Skip to main content
Log in

Strategies for “minimal growth maintenance” of cell cultures: A perspective on management for extended duration experimentation in the microgravity environment of a space station

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

How cells manage without gravity and how they change in the absence of gravity are basic questions that only prolonged life on a Space station will enable us to answer. We know from investigations carried out on various kinds of Space vehicles and stations that profound physiological effects can and often do occur. We need to know more of the basic biochemistry and biophysics both of cells and of whole organisms in conditions of reduced gravity. The unique environment of Space affords plant scientists an unusual opportunity to carry out experiments in microgravity, but some major challenges must be faced before this can be done with confidence. Various laboratory activities that are routine on Earth take on special significance and offer problems that need imaginative resolution before even a relatively simple experiment can be reliably executed on a Space station. For example, scientists might wish to investigate whether adaptive or other changes that have occurred in the environment of Space are retained after return to Earth-normal conditions. Investigators seeking to carry out experiments in the low-gravity environment of Space using cultured cells will need to solve the problem of keeping cultures quiescent for protracted periods before an experiment is initiated, after periodic sampling is carried out, and after the experiment is completed. This review gives an evaluation of a range of strategies that can enable one to manipulate cell physiology and curtail growth dramatically toward this end. These strategies include cryopreservation, chilling, reduced oxygen, gel entrapment strategies, osmotic adjustment, nutrient starvation, pH manipulation, and the use of mitotic inhibitors and growth-retarding chemicals. Cells not only need to be rendered quiescent for protracted periods but they also must be recoverable and further grown if it is so desired. Elaboration of satisfactory procedures for management of cells and tissues at “near zero or minimal growth” will have great value and practical consequences for experimentation on Earth as well as in Space. All of the parameters and conditions and procedural details needed to meet all the specific objectives will be the basis of the design and fabrication of cell culture units for use in the Space environment. It is expected that this will be an evolutionary process.

РЕЗЮМЕ

Стратегии по „содерж анию минимального ро ста“ клеточных культур: перспектива по управ лению длительных экс периментов в условиях микрогравитации на к осмической станции.

Как клетки сушествую т в невесомости и как о ни изменяются в отсутст вии притяжения, являются основными вопросами, на которые можно будет только ответить посл е длительного пребыв ания на космической станции. Нам известно, из приоб ретённого опыта, полу ченного в результате исследований, провед ённых на различных ко смических кораблях, что существенные физиол огические изменения возможны и происходят довольно часто. Необходимо узн ать больше основной б иохимии и биофизики клеток и целых организмов в у словиях ограниченно й гравитации. Необычна я среда космоса позволяет уч еным по растениям про водить опыты в условиях микрогравитации, одн ако некоторые важные сложные задачи должны быть решены перед заверше нием опытов с уверенн остью. Различные рутинные исследования на Земл е приобретают особое значение и ставят проблемы, которые необходимо р ешить до того, как прос тейший эксперимент может быть с уверенностью п роведён на космическ ой станции. Например, учёные желают провести иссл едование по адаптаци и или по другим изменениям, которые произошли в у словиях космоса, и опр еделить будут ли эти изменения продолжат ься в наземных услови ях. Исследователи, пытаю щиеся провести эксперимен ты на выращенных клет ках в условиях низкой гравитации космоса, д олжны решить проблем у сохранения неподвиж ности культуры на продолжи тельные периоды: до на чала эксперимента, а также во время периодическог о отбора проб, и после о кончания эксперимента. В данном обзоре даётся оценка ряда стратеги й позволяющих как упра влять физиологией клетки, т ак и значительно сокр ащать её рост до полного прекращения. Это вклю чает криоконсерваци ю (низкотемпературное сохранение), охлажден ие, понижение кислоро да, стратегии погружени я в гель, осмотическое приспо собление, питательно е голодание, манипуляции рН, а также использование митотических замедл ителей и росто-задерживающих химических препарат ов. Необходимо привед ение клеток не только в неподвижное состоян ие на продолжительны е периоды, но в то же время, если потребуется, их в осстановление и прод олжение дальнейшего роста. Разработка удовлетв орительного образа д ействия в управлении клеток и тканей в условиях „ми нимального роста или роста близко нуля“ будет иметь большое значен ие и практические пос ледствия в экспериментах, проведённых на Земле, и также в Космосе. Все п араметры, условия и детали разработок, ко торые должны соответ ствовать определённым целям, будут лежать в основе разработки и создани я элементов клеточной культуры для использ ования в космической среде. Ожидается, что это пройдёт эволюционны м способом.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abeles, F., P. Morgan &M. Saltveit. 1992. Ethylene in plant biology. Ed 2. Academic Press, San Diego.

    Google Scholar 

  • Adams, R. P. &J. E. Adams (eds.). 1991. Conservation of plant genes: DNA banking and in vitro technology. Academic Press, San Diego.

    Google Scholar 

  • Ahmad, I., F. Larher &G. R. Stewart. 1979. Sorbitol, a compatible organic solute inPlantago maritima. New Phytol.82: 671–678.

