of pre-irradiation and postirradiation temperature treatments on the X-ray sensitivity of seeds ofHordeum. Rad. Res.20: 207–220.

    Google Scholar 

  • Bersohn, M. &J. C. Baird. 1966. An Introduction to Electron Paramagnetic Resonance. Benjamin and Co., N. Y.

    Google Scholar 

  • Bhaskaran, S. &W. KöHNLEIN. 1964. ESR studies on plant seeds with different radiosensitivities. II. Effects of oxygen and nitric oxide at different temperatures. Rad. Bot.4: 291–298.

    CAS  Google Scholar 

  • Biebl, R. &W. Url. 1963. Chemical protection against the effects of alpha rays and of thermal neutrons in plant cells by pre- and post-treatments. Rad. Bot.3: 67–73.

    CAS  Google Scholar 

  • Biswas, S. &T. Matsus. 1966. Protective and recovery effects of chemicals on plant growth, chromosome aberration and mutation in irradiated seed of crop plants. Rad. Bot.6: 575–587.

    CAS  Google Scholar 

  • Blois, M. S. (ed.). 1961. Free Radicals in Biological Systems. Academic Press, N.Y.

    Google Scholar 

  • Butler, J. A. V. 1959. Changes induced in nucleic acids by ionizing radiations and chemicals. Rad. Res. Suppl.1: 403–416.

    Google Scholar 

  • — &B. E. Conway. 1950. The action of ionizing radiations and of radiomimetic substances on deoxyribonucleic acid. Part II. The effect of oxygen on the degradation of the nucleic acid by X-rays. J. Chem. Soc.1950: 3418–3421.

    Google Scholar 

  • Caldecott, R. S. 1958. Effects of hydration on X-ray sensitivity inHordeum. Rad. Res.3: 316–330.

    Google Scholar 

  • —. 1961. Seedling height, oxygen availability, storage and temperature: Their relation to radiation induced genetic and seedling damage.In: Effects of Ionizing Radiation on Seeds. IAEA. Vienna, Austria.

    Google Scholar 

  • —,E. B. Johnson, D. T. North, &C, F. Koznak. 1957. Modification of radiation-induced injury by post-treatment with oxygen. Proc. Nat. Acad. Sci. (Wash.)43: 975–983.

    CAS  Google Scholar 

  • — &L. Smith. 1948. Resuscitation of heat inactivated seeds with Xradiaön J. Hered.39: 195–198.

    Google Scholar 

  • ——. 1952. The influence of heat treatments on the injury and cytogenetic effects of X-rays on barley. Genetics37: 136–157.

    PubMed  CAS  Google Scholar 

  • Chesley, L. C. 1935. The effect of light upon the sensitivity of wheat seedlings to X-rays. J. Cell. Comp. Physiol.6: 69–84.

    CAS  Google Scholar 

  • Cluzet, J. &T. Kofman. 1929. Action des rayons ultraviolets, seuls ou associés aux rayons X, sur la germination. C. R. Soc. Biol.101: 820–821.

    Google Scholar 

  • Cohn, N. S. 1957. The effect of carbon monoxide on the restitution of X-rayinduced chromosome breaks inAllium cepa. Genetics (Abstr.)42: 366.

    Google Scholar 

  • —. 1958. An analysis of the rejoining of X-ray-induced broken ends of chromosomes in the root tips ofAllium cepa. Genetics43: 362–373.

    PubMed  CAS  Google Scholar 

  • —. 1959. The effective wavelength promoting light-reversal of carbonmonoxide-inhibiting chromosome rejoining. Exp. Cell Res.16: 424–427.

    PubMed  CAS  Google Scholar 

  • Cole, L. J. 1968. Cellular and humoral factors in recovery from radiation injury. Brookhaven Sympos. Biol.20: 263–283.

    Google Scholar 

  • Conger, A. D. 1960. Genetical protection. Pp. 212–251.In:A. Hollaender (ed.), Radiation Protection and Recovery. Pergamon Press, N. Y.

    Google Scholar 

  • —. 1961. Biological after-effect and long-lived free radicals in irradiated seeds. J. Cell. Comp. Physiol.58 (Suppl. 1): 27–32.

    PubMed  CAS  Google Scholar 

  • -. 1962. Pre- and post-irradiation protection by hydrogen sulfide and its effect on free radicals. Proc. Second Intern. Cong. Rad. Res. p. 20.

  • —,A. H. Flasterstein, &K. Thompson. 1966. A test for a magnetic effect in irradiated seeds. Rad. Bot.6: 105–109.

    Google Scholar 

  • Conger, A. D., R. A. Nilan, C. F. Konzak, &S. Metter. 1966. The influence of seed water content on the oxygen effect in irradiated barley seeds. Rad. Bot.6: 129–144.

    Google Scholar 

  • Cook, A. R. 1953. Effect of gamma irradiation on the ascorbic acid content of green plants. Science117: 588–589.

    Google Scholar 

  • Cook, E. V. 1939. Influence of low temperatures on recovery from Roentgen rays. Radiology32: 289–293.

    Google Scholar 

  • Cook, R. F. 1963. The effects of water and a protective agent on gamma-ray induced free radicals in mustard seeds. Intern. J. Rad. Biol.7: 497–504.

    CAS  Google Scholar 

  • Curtis, H. J., N. Delihas, R. S. Caldecott, &C. F. Konzak. 1958. Modification of radiation damage in dormant seeds by storage. Rad. Res.8: 526–534.

    CAS  Google Scholar 

  • Dainton, F. S. 1959. Chemical effects of radiation. Rad. Res. Suppl.1: 1–25.

    Google Scholar 

  • Das, N. K. &M. Alfert. 1961. Accelerated DNA synthesis in onion root meristem duringX-irradiation. Proc. Nat. Acad. Sci. (Wash.)47: 1–6.

    CAS  Google Scholar 

  • Davies, D. R. &H. J. Evans. 1966. The role of genetic damage in radiationinduced cell lethality. Adv. Rad. Biol.2: 243–353.

    CAS  Google Scholar 

  • Deleporte, B. 1956. La “restauration par voisinage” chez des bactéries irradiées par des rayons X. Ann. Inst. Pasteur91: 727–735.

    Google Scholar 

  • Devik, F. &F. Lothe. 1955. The effect of cysteamine, cystamine, and hypoxia on mortality and bone marrow chromosome aberrations in mice after total body roentgen irradiation. Acta Radiol.44: 234–248.

    Google Scholar 

  • Dickey, F. H., G. H. Cleland, &C. Lotz. 1949. The role of organic peroxides in the induction of mutations. Proc. Nat. Acad. Sci. (Wash.)35: 581–586.

    CAS  Google Scholar 

  • Dickie, N., D. A. Dennis, &F. S. Thatcher. 1968. Effect of p-fluorophenylalanine on radiation sensitivity inEscherischia coli. Canad. J. Microbiol.14: 799–803.

    CAS  Google Scholar 

  • Doudney, C. O. 1956. Restoration from an X-ray induced block in deoxyribonucleic acid synthesis inEscherischia coli. J. Bact.72: 488–493.

    PubMed  CAS  Google Scholar 

  • Duarte, M. I. &A. Kovoor. 1965. Sur l’action radiorestauratrice d’un fraction extraite de feuilles de tabac. C. R. Acad. Sci. (Paris)261: 4202–4205.

    Google Scholar 

  • Ducoff, H. S. 1957. Factors affecting radiation-induced division delay inChilamonas paramecium. Physiol. Zool.30: 268–279.

    CAS  Google Scholar 

  • Ebert, M. 1960. Direct and indirect initial effects on biological systems. Pp. 214–226.In:M. Burton, J. S. Kirby-Smith, &J. L. Magee (eds.), Comparative Effects of Radiation. John Wiley & Sons, N. Y.

    Google Scholar 

  • — &A. Howard. 1955. Modification of X-ray sensitivity of bean roots to hydrogen gas. Nature176: 828.

    PubMed  CAS  Google Scholar 

  • Ehrenberg, L. 1955. The radiation-induced growth inhibition in seedlings. Bot. Notiser108: 184–186.

    Google Scholar 

  • —. 1959. Radiobiological mechanisms of genetic effects. A review of some current lines of research. Rad. Res. Suppl.1: 102–123.

    Google Scholar 

  • —. 1961. Research on free radicals in enzyme chemistry and in radiation biology. Pp. 337–350.In:M. S. Blois, Jr. (ed.), Free Radicals in Biological Systems. Academic Press, N. Y.

    Google Scholar 

  • — &A. Ehrenberg. 1958. The decay of X-ray induced free radicals in plant seeds and starch. Arkiv. Fysik14: 133–141.

    CAS  Google Scholar 

  • — &U. Lundqvist. 1957. Post-irradiation effects on X-ray-induced mutation in barley seeds. Hereditas43: 390–402.

    Google Scholar 

  • —,J. Moutschen-Dahmen, &M. Moutschen. 1957. Aberrations chromosomiques produites dan des graines par de hautes pressures d’oxygéne. Acta Chem. Scand.11: 1428–1429.

    CAS  Google Scholar 

  • Elkind, M. M. &H. Sutton. 1958. Ultraviolet mitigation of X-ray lethality in dividing yeast cells. Science128: 1082–1083.

    PubMed  CAS  Google Scholar 

  • ——. 1959. Sites of action of lethal irradiation: Overlap in sites for X-ray, ultraviolet, photoreactivation, and ultraviolet protection and reactivation in dividing yeast cells. Rad. Res.10: 296–312.

    CAS  Google Scholar 

  • Ehrara, M. 1951. Nature de l’effet différé des rayons X sur l’acide désoxyribonucléique. Bull. Soc. Chim. Biol.33: 557–560.

    Google Scholar 

  • Evans, H. J. 1968. Repair and recovery at chromosome and cellular levels: Similarities and differences. Brookhaven Sympos. Biol.20: 111–133.

    Google Scholar 

  • Feinstein, R. N. (ed.). 1963. Implications of organic peroxides in radiobiology. Rad. Res. Suppl. 3.

  • Forssberg, A. &N. Nybom. 1953. Combine effects cystein and irradiation on growth and cytology ofAllium cepa roots. Physiol. Plant.6: 78–95.

    CAS  Google Scholar 

  • —,R. Novak, G. Dreyfuss, &A. Pehap. 1960. The radiation sensitivity ofPhycomyces. Interaction of visible light and ionizing radiation. Rad. Res.13: 661–668.

    CAS  Google Scholar 

  • Furnica, M. &M. Spiridon. 1962. Speed of peroxidation of homogenized tissues during irradiation in vitro. Acad. Rep. Populare Roumine Studii Cercetari Biochem.5: 447–452.

    CAS  Google Scholar 

  • Gaur, B. K. &N. K. Notani. 1960. Effect of gibberellic acid on the radiationstunted seedlings of maize. Intern. J. Rad. Biol.3: 257–259.

    Google Scholar 

  • Gelin, O. E. V. 1953. Mitotische Störungsfrequenzen in Röntgen-bestrahlter Gerste. Agr. Hort. Gen.11: 66–81.

    Google Scholar 

  • —. 1956. Conditions affecting radiation-induced cytological change in barley. Agr. Hort. Gen.14: 137–147.

    Google Scholar 

  • Gerschman, R., D. L. Gilbert, S. W. Nye, P. Dwyer, &W. O. Fenn. 1954. Oxygen poisoning and X-irradiation. A mechanism in common. Science119: 623–626.

    PubMed  CAS  Google Scholar 

  • Giguere, P. A. &J. A. Herman. 1959. Role of oxygen in radiation chemistry. Evidence for oxygen intermediates in gases, liquids, and solids. Rad. Res. Suppl.1: 149–163.

    Google Scholar 

  • Giles, N. H., Jr., &H. P. Riley. 1949. The effect of oxygen on the frequency of X-ray induced chromosomal rearrangements inTradescantia microspores. Proc. Nat. Acad. Sci. (Wash.)35: 640–646.

    CAS  Google Scholar 

  • ——. 1950. Studies on the mechanism of the oxygen effect on the radiosensitivity ofTradescantia chromosomes. Proc. Nat. Acad. Sci. (Wash.)36: 337–344.

    Google Scholar 

  • Gillies, N. E. &T. Alper. 1959. Reduction in the lethal effects of radiations onEscherischia coli B by treatment with chloramphenicol. Nature183: 237–238.

    PubMed  CAS  Google Scholar 

  • Gladstone, J. S. &A. W. S. Hunter. 1959. Effects of seed moisture content and post-irradiation storage on the growth and survival of X1 tomato plants. Canad. J. Genet. Cytol.1: 339–346.

    Google Scholar 

  • Glass, H. B. 1950. The effects of supplementary treatment with infrared radiation on X-ray-induced lethals and chromosome aberrations in females ofDrosophila melanogaster. Genetics35: 109–110.

    Google Scholar 

  • Gol’Dat, S. U. 1962. Relationship between the effect of combines ultraviolet and X-ray treatment ofStreptomyces aureofaciens and the character of the treatment. Doklady Nauk Akad. Sci.139: 219–231.

    Google Scholar 

  • Gordon, S. A. 1957. The effects of ionizing radiations on plants: Biochemical and physiological aspects. Quart. Rev. Biol.32: 3–14.

    PubMed  CAS  Google Scholar 

  • -. 1963. Potentiation of X-ray-induced tumor regression by far-red light. Research and Development in Progress. A.E.C. TID 4201. Pp. 61–62.

  • —. 1964. Oxidative phosphorylation as a photomorphogenic control. Quart. Rev. Biol.39: 19–34.

    Google Scholar 

  • -,R. Stutz, &R. Weber. 1951. Phytoradiology. Pp. 144–151.In: Biological and Medical Division Quarterly Rept. 1949–1950. Argonne Nat. Lab. 4401.

  • — &K. Surrey. 1960. Red and far-red action on oxidative phosphorylation. Rad. Res.12: 325–339.

    CAS  Google Scholar 

  • Gray, L. H. 1954. Conditions which affect the biological damage resulting from exposure to ionizing radiation. Acta Radiol.41: 63–83.

    PubMed  CAS  Google Scholar 

  • —. 1959. Cellular radiobiology. Rad. Res. Suppl.1: 73–101.

    Google Scholar 

  • Green, J. &D. McHale. 1965. Quinones related to vitamin E. Pp. 261–315.In:R. A. Morton (ed.), Biochemistry of Quinones. Academic Press, N. Y.

    Google Scholar 

  • Gunckel, J. E. &A. H. Sparrow. 1961. Ionizing radiations: Biochemical, physiological, and morphological aspects of their effects on plants. Handb. Pflanzenphysiol.16: 555–611.

    Google Scholar 

  • Gunter, S. E. &H. I. Kohn. 1958. Post-irradiation temperature and X-ray sensitivity in microorganisms. Bacti. Proc.1958: 34.

    Google Scholar 

  • Haber, A. H. &M. L. Randolph. 1967. Gamma-ray-induced ESR signals in lettuce: Evidence for seed hydration-resistant and -sensitive free radicals. Rad. Bot.7: 17–28.

    CAS  Google Scholar 

  • Harle, J. R. 1963. Modification of radiobiological oxygen effects in very dry barley seeds. Thesis, Ph.D., Washington State Univ., Pullman.

    Google Scholar 

  • Harris, R. J. C. (ed.), 1961. The Initial Effects of Ionizing Radiation on Cells. Academic Press, N. Y.

    Google Scholar 

  • Haugaard, N. 1968. Cellular mechanisms of oxygen toxicity. Physiol. Revs.48: 311–373.

    CAS  Google Scholar 

  • Harve, A., Z. M. Bacq, &H. Betz. 1960. Chemical modification of the lethal effect of X-irradiation and the mechanism of the action. Proc. 6 Intl. Cong. Radiol. London. Pp. 169–170.

  • Hillman, W. S. 1967. The physiology of phytochrome. Annu. Rev. Plant Physiol.18: 301–324.

    CAS  Google Scholar 

  • Hollaender, A. 1952. Physical and chemical factors modifying the sensitivity of cells to high energy and ultraviolet radiation. Pp. 285–295.In:J. J. Nickson (ed.), Symposium on Radiobiology. The Basic Aspects of Radiation Effects on Living Systems. John Wiley & Sons, N. Y.

    Google Scholar 

  • — &R. F. Kimbaix. 1956. Modification of radiation-induced genetic damage. Nature177: 726–730.