    CAS  Google Scholar 

  • Albrecht-Buehler, G. 1991. Possible mechanisms of indirect gravity sensing by cells. Amer. Soc. Gravitational & Space Biol., ASGSB Bull.4(2): 25–34.

    PubMed  CAS  Google Scholar 

  • —. 1992. The simulation of microgravity conditions on the ground. Amer. Soc. Gravitational & Space Bio., ASGSB Bull.5(2): 3–10.

    CAS  Google Scholar 

  • Amino, S.-I., T. Fujimura &A. Komamine. 1983. Synchrony induced by double phosphate starvation in a suspension culture ofCatharanthus roseus. Physiol. Pl.59: 393–396.

    CAS  Google Scholar 

  • Amino, S.-I. &M. Tazawa. 1988. Uptake and utilization of sugars in cultured rice cells. Pl. Cell Physiol.29: 483–487.

    CAS  Google Scholar 

  • Ammirato, P. V. 1983. The regulation of somatic embryo development in plant cell cultures: Suspension culture techniques and hormone requirements. Bio/Technology1(3): 68–74.

    Google Scholar 

  • —. 1989. Recent progress in somatic embryogenesis. Intl. Assoc. Pl. Tissue Cult. Newsl.57: 2–16.

    Google Scholar 

  • — &F. C. Steward. 1971. Some effects of environment on the development of embryos from cultured free cells. Bot. Gaz.132: 149–158.

    Google Scholar 

  • — &D. J. Styer. 1985. Strategies for large scale manipulation of somatic embryos in suspension culture. Pages 161–178 in M. Zaitlin, P. Day & A. Hollaender (eds.), Biotechnology in plant science: Relevance to agriculture in the eighties. Academic Press, New York.

    Google Scholar 

  • André, M. &C. Richard. 1986. Can plants grow in quasi-vacuum? Pages 395–404in R. D. MacElroy, N. V. Martello & D. T. Smernoff (eds.), Controlled ecological life support systems: CELSS ’85 workshop. NASA Publication TM 88215. Ames Research Center, Moffett Field, California.

    Google Scholar 

  • Armstrong, C. L. 1994. Regeneration of plants from somatic cell cultures: Applications forin vitro genetic manipulation. Pages 663–671in M. Freeling & V. Walbot (eds.), The maize handbook. Springer-Verlag, New York.

    Google Scholar 

  • Auboiron, E., M.-P. Carron &N. Michaux-Ferrière. 1990. Influence of atmospheric gases, particularly ethylene, on somatic embryogenesis ofHevea brasiliensis. Pl. Cell, Tissue Organ Cult.21: 31–37.

    CAS  Google Scholar 

  • Augereau, J. M., D. Courtois &V. Petiard. 1986. Long term storage of callus cultures at low temperatures or under mineral oil layer. Pl. Cell Rep.5: 372–376.

    Google Scholar 

  • Bajaj, Y. (ed.). 1994. Biotechnology in agriculture and forestry. 29. Plant protoplasts and genetic engineering V. Springer-Verlag, Berlin.

    Google Scholar 

  • — (ed.). 1995. Biotechnology in agriculture and forestry. 31. Somatic embryogenesis and synthetic seed II. Springer-Verlag, Berlin.

    Google Scholar 

  • Ball, E. &P. C. Joshi. 1965. Observations of individual callus cells ofNicotiana tabacum in liquid culture. Bot. Gaz.126: 233–246.

    Google Scholar 

  • Barlow, P. &D. Carr. 1984. Positional controls in plant development. Cambridge University Press, Cambridge.

    Google Scholar 

  • Barrales, H. L. 1959. Some problems of the isolation, occurrence and behavior of soluble nitrogen compounds in higher plants. Ph.D. thesis, Cornell University, Ithaca.

    Google Scholar 

  • Basile, D. 1990. Morphoregulatory role of hydroxyproline-containing proteins in liverworts. Pages 225–243in R. N. Chopra & S. C. Bhatla (eds.), Bryophyte development: Physiology and biochemistry. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • — &M. R. Basile. 1990. Hydroxyproline metabolism and hydroxyproline-containing glycoproteins in leafy liverworts. Pages 275–288in H. D. Zinsmeister & R. Mues (eds.), Bryophytes. Their chemistry and chemical taxonomy. Clarendon Press, Oxford.

    Google Scholar 

  • Basra, A. S., S. Bedi &C. P. Malik. 1988. Accelerated germination of maize seeds under chilling stress by osmotic priming and associated changes in embryo phospholipids. Ann. Bot.61: 635–639.

    CAS  Google Scholar 

  • Benson, E. E. 1995. Cryopreservation of shoot-tips and meristems. Pages 121–132 in J. G. Day & M. R. McLellan (eds.), Cryopreservation and freeze-drying protocols. Methods in molecular biology 38. Human Press, Totawa, New Jersey.

    Google Scholar 

  • Bérdy, J. (ed.). 1980. CRC handbook of antibiotic compounds. 10 vols. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Bergmann, L. 1959. A new technique for isolating and cloning cells of higher plants. Nature184: 648–649.

    Google Scholar 

  • —. 1960. Growth and division of single cells of higher plantsin vitro. J. Gen. Physiol.43: 841–851.