    PubMed  CAS  Google Scholar 

  • — &G. E. Stapleton. 1954. Modification of radiation damage after exposure to X-rays. Brit. J. Radiol.27: 117–121.

    PubMed  CAS  Google Scholar 

  • ——. 1956. Studies on protection by treatment before and after exposure to X and gamma radiations. Sympos. on Peaceful Uses of Atomic Energy. United Nations, N. Y.2: 106–113.

    Google Scholar 

  • Hollo, Z. M. &S. Z. Zlatarov. 1960. The prevention of X-ray death by selenium salts given after irradiation. Naturwiss.47: 328.

    CAS  Google Scholar 

  • Holmsen, T. W., H. J. Teas, &A. L. Koch. 1964. Inhibition of geotropism by ionizing radiation: Reversal of the inhibition by auxins. Rad. Bot.4: 413–416.

    CAS  Google Scholar 

  • Howard-Flanders, P. 1960. Effect of oxygen on the radiosensitivity of bacteriophage in the presence of sulphydryl compounds. Nature186: 485–487.

    PubMed  CAS  Google Scholar 

  • —. 1961. Factors affecting radiation injury to DNA in bacteria and bacteriophage systems. Brookhaven Sympos. Biol.14: 18–31.

    PubMed  CAS  Google Scholar 

  • —. 1965. Molecular mechanisms in the repair of irradiated DNA. Japan J. Genetics (Suppl.)40: 256–263.

    CAS  Google Scholar 

  • —,J. Levin, &L. Theriot. 1963. Reactions of deoxyribonucleic acid radicals with sulfhydryl compounds in X-irradiated bacteriophage systems. Rad. Res.18: 593–606.

    CAS  Google Scholar 

  • Hyde, B. B. &R. L. Paliwel. 1958. Studies on the role of cations in the structure and behavior of plant chromosomes. Am. J. Bot.45: 433–438.

    CAS  Google Scholar 

  • Irvine, V. C. 1939. Comparative effects on primordial tissues of X-radiation and treatment with certain growth-promoting substances. J. Colo.-Wyo. Acad. Sci.2: 29.

    Google Scholar 

  • Jackson, W. O. 1959. The life span of mutagens produced in cells by irradiation. Pp. 190–208. In:J. H. Martin (ed.), Radiation Biology. Buttersworth Sci. Public, London.

    Google Scholar 

  • Jacobson, B. S. 1957. Evidence for recovery from X-ray damage inChlamydomonas. Rad. Res.7: 394–406.

    CAS  Google Scholar 

  • —. 1961. Reversal of radiation damage in algae. Sci. Rpt. ORO-465. Univ. Texas, Austin.

    Google Scholar 

  • James, A. P. 1968. Lethal sectoring in yeast. Brookhaven Sympos. Biol.20: 77–97.

    Google Scholar 

  • Johansen, I. &P. Howard-Flanders. 1965. Macromolecular repair and freeradical scavengering in the protection of bacteria against X-rays. Rad. Res.24: 184–200.

    CAS  Google Scholar 

  • Jonard, R. 1960. Action protectrice de l’acide ascorbique à l’egard de l’irradiation des tissus de crown gall de scorsonere par les rayons X. C. R. Acad. Sci. (Paris)250: 185–187.

    CAS  Google Scholar 

  • —. 1966. Étude de la restauration spontanée des tissus de topinambour par la technique des irradiations partielles. C. R. Acad. Sci. (Paris)263: 937–939.

    Google Scholar 

  • — &A. Kovoor. 1965. Sur l’action radiorestauratrice d’un facteur de croissance extrait de l’acid ribonucléique de levure. C. R. Acad. Sci. (Paris)260: 4592–4594.

    CAS  Google Scholar 

  • Kada, T. 1965. Modification of lethal and mutagenic radiation damages by genetic “repair” factors in bacteria. Japan. J. Genetics40 (Suppl.): 242–255.

    CAS  Google Scholar 

  • —,E. Brun, &H. Marcovich. 1960. Comparison de l’induction de mutants prototrophes par les rayons X et U. V. chez “Escherischiacoli” B/r Try. Ann. Inst. Pasteur99: 547–566.

    CAS  Google Scholar 

  • —,C. O. Doudney, &F. L. Haas. 1961. Some biochemical factors in X-ray-induced mutation in bacteria. Genetics46: 683–708.

    PubMed  CAS  Google Scholar 

  • Kamra, O. P. &P. C. Kesavan. 1969. Modification of barley seed radiosensitivity with microwave radiation. I. Effect of moisture content and post-irradiation hydration. Rad. Bot.9: 443–448.

    Google Scholar 

  • Kanazer, D. T., O. Z. Cecuk, B. N. Krajincanic, &T. A. Hudnik. 1959. The recovery of X-irradiatedSalmonella typhimurium, by means of highly polymerized deoxyribonucleic acid (DNA). Bull. Inst. Nuclear Sci. “Boris Kidrich”9: 133–144.

    Google Scholar 

  • Kaplan, R. 1947. Einfluss tiefer Temperatur auf die Röntgenstrahlen-mutationsraten von ruhenden Gerstenkörner. Naturwiss.10: 316–317.

    Google Scholar 

  • Kapul’Tsevich, Y. G. 1967. Effect of temperature modifications on survival curves of yeast cells during post-irradiation. Soviet Radiobiol.7: 367–371.

    Google Scholar 

  • Kaufmann, B. P. &H. Gay. 1947. The influence of X-rays and near infra-red rays on recessive lethals inDrosophila melanogaster. Proc. Nat. Acad. Sci. (Wash.).33: 366–372.

    CAS  Google Scholar 

  • ——. 1948. The modifying action of near infrared radiation on the frequency of induced gene and chromosomal changes inDrosophila melano gaster. Genetics32: 112.

    Google Scholar 

  • — &A. Hoixaender. 1945. Alterations of the frequency of X-ray-induced chromosomal breaks by use of ultraviolet and near infrared radiation. Genetics30: 11–12.

    Google Scholar 

  • ——. 1946. Modification of the frequency of chromosomal rearrangements induced by X-rays inDrosophila. II. Use of ultraviolet radiation. Genetics31: 368–376.

    PubMed  CAS  Google Scholar 

  • ——, &H. Gay. 1946. Modification of the frequency of chromosomal rearrangements induced by X-rays inDrosophila. I. Use of near-infrared radiation. Genetics31: 349–367.

    PubMed  CAS  Google Scholar 

  • — &K. Wilson. 1949. Modification of the frequency of chromosomal rearrangements induced by X-rays inDrosophila. IV. Post treatment with near infrared radiation. Genetics34: 425–436.

    Google Scholar 

  • Key, J. &F. Wold. 1961. Some effects of 2,4-dichlorophenoxyacetic acid on the oxidation-reduction state of soybean seedlings. J. Biol. Chem.236: 549–553.

    PubMed  CAS  Google Scholar 

  • Keifer, J. 1967. Influence of culture temperature on the X-ray sensitivity of barley roots. Rad. Bot.7: 55–65.

    Google Scholar 

  • Riga, M., Y. Ando, &H. Kake. 1955. Enhancement of radiobiological effect by malonic and maleic acids. Science122: 331–332.

    Google Scholar 

  • Kihlman, B. A. 1962. Different effects of 5-fluorodeoxyuridine and 5-bromodeoxyuridine on the frequency of chromatid aberrations obtained inVicia faha after irradiation with X-rays. Exp. Cell Res.27: 604–607.

    PubMed  CAS  Google Scholar 

  • Kemball, R. F. 1955. The role of oxygen and peroxide in the production of radiation damage inParamecium. Ann. N. Y. Acad. Sci.59: 638–648.

    Google Scholar 

  • -. 1957a. Modification of the genetic effects of X-rays by treatment after irradiation. Proc. Intl. Genetics Sympos. Tokyo. Science Council Japan. Pp. 252–255.

  • —. 1957b. Modification of the genetic effect of X-rays by treatment after irradiation. Cytologia Suppl.1: 252–255.

    Google Scholar 

  • —. 1958. Postirradiation modification of mutation after various radiations. Rad. Res.9: 138–139.

    Google Scholar 

  • —. 1966. Repair of premutational damage. Adv. Rad. Biol.2: 135–166.

    Google Scholar 

  • —,N. Gaither, &S. M. Wilson. 1959. Reduction of mutation by postirradiation treatment after ultraviolet and various kinds of ionizing radiations. Rad. Res.10: 490–497.

    Google Scholar 

  • King, G. S. 1949. Direct and transmitted X-ray effects on growth of tobacco callus in vitro. Am. J. Bot.36: 265–270.

    PubMed  CAS  Google Scholar 

  • King, J. W. &A. W. Galston. 1961. Some effects of X-irradiation on the endogenous and auxin-induced growth of etiolated pea stem tissue. Pp. 238–244.In: Radiobiology. Butterworths Sci. Publ., London.

    Google Scholar 

  • Kirby-Smith, J. S. 1951. Effects of infra red irradiation on the frequency of X- and gamma-induced chromosomal aberrations inTradescantia pollen tubes. Genetics (Abstr.)36: 558–559.

    Google Scholar 

  • —,B. Nicoletti, &M. L. Gwynn. 1960. The induction of chromosomal aberrations inTradescantia pollen by combined X-ray and ultraviolet treatment. Genetics45: 996.

    Google Scholar 

  • — &M. L. Randolph. 1959. Production and lifetimes of radiation-induced free radicals in some molecules of biological importance. Pp. 11–24. In:I. Buzzatti-Traverse (ed.), Immediate and Low Level Effects of Ionizing Radiation. Pergamon Press, N. Y.

    Google Scholar 

  • Klein, D. T. &R. M. Klein. 1962. Effect of certain oxidizing and reducing compounds onNeurospora conidia. Neurospora Newsletter2: 9.

    Google Scholar 

  • Klein, R. M. 1969. Radiation-induced loss of capacity of plant cells to utilize auxin. Pp. 675–683.In:F. Wightman andG. Setterfield (eds.), Biochemistry and Physiology of Plant Growth Substances. Runge Press, Ottawa.

    Google Scholar 

  • — &P. C. Edsall. 1966. Substitution of redox chemicals for radiation in phytochrome-mediated photomorphogenesis. Plant Physiol.41: 949–952.

    PubMed  CAS  Google Scholar 

  • — &D. T. Klein. 1962. Interaction of ionizing and visible radiation in mutation induction inNeurospora crassa. Am. J. Bot.49: 870–874.

    Google Scholar 

  • — &H. H. Vogel, Jr. 1956. Necessity for indoleacetic acid for the duplication of crown-gall tumor cells. Plant Physiol.31: 17–21.

    PubMed  CAS  Google Scholar 

  • Klingmüller, W. 1959. Zur Moglichkeit eines nachträglichen Strahlenschutzes bei Samen vonVicia faba. Zeit. Naturforsch.14b: 268–272.

    Google Scholar 

  • -. 1962. Influence of graded moisture content on survival and back mutation rate of X-rayedNeurospora crassa conidia. Proc. Second Intl. Cong. Radiation Res., p. 197.

  • Kocholaty, W. &J. Denson. 1957. The influence of visible light on the sulfhydryl content of yeast cells after ionizing and ultra-violet irradiation. Army Med. Res. Labs. Rpt. 72, pp. 1–11.

  • Konzak, C. F. 1957. Genetic effects of radiation on higher plants. Quart. Rev. Biol.32: 27–45.

    PubMed  CAS  Google Scholar 

  • -. 1961. Modification of induced genetic damage in seeds. Pp. 155–169.In: Effect of Ionizing Radiation on Seeds. Intl. Atomic Energy Agency Symposium, Vienna.

  • —,R. S. Caldecott, N. Delihas, &H. J. Curtis. 1957. The modification of radiation damage in dormant seeds. Rad. Res. (Abstr.)7: 326.

    Google Scholar 

  • —,H. J. Curatis, N. Delihas, &R. A. Nilan. 1960. Modification of radiation-induced damage in barley seeds by thermal energy. Canad. J. Gen. Cytol.2: 129–141.

    Google Scholar 

  • —,R. A. Nilan, J. R. Harle, &R. E. Heiner. 1961. Control of factors affecting the response of plants to mutagens. Brookhaven Sympos. Biol.14: 128–157.

    PubMed  CAS  Google Scholar 

  • -,R. A. Nilan, R. R. Legault, &R. E. Heiner. 1961. Modification of induced genetic damage in seeds. Pp. 155–169.In: Effect of Ionizing Radiation on Seeds. Intl. Atomic Energy Agency Symposium, Vienna.

  • Korogodin, V. I. 1958. Some regularities in the post-irradiation changes in resting yeast cells. Biophysika3: 703–710.

    CAS  Google Scholar 

  • —,O. V. Malinovskii, N. A. Poriadkova, &N. A. Izmozherov. 1959. Reversibility of various forms of radiation injury in diploid yeast cells. Tsitologiia1: 306–314.

    Google Scholar 

  • — &T. G. Mamedov. 1960. Influence of irradiation plant seedlings on the growth of unirradiated seedlings. Biophysika5: 186–188.

    Google Scholar 

  • —,B. N. Tarusov, &A. K. Tambiev. 1959. Relation of recovery after irradiation to temperature, oxygen tension and concentration of cell suspension. Biophysika4: 224–227.

    CAS  Google Scholar 

  • Krahe, M., H. A. Kunkel, &H.-J. Schmermund. 1957. Über die Beeinflussbarkeit der biolozischen Strahlungwirkung durch applikation von Schutzstoffen nach der Bestrahlung. Strahlenther.102: 228–290.

    Google Scholar 

  • Kronstad, W. E., R. A. Nilan, &C. F. Konzak. 1959. The mutagenic effect of oxygen in barley seeds. Science129: 1618.

    PubMed  CAS  Google Scholar 

  • Kryukova, L. M. &A. M. Kuzin. 1960a. Translocated effect of ionizing radiation in plants. Biophysika5: 513–516.

    Google Scholar 

  • ——. 1960b. Distant effect of ionizing radiation in an irradiated plant. Fiz. Rast.7: 220–222.

    Google Scholar 

  • Kumar, S. &A. T. Natarajan. 1965. Photodynamic action and post-irradiation modifying effects of méthylene blue and acridine orange in barley andVicia faba. Mutat. Res.2: 11–21.

    PubMed  CAS  Google Scholar 

  • Kunkel, H. A. &G. Schubert. 1959. Effect of protective agents applied after irradiation. Prog. Nuclear Energy, VI2: 217–224.

    Google Scholar 

  • ——. 1960. Effects of protective agents applied after irradiation. Frauenklinik Bull. Univ. Hamburg.

    Google Scholar 

  • Kurabayashi, M. 1953. Effects of post temperature treatments upon the X-ray induced chromosomal aberrations. Cytologia18: 253–265.

    Google Scholar 

  • Kuzin, A. M. 1963. On the role of the disturbance of metabolic processes in the radiation damage of the cell. Intl. J. Rad. Biol.6: 211–220.

    CAS  Google Scholar 

  • — &V. A. Kopylov. 1960. Disturbance of oxidation-reduction processes in plant tissue under influence of ionizing radiation. Biophysika5: 810–814.

    Google Scholar 

  • Lamarque, P. 1952. La restauration en radiobiologie. Presse Med.60: 1039–1041.

    PubMed  CAS  Google Scholar 

  • —. 1960. Neuere Untersuchungen über die Restauration von Strahlungsschäden. Strahlenther.111: 75–84.

    CAS  Google Scholar 

  • Langendorff, H. &K. Sommermeyer. 1953. Sensibilierung und Reaktivierung röntgenbestrahlter Coli-Bakterien durch Wärme, Zeit. Naturforsch.8b: 117–122.

    Google Scholar 

  • Laterjet, R. 1943. Action du froid sur la réparation des radiolésions chez une levure et chez une bactérie. C. R. Acad. Sci. (Paris)217: 186–188.

    Google Scholar 

  • —. 1951. Photo-restauration aprés irradiation X chez une bactérie lysogéne. C. R. Acad. Sci. (Paris)232: 1713–1715.

    Google Scholar 

  • —. 1954. Spontaneous and induced cell restaurations after treatments with ionizing and non-ionizing radiations. Acta Radiol.41: 84–100.

    Google Scholar 

  • — (ed.). 1958. Organic Peroxides in Radiobiology. Pergamon Press, N. Y.

    Google Scholar 

  • - &L. H. Gray. Definition of the terms “protection” and “restoration.” Acta Radiol.41: 61–62.

  • Leopold, A. C. &K. V. Thimann. 1949. The effect of auxin on flower initiation. Am. J. Bot.36: 342–347.

    PubMed  CAS  Google Scholar 

  • Levitt, J. &J. Dear. 1970. The role of membrane proteins in freezing injury and resistance. Pp. 149–174.In:G. E. W. Wolstenholme &M. O’Conner (eds.), Ciba Sympos. on the Frozen Cell. J. & A. Churchill Co., London.

    Google Scholar 

  • Lewis, S. E. &E. D. Wills. 1962. The destruction of -SH groups of proteins and amino acids by peroxides of unsaturated fatty acids. Biochem. Pharm.11: 901–912.

    CAS  Google Scholar 

  • Lockhaht, J. A. 1961. Interactions between gibberellins and various environmental factors on stem growth. Am. J. Bot.48: 516–525.

    Google Scholar 

  • Löfroth, G. A., A. Ehrenberg, &L. Ehrenberg. 1964. Analysis of radiationinduced electron spin resonance spectra in plant seeds. Rad. Bot.4: 455–467.

    Google Scholar 

  • Luchnik, N. V. 1948. Effect of yeast extract on irradiated organisms. Biokhim.40: 139–146.

    Google Scholar 

  • —. 1960a. The effect of yeast extracts on the mortality of irradiated rice and pea seedlings. Trudy Inst. Biol. Akad. Nauk SSSR Ural Filial.12: 93–118.

    Google Scholar 

  • —. 1960b. The reversibility of cytogenetic damage caused by radiation. Akad. Nauk SSSR1960: 1–16.

    Google Scholar 

  • Lyman, J. T. &R. H. Haynes. 1967. Recovery of yeast after exposure to densely ionizing radiation. Rad. Res. Suppl.7: 222–230.

    CAS  Google Scholar 

  • Ma, T. H. &S. Wolff. 1965. Far-red-induced mitotic delay and the apparent increase of X-ray induced chromatid aberration inTradescantia microspores. Rad. Bot.5: 293–298.

    Google Scholar 

  • Maisin, J., P. Dumont, &A. Dunjic. 1960. Yeast ribonucleic acid and its nucleotides as recovery factors in rats receiving an acute whole-body dose of X-rays. Nature186: 487–488.

    PubMed  CAS  Google Scholar 

  • — &S. Masy. 1928. Mechanism of action of X-rays on seeds. C. R. Soc. Biol.98: 886–888.

    CAS  Google Scholar 

  • Maqsood, M. &J. K. Ashikawa. 1962. Post-irradiation protection and recovery. I. Effect of lipids on haematopoietic organs of X-irradiated male mice. Intl. J. Rad. Biol.4: 521–531.

    CAS  Google Scholar 

  • Marcenko, E. 1965. Restoration of irradiated algae after a period of darkness. Nature207: 542–543.

    PubMed  CAS  Google Scholar 

  • Mathur, P. B. 1961. Reversal of gamma-ray-induced dormancy of potato tubers by gibberellic acid. Nature190: 547–548.

    PubMed  CAS  Google Scholar 

  • Matsuura, H. &S. Tanifuji. 1962. Chromosome studies onTrillium kamtschaticum Pall. and its allies. XXVIII. Modifying effects of chloramphenicol on X-ray induced chromosome aberrations. J. Fac. Sci. Hokkaido Univ. Series V8: 157–172.

    CAS  Google Scholar 

  • Maxwell, L. R., J. H. Kempton, &V. M. Mosley. 1942. Effect of temperature and time on the X-ray sensitivity of maize seeds. J. Wash. Acad. Sci.32: 18–23.

    Google Scholar 

  • McElroy, W. D. &C. P. Swanson. 1951. The theory of rate processes and gene mutation. Quart. Rev. Biol.26: 348–363.

    PubMed  CAS  Google Scholar 

  • McGrath, R. A. &R. W. Williams. 1966. Reconstruction in vivo of irradiatedEscherischia coli deoxyribonucleic acid: The rejoining of broken pieces. Nature212: 534–535.

    PubMed  CAS  Google Scholar 

  • ——, &D. C. Swartzendruber. 1966. Breakdown of DNA in X-irradiatedEscherischia coli. Biophys. J.6: 113–122.

    PubMed  CAS  Google Scholar 

  • Mericle, R. P., L. W. Mericle, &D. J. Montgomery. 1966. Magnetic fields and ionizing radiation: Effects and interactions during germination and early seedling development. Rad. Bot.6: 111–127.

    Google Scholar 

  • ———, &J. W. Campbell. 1964. Modification of radiation damage by post treatment with homogenous magnetic fields. Genetics50: 268–269.

    Google Scholar 

  • Merz, T., C. P. Swanson, &C. N. Homaltha. 1961. Radiosensitivity and the problem of chromosome breakage. Brookhaven Sympos. Biol.14: 53–61.

    PubMed  CAS  Google Scholar 

  • Micke, A. &K. Wöhrmann. 1960. Atompraxis6: 308–316.

    Google Scholar 

  • Mika, E. S. 1952. Effect of indoleacetic acid on root growth of X-irradiated peas. Bot. Gaz.113: 285–293.

    CAS  Google Scholar 

  • Miletic, B., Z. Kucan, &L. Sasel. 1964. Synthesis of deoxyribonucleic acid in X-irradiated bacteria treated with chloramphenicol. Nature207: 311–312.

    Google Scholar 

  • Moh, C. C. &R. B. Wrnraow. 1959a. Non-ionizing radiant energy as an agent in altering the incidence of X-ray-induced chromatid aberrations. II. Reversal of the far-red potentiating effect inVicia by red radiant energy. Rad. Res.10: 13–19.

    Google Scholar 

  • ——. 1959b. Non-ionizing radiant energy as an agent in altering the incidence of X-ray-induced chromatid aberrations. III. Action spectrum of far-red potentiation. Rad. Res.11: 19–23.

    Google Scholar 

  • Mole, R. H. 1959. Some aspects of mammalian radiobiology. Rad. Res. Suppl.1: 124–148.

    Google Scholar 

  • Moore, J. H. &L. F. Hough. 1961. Influence of gamma irradiation and short-day inductive treatments on endogenous auxin levels and vegetative and reproductive growth in the strawberry. Plant Physiol. (Abstr.)36: liv.

    Google Scholar 

  • Moseley, B. E. B. 1968. The repair of damaged DNA in irradiated bacteria. Adv. Microbiol. Physiol.2: 173–194.

    CAS  Google Scholar 

  • Moutschen-Dahmen, M., J. Moutschen, &L. Ehrenberg. 1966a. On post irradiation modification of biological effects of neutrons. I. Effect of Mylaran on chromosome aberrations in neutron irradiated seeds. Rad. Bot.6: 251–264.

    Google Scholar 

  • ———. 1966b. On post irradiation modification of biological effects of neutrons. II. Effect of 5-fluorodeoxyuridine on chromosomal aberrations in neutron irradiated seeds. Rad. Bot.6: 425–431.

    CAS  Google Scholar 

  • Nadson, G. &A. Jolkevitch. 1926. The combined action of radium and chemical agents on plants. Ann. Roentgenol. Radiol.2: 11–39.

    Google Scholar 

  • — &A. J. Zolkevic. 1925. Kalium als antagonist der Röntgenstrahlen und das Radium. Biochem. Zeit.163: 457–463.

    CAS  Google Scholar 

  • Narayanaswami, S. 1967. Action of X-irradiation on plant tissues cultivated in vitro: Histophysiological responses. Pp. 64–67. In: Seminar on Plant Cell, Tissue, and Organ Culture. Univ. Delhi, India.

    Google Scholar 

  • Natarajan, A. T. &G. Ahnström. 1961. Oxygen saturation and dry seed irradiation. Naturwiss.48: 698–699.

    CAS  Google Scholar 

  • — &K. R. Narayanan. 1963. Post-irradiation modification of genetic effects in plant seeds. Pp. 413–424.In:F. H. Sobels (ed.), Repair from Genetic Radiation Damage. Macmillan and Co., N. Y.

    Google Scholar 

  • Neary, G. J. 1957. Dependence on oxygen and temperature of the sensitivity of broad bean roots to gamma-radiation. Nature180: 248–249.

    PubMed  CAS  Google Scholar 

  • Nichols, C., Jr. 1942. The effect of age and irradiation on chromosome aberrations inAllium seed. Am. J. Bot.29: 755–759.

    Google Scholar 

  • Nilan, R. A. 1964. The Cytology and Genetics of Barley 1951–1962. Wash. State Univ. Press, Pullman.

    Google Scholar 

  • —,C. F. Konzak, J. R. Harle, &R. E. Heiner. 1962. Interrelations of oxygen, water, and temperature on the production of radiation-induced genetic effects in plants. Strahlenther. Suppl.51: 171–182.

    CAS  Google Scholar 

  • ——,R. R. Legault, &J. R. Harle. 1961. The oxygen effect in barley seeds. Pp. 139–154.In: Effects of Ionizing Radiation on Seeds. Intl. Atomic Energy Agency, Vienna.

    Google Scholar 

  • Noyes, W. A., Jr. 1959. Oxygen effects in photochemical systems. Rad. Res. Suppl.1: 164–176.

    Google Scholar 

  • Okazawa, Y., M. Namtki, S. Yamashita, &A. Matsuyama. 1960. Enhancement of the over-all lethal effect of ionizing radiations on microorganisms by sodium chloride. Bull. Agric. Chem. Soc. Japan24: 235–242.

    CAS  Google Scholar 

  • Oliva, L., F. Missurale, &P. Valli. 1958. Effetti protettivi e terapeutici del D.P.N. su ratti irradiati con L.D. 100%. Minerva Med. (Torino)49: 1976–1977.

    CAS  Google Scholar 

  • Ord, M. G. &L. A. Stocken. 1963. Biochemical effects of X-irradiation and the sulphhydryl hypothesis: A reappraisal. Nature200: 136–138.

    PubMed  CAS  Google Scholar 

  • Ormorod, M. G. &P. Alexander. 1962. Repair of radiation damage in a nucleoprotein by cysteamine. Nature193: 290–291.

    Google Scholar 

  • Packard, C. 1918. Differences in the action of radium on green plants in the presence and absence of light. J. Gen. Physiol.1: 37–41.

    CAS  Google Scholar 

  • —. 1930. The relation between division rate and the radiosensitivity of cells. J. Cancer Res.14: 359–369.

    Google Scholar 

  • Partanen, C. R. 1960. Suppression of radiation-induced tumorization in fern prethalli. Science131: 926–927.

    PubMed  CAS  Google Scholar 

  • Patrick, M. H., R. H. Haynes, &R. B. Uretz. 1964. Dark recovery phenomena in yeast. I. Comparative effects with various inactivating agents. Rad. Res.21: 144–163.

    CAS  Google Scholar 

  • Patt, H. M. 1953. Protective mechanisms in ionizing radiation injury. Physiol. Revs.33: 35–76.

    CAS  Google Scholar 

  • — &A. M. Brues. 1954. The pathological physiology of radiation injury in the mammal. I. Physical and biological factors in radiation action. Pp. 919–958.In:A. Hollaender (ed.), Radiation Biology, Vol. I. McGraw-Hill Book Co., N. Y.

    Google Scholar 

  • Pihl, A. &L. Eldjarn. 1958. Pharmacological aspects of ionizing radiation and of chemical protection in mammals. Pharm. Rev.10: 437–474.

    PubMed  CAS  Google Scholar 

  • Powers, E. L. 1961. Chemical species induced by X-rays in cells and their role in radiation injury. Pp. 91–106.In:R. J. C. Harris (ed.), The Initial Effects of Ionizing Radiation on Cells. Academic Press, N. Y.

    Google Scholar 

  • —,C. F. Ehret, &B. Smaller. 1960. The role of free radicals in the lethal effects of X-rays in dry bacterial spores. Pp. 351–366.In:M. S. Blois et al. (eds.), Free Radicals in Biological Systems. Academic Press, N. Y.

    Google Scholar 

  • — &B. Kaleta. 1960. Reduction of radiation sensitivity of dry bacterial spores with hydrogen sulfide. Science132: 959–960.

    PubMed  CAS  Google Scholar 

  • —,R. B. Webb, &C. F. Ehret. 1960. Storage, transfer and utilization of energy from X-rays in dry bacterial spores. Rad. Res. Suppl.2: 94–121.

    CAS  Google Scholar 

  • ——, &B. F. Kaleta. 1960. Oxygen and nitric oxide as modifiers of radiation injury in spores ofBacillus megaterium. Proc. Nat. Acad. Sei. (Wash.)46: 984–993.

    CAS  Google Scholar 

  • Pratt, A. W., W. S. Moos, &M. Eden. 1955. Study of recovery at low temperature of X-irradiatedE. coli cells. J. Nat. Cancer Inst.15: 1039–1047.

    PubMed  CAS  Google Scholar 

  • Protopopova, E. M. &L. N. Kublik. 1964. Elimination of the after-effects of radiations on plant cells. Radiobiol.4: 878–882.

    CAS  Google Scholar 

  • Raskova, H., D. Skrobal, &Z. Dienstbier. 1956. A note on the detoxification effects of ATP. Physiol. Bohem.5: 444–447.

    CAS  Google Scholar 

  • Riley, H. P. 1957. Chemical protection against X-ray damage to chromosomes. Genetics42: 593–600.

    PubMed  CAS  Google Scholar 

  • Rothstein, A. 1959. Biochemical and physiological changes in irradiated yeast. Rad. Res. Suppl.1: 357–371.

    Google Scholar 

  • Rugh, R. 1958. The so-called “recovery” phenomenon and “protection” against X-irradiation at the cellular level. Biol. Bull.114: 385–393.

    CAS  Google Scholar 

  • Russell, M. A. 1937. Effects of X-rays onZea mays. Plant Physiol.12: 117–133.

    PubMed  CAS  Google Scholar 

  • Sago, P. B. &B. M. Tolbert. 1957. Nuclear and electron paramagnetic resonance and its application to biology. Adv. Biol. Med. Physics5: 1–35.

    Google Scholar 

  • Salser, W. A. 1956. The effects of X-rays on plants. Trans. Kansas Acad. Sci.59: 412.

    Google Scholar 

  • Sax, K. 1941. The behavior of X-ray induced chromosomal aberrations inAllium cepa root tip cells. Genetics26: 418–425.

    PubMed  CAS  Google Scholar 

  • —. 1947. Temperature effects on X-ray induced chromosome aberrations. Genetics32: 75–78.

    PubMed  CAS  Google Scholar 

  • — &E. V. Enzmann. 1939. The effect of temperature on X-ray induced chromosome aberrations. Proc. Nat. Acad. Sci. (Wash.)25: 397–405.

    CAS  Google Scholar 

  • Schjeide, O. A., J. F. Mead, &L. S. Myers, Jr. 1956. Notions on sensitivity of cells to radiation. Science123: 1020–1022.

    PubMed  CAS  Google Scholar 

  • Scholes, G. &J. Weiss. 1959. Oxygen effects and formation of peroxides in aqueous solutions. Rad. Res. Suppl.1: 177–189.

    Google Scholar 

  • Sermonti, G. &G. Mohpurgo. 1959. Action of manganous chloride on induced somatic segregation inPenicillium chrysogenum diploids. Genetics44: 437–447.

    PubMed  CAS  Google Scholar 

  • Serres, F. J. de, H. V. Malling, &B. B. Webber. 1968. Dose-rate effects on inactivation and mutation induction inNeurospora crassa. Brookhaven Sympos. Biol.20: 56–76.

    Google Scholar 

  • Setlow, R. B. 1966. Repair of molecular damage to DNA. Oak Ridge Nat. Lab. Rpt. ORNL-P-2267.

  • — &E. C. Pollard. 1962. Molecular Biophysics. Addison Wesley Publ. Co., Reading, Mass.

    Google Scholar 

  • Shapiro, N. I. &E. M. Bocharova. 1960. Two kinds of radiational after effects in barley seeds. Doklady Akad. Nauk. SSSR133: 262–265.

    Google Scholar 

  • Siegel, S. M. 1962. Observations on peroxide toxicity in seed germination. Physiol. Plant.15: 21–26.

    CAS  Google Scholar 

  • Sigard, M. A. &D. Schwartz. 1960. Dépendence du mode de conservation après irradiation et des radiolésions produites dans les graines d’orge sèches. C. R. Acad. Sci. (Paris)251: 897–899.

    Google Scholar 

  • Sire, M. W. &R. A. Nilan. 1957. The relation of oxygen to induced chromosome breakage inCrepis capillaris. Genetics42: 395.

    Google Scholar 

  • ——. 1959. The relation of oxygen posttreatment and heterochromatin to X-ray-induced chromosome aberration frequencies inCrepis capillaris. Genetics44: 124–136.

    PubMed  CAS  Google Scholar 

  • Sisler, E. C. &W. H. Klein. 1961. Effect of red and far-red irradiations on nucleotide phosphate and adenosine triphosphate levels in dark-grown bean andAvena seedlings. Physiol. Plant.14: 115–123.

    CAS  Google Scholar 

  • Smith, G. F. &H. Kersten. 1942. Auxins and calines in seedlings from X-rayed seeds. Am. J. Bot.29: 785–791.

    CAS  Google Scholar 

  • Smith, K. C. &P. C. Hanawalt. 1969. Molecular Photobiology. Academic Press, N. Y.

    Google Scholar 

  • Smith, L. 1943. Relation of polyploidy to heat and X-ray effects in the cereals. J. Hered.34: 131–134.

    Google Scholar 

  • —. 1946. A comparison of the effects of heat and X-rays on dormant seeds of cereals with special reference to polyploidy. J. Agric. Res.73: 137–158.

    CAS  Google Scholar 

  • — &R. S. Caldecott. 1948. Modification of X-ray effects on barley seeds by pre- and post-treatment with heat. J. Hered.39: 173–176.

    Google Scholar 

  • ——, &B. Hayden. 1948. Experimental modification of the biological effect of X-rays. Genetics (Abstr.)33: 629.

    CAS  Google Scholar 

  • Sobels, F. H. 1956. Organic peroxides and mutagenic effects inDrosophila. Nature177: 979–982.

    CAS  Google Scholar 

  • —. 1958. The enhancing effect of post-treatment with cyanide on the mutagenic action of X-rays inDrosophila. Rad. Res. (Abstr.)9: 186.

    Google Scholar 

  • —. 1960a. Post-irradiation modification of the mutation rate inDrosophila by cyanide. Acta Physiol. Pharmol.9: 320–321.

    Google Scholar 

  • —. 1960b. The effect of post-treatment with cyanide in relation to doserate and oxygen tension. Intl. J. Rad. Biol.2: 68–90.

    CAS  Google Scholar 

  • —. 1963. Repair and differential radiosensitivity in developing germ cells ofDrosophila males. Pp. 179–197.In:F. H. Sobels (ed.), Repair from Genetic Radiation Damage. Macmillan, N. Y.

    Google Scholar 

  • Sommer, N. F., M. Creasy, R. J. Romani, &E. C. Maxie. 1963. Recovery of gamma irradiatedRhizopus stolonifer sporangiospores during auto-inhibition of germination. J. Cell. Comp. Physiol.61: 93–98.

    PubMed  CAS  Google Scholar 

  • ————. 1964. An oxygen-dependent postirradiation restoration ofRhizopus stolonifer sporangiospores. Rad. Res.22: 21–28.

    CAS  Google Scholar 

  • —,J. H. Görtz, &E. C. Maxie. 1965. Prevention of repair in irradiatedRhizopus stolonifer sporangiospores by inhibitors of protein synthesis. Rad. Res.24: 390–397.

    CAS  Google Scholar 

  • Sparrman, D., L. Ehrenberg, &A. Ehrenberg. 1959. Scavengering of free radicals and radiation protection by nitric oxide in plant seeds. Acta Chem. Scand.13: 199–200.

    CAS  Google Scholar 

  • Stapleton, G. E. 1955. The influence of pretreatments and posttreatments on bacterial inactivation by ionizing radiations. Ann. N. Y. Acad. Sci.59: 604–618.

    PubMed  CAS  Google Scholar 

  • —,D. Billin, &A. Hollaender. 1953. Recovery of X-irradiated bacteria at suboptimal incubation temperatures. J. Cell. Comp. Physiol.41: 345–357.

    CAS  Google Scholar 

  • —,A. J. Sbarra, &A. Hollaender. 1955. Some nutritional aspects of bacterial recovery from ionizing radiations. J. Bact.70: 7–14.

    PubMed  CAS  Google Scholar 

  • Steffensen, D. 1955. Breakage of chromosomes inTradescantia with a calcium deficiency. Proc. Nat. Acad. Sci. (Wash.)41: 155–160.

    CAS  Google Scholar 

  • —. 1957. Effects of various cation imbalances on the frequency of X-rayinduced chromosome aberrations inTradescantia. Genetics42: 239–252.

    PubMed  CAS  Google Scholar 

  • Stein, G. &R. Richter. 1961. The effect of X-ray irradiation in conjunction with red and far-red light on lettuce seed germination. Pp. 197–199.In: Effect of Ionizing Radiation on Seeds. Intl. Atomic Energy Agency, Vienna.

    Google Scholar 

  • Sternheimer, E. P. 1953. Effects of X-irradiation on the growth of certain plant tissues in vitro. Thesis, Ph.D., Univ. Michigan, Ann Arbor.

    Google Scholar 

  • Stone, W. S. 1956. Indirect effects of radiation on genetic material. Brookhaven Sympos. Biol.8: 171–190.

    PubMed  Google Scholar 

  • Strangeways, T. S. &H. B. Fell. 1927. Influence of low temperature on recovery from X-rays. Proc. Roy. Soc. London.B 102: 9–11.

    Google Scholar 

  • Swanson, C. P. 1944. X-ray and ultraviolet studies on pollen tube chromosomes. I. The effect of ultraviolet (2537 Å) on X-ray induced chromosome aberrations. Genetics29: 61–68.

    PubMed  CAS  Google Scholar 

  • —. 1948. The differential effects of combined radiations on chromosome breakage and mutation rate. Science107: 458.

    Google Scholar 

  • —. 1949. Further studies on the effect of infra-red radiation on X-rayinduced chromatid aberrations inTradescantia. Proc. Nat. Acad. Sci. (Wash.)35: 237–244.

    Google Scholar 

  • —. 1952. The effects of supplementary factors on the radiation-induced frequency of mutations inAspergillus terreus. J. Cell. Comp. Physiol.39 (Suppl. 1): 27–38.

    CAS  Google Scholar 

  • —,A. Hollaender, &B. N. Kaufmann. 1948. Modification of the X-ray and ultraviolet induced mutation rate inAspergillus terreus by pretreatment with near infrared radiation. Genetics33: 429–437.

    PubMed  CAS  Google Scholar 

  • ——. 1946a. The frequency of X-ray induced chromatid breaks inTradescantia as modified by near infrared radiation. Biol. Bull.91: 242.

    Google Scholar 

  • ——. 1946b. The frequency of X-ray-induced chromatid breaks inTradescantia as modified by near infrared radiation. Proc. Nat. Acad. Sci. (Wash.)32: 295–302.

    CAS  Google Scholar 

  • —,C. S. Rupert, &H. T. Yost, Jr. 1953, Infrared absorbtion and temperature studies on the buds and chromosomes ofTradescantia paludosa. Am. J. Bot.40: 557–565.

    Google Scholar 

  • — &H. T. Yost, Jr. 1951. The induction of activated, stable states in the chromosomes ofTradescantia by infrared and X-rays. Proc. Nat. Acad. Sci. (Wash.)37: 796–802.

    CAS  Google Scholar 

  • Tallenttre, A. &D. J. G. Davies. 1960. A post-irradiation oxygen effect in bacterial spores and its dependence on water content. Exp. Cell. Res.24: 148–150.

    Google Scholar 

  • — &N. A. Dickinson. 1962. Studies on the post-irradiation oxygen effect in bacterial spores. J. Pharm. Pharm. Suppl.14: 127T-128T.

    Google Scholar 

  • ——, &J. H. Collett. 1963. A dependence on water content of bacterial efficiency of gamma-radiation. J. Pharm. Pharm. Suppl.15: 180T-181T.

    Google Scholar 

  • —, &E. L. Powers. 1963. Modification of sensitivity to X-irradiation by water inBacillus megaterium. Rad. Res.20: 270–287.

    Google Scholar 

  • Tanada, T. 1969. An early lesion from low doses of X-irradiation in plant cells. Rad. Res.37: 103–107.

    CAS  Google Scholar 

  • Tanooka, H. 1965. Modifications of the inactivation of bacterial spores and their transforming DNA by ionizing radiations. Jap. J. Genetics40 (Suppl.): 229–241.

    CAS  Google Scholar 

  • Taranova, E. A. 1965. Changes in the viability of pollen as influenced by the environment and gamma-radiation. Ioniz. Izluch Biol. Akad. Nauk Latvia SSSR Inst. Biol., pp. 103–115.

  • Tascher, R. W. 1929. Experiments with X-ray treatments in the seeds of certain crop plants. Thesis, Ph.D. Univ. Missouri, Columbia.

    Google Scholar 

  • Tsarapkin, L. S. 1963. Effect of radiation-protective substances used after irradiation on the frequency of chromosome aberrations. Trudy Mosk. Obshch. Ispyt. Prirody Otd. Biol.7: 213–219.

    CAS  Google Scholar 

  • —. 1965. Classification of substances affecting post-irradiation recovery. Radiobiol. Inform. Bull.1965: 36–38.

    Google Scholar 

  • Tushynakova, M. M. 1958. The role of the temperature factor in X-irradiation. Zhur. Obshch. Biol.19: 265–272.

    Google Scholar 

  • Uretz, R. B. 1955. Additivity of X-rays and ultraviolet light in the inactivation of haploid and diploid yeast. Rad. Res.2: 240–252.

    CAS  Google Scholar 

  • Vlasyuk, P. A., Z. M. Klimovitskaya, &E. S. Kosmatii. 1956. Effects of small doses of ionizing radiations on oxidation-reduction processes in plants. Doklady Akad. Nauk SSSR106: 731–734.

    CAS  Google Scholar 

  • Wainwright, S. D. &A. Nevill. 1955. Some effects of post-irradiation treatment with metabolic inhibitors and nutrients upon X-irradiated spores ofStrepto myces. J. Bact.70: 547–551.

    PubMed  CAS  Google Scholar 

  • Webb, K. L. &R. Hodgson. 1960. Some effects of ionizing radiation on translocation in plants. Science132: 1762–1763.

    PubMed  CAS  Google Scholar 

  • Webb, R. B., E. L. Powers, &C. F. Ehret. 1960. Thermorestoration of radiation damage in dry bacterial spores. Rad. Res.12: 682–693.

    CAS  Google Scholar 

  • Weijer, J. 1963. Radiation protection by calcium gluconate and recovery of X-irradiated conidia ofNeurospora crassa. Rad. Res.20: 227–246.

    CAS  Google Scholar 

  • Westergaard, M. 1957. Chemical mutagenesis in relation to the concept of the gene. Experientia13: 224–234.

    PubMed  CAS  Google Scholar 

  • Winter, H. 1954. Der einfluss von Wirkstoffen, von Röntgen und Elektronenstrahlung auf die Cambiumtätigkeit vonBeta vulgarts. Planta44: 636–638.

    CAS  Google Scholar 

  • Withrow, R. B. &C. C. Moh. 1957. Nonionizing radiant energy as an agent in altering the incidence of X-ray-induced chromatid aberrations. I. Effects of far-red and infrared radiant energy onTradescantia andVicia. Rad. Res.6: 491–500.

    CAS  Google Scholar 

  • Wolff, S. 1959a. Studies on the biochemical nature of intergenic mutations. Proc. 9 Intl. Bot. Cong.2a: 40–41.

    Google Scholar 

  • —. 1959b. Interpretation of induced chromosome breakage and rejoining. Rad. Res. Suppl.1: 453–462.

    Google Scholar 

  • —. 1960a. Problems of energy transfer in radiation-induced chromosome damage. Rad. Res. Suppl.2: 122–132.

    CAS  Google Scholar 

  • —. 1960b. Radiation studies on the nature of chromosome breakage. Am. Natur.94: 85–93.

    Google Scholar 

  • —. 1960c. Post-irradiation storage and the growth of barley seedlings. Rad. Res.12: 484.

    Google Scholar 

  • —. 1961. Some post irradiation phenomena that affect the induction of chromosome aberrations. J. Cell. Comp. Physiol. Suppl. 1.58: 151–162.

    PubMed  CAS  Google Scholar 

  • —. 1963. Radiation-induced Chromosome Aberrations. Columbia Univ. Press, N. Y.

    Google Scholar 

  • — &R. C. von Borstel. 1954. The effects of pre- and post-irradiation centrifugation on the chromosomes ofTradescantia andVicia. Proc. Nat. Acad. Sci. (Wash.)40: 1138–1141.

    CAS  Google Scholar 

  • — &H. E. Luippold. 1955. Metabolism and chromosome-break rejoining. Science122: 231–232.

    PubMed  CAS  Google Scholar 

  • ——. 1958. Modification of chromosomal aberration yield by post-irradiation treatment. Genetics43: 493–501.

    PubMed  CAS  Google Scholar 

  • ——. 1960. On the apparent synergistic effect of far-red and X-rays in the production of chromatid aberrations. Pp. 457–460. In:B. C. Christensen &B. Buchmann (eds.), Progress in Photobiology. Elsevier Publ. Co., Amsterdam.

    Google Scholar 

  • — &A. M. Sicard. 1961. Post-irradiation storage and the growth of barley seedlings. Pp. 171–178.In: Effects of Ionizing Radiation on Seeds. Intl. Atomic Energy Agency, Vienna.

    Google Scholar 

  • Wood, T. H. 1954. Influence of temperatures and phase state on X-ray sensitivity of yeast. Arch. Biochem. Biophys.51: 157–167.

    Google Scholar 

  • —. 1958. Cellular radiobiology. Annu. Rev. Nuclear Sci.8: 343–386.

    CAS  Google Scholar 

  • —. 1959. Inhibition of cell division. Rad. Res. Suppl.1: 332–346.

    Google Scholar 

  • Yamaguchi, H. 1962. The effects of post treatment with cysteine and sodium hydrosulfite on the radiation-induced injury and mutation in rice. Ikushugaku Zasshi12: 8–12.

    CAS  Google Scholar 

  • Yamamota, G. 1959. Effects of radiation on nucleic acid metabolism in mice. II. Effect of β-mercapto ethylamine-HCl (MEA) and β-aminoethylisothiuronium-HBr (AET) on nucleic acid content in the thymus, spleen and testis. Nippon Igaku Hoshasen Gakkai Zasshi19: 1003–1011.

    Google Scholar 

  • Yost, H. T., Jr. 1950. An analysis of combined infra-red and X-ray effect onTradescantia chromosomes. Genetics (Abstr.)35: 700.

    Google Scholar 

  • — 1951. The frequency of X-ray-induced chromosome aberrations inTradescantia as modified by near infrared radiation. Genetics36: 176–184.

    PubMed  CAS  Google Scholar 

  • — 1952. The effect of intensity of infrared on X-ray induced chromosome aberrations inTradescantia. Genetics37: 457–568.

    PubMed  CAS  Google Scholar 

  • Zhuravlev, A. I. 1960. The role of antioxidants in early radiobiological effects. Akad. Nauk SSSR Inst. Biol. Fiz.1960: 55–65.

    Google Scholar 

  • Zimmer, K. G. 1959. Evidence for free-radical production in living cells exposed to ionizing radiation. Rad. Res. Suppl.1: 519–529.

    Google Scholar 

  • —,L. Ehrenberg, &A. Ehrenberg. 1957. Nachweis langlebiger magnitscher Zentren in bestrahlten biologischen Medien und deren Bedeutung für die Strahlenbiologie. Strahlenther.103: 3–15.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution 244 from the Vermont Agricultural Experiment Station. Unpublished research supported in part by a grant from the Atomic Energy Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, R.M., Klein, D.T. Post-irradiation modulation of ionizing radiation damage to plants. Bot. Rev 37, 397–436 (1971). https://doi.org/10.1007/BF02868684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02868684

Keywords

Navigation