    PubMed  CAS  Google Scholar 

  • Bhojwani, S. (ed.). 1990. Plant tissue culture: Applications and limitations. Elsevier, Amsterdam.

    Google Scholar 

  • Björkman, T. 1988. Perception of gravity by plants. Adv. Bot. Res.15: 1–41.

    Google Scholar 

  • Blakely, L. M. 1964. Growth and organized development of cultured cells. VI. The behavior of individual cells on nutrient agar. Amer. J. Bot.51: 792–807.

    Google Scholar 

  • — &F. C. Steward. 1964. Growth and organized development of cultured cells. V. The growth of colonies from free cells on nutrient agar. Amer. J. Bot.51: 780–791.

    Google Scholar 

  • Block, I., W. Briegleb &V. Sobick. 1988. Contraction behaviour and protoplasmic streaming in the slime mouldPhysarum Polycephalum (Physarum kinetics). Pages 55–67in Biorack on Spacelab Dl. An overview of the first flight of Biorack, an ESA facility for life sciences research in microgravity. ESA SP-1091. European Space Agency, Paris.

    Google Scholar 

  • Bornman, C. H. &T. C. Vogelmann. 1984. Effect of rigidity of gel medium on benzyl-adenine induced adventitious bud formation and vitrificationin vitro inPicea abies. Physiol. Pl.61: 505–512.

    CAS  Google Scholar 

  • — &A. Zachrisson. 1982. Immobilization of protoplasts by anchoring to microcarriers. Pl. Cell Rep.1: 151–153.

    Google Scholar 

  • Bramble, J. L., D. J. Graves &P. Brodelius. 1990. Plant cell culture using a novel bioreactor: The magnetically stabilized fluidized bed. Biotechn. Prog.6: 452–457.

    CAS  Google Scholar 

  • Brauner, L. &A. Hager. 1958. Versuche zur Analyse der Geotropischen Perzeption. Planta51: 115–147.

    CAS  Google Scholar 

  • Bridgen, M. P. &G. L. Staby. 1981. Low pressure and low oxygen storage ofNicotiana tabacum and Chrysanthemum × Morifolium tissue cultures. Pl. Sci. Lett.22: 177–186.

    Google Scholar 

  • Bringi, V. &M. L. Shuler. 1990. A framework for understanding the effects of immobilization on plant cells: Differentiation of tracheary elements in tobacco. Pages 161–172in J. A. M. de Bont, J. Visser & J. Tramper (eds.), Physiology of immobilized cells. Proceedings of an international symposium held at Wageningen, the Netherlands, 10– 13 December 1989. Elsevier, Amsterdam.

    Google Scholar 

  • Brodelius, P. 1983a. Production of biochemicals with immobilized plant cells: Possibilities and problems. Ann. N.Y. Acad. Sci.413: Biochemical Engineering III 383–393.

    CAS  Google Scholar 

  • —. 1983b. Immobilized plant cells. Pages 27–55in B. Mattiasson (ed.), Immobilized cells and organelles. Vol. 1. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • —. 1985. Immobilized plant cells. Pages 109–148in A. I. Laskin (ed.), Enzymes and immobilized cells in biotechnology. Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • —. 1988. Immobilized plant cells as a source of biochemicals. Pages 167–196in M. Moo-Young (ed.), Bioreactor immobilized enzymes and cells. Fundamentals and applications. Elsevier, New York.

    Google Scholar 

  • Brown, A. H. 1992. Centrifuges: Evolution of their uses in plant gravitational biology and new directions for research on the ground and in Spaceflight. ASGSB, Amer. Soc. Gravitational Space Biol. Bull.5(2): 43–57.

    CAS  Google Scholar 

  • -. 1996. Gravity-related features of plant growth behavior studied with rotating machines. J. Grav. Physiol. (in press).

  • Brown, D. C. W., D. W. M. Leung &T. A. Thorpe. 1979. Osmotic requirement for shoot formation in tobacco callus. Physiol. Pl.46: 36–41.

    CAS  Google Scholar 

  • Brown, R. &D. Broadbent. 1950. The development of cells in the growing zones of the root. J. Exp. Bot.1: 249–263.

    Google Scholar 

  • — &P. Rickless. 1949. A new method for the study of cell division and cell extension with preliminary observations on the effect of temperature and nutrients. Proc. Roy. Soc. (London)136B: 110–125.

    Google Scholar 

  • Buell, C. B. &W. H. Weston. 1947. Application of the mineral oil conservation method to maintaining collections of fungus cultures. Amer. J. Bot.34: 555–561.

    Google Scholar 

  • Bullough, W. S. 1952. The energy relations of mitotic activity. Biol. Rev.27: 133–168.

    CAS  Google Scholar 

  • Burzo, I. 1980. Influence of temperature level on respiratory intensity in the main vegetable varieties. Acta Hort.116: 61–63.

    Google Scholar 

  • Busa, W. B. &R. Nuccitelli. 1984. Metabolic regulation via intracellular pH. Amer. J. Physiol.246: R409-R438.

    PubMed  CAS  Google Scholar 

  • Byrne, A. F. &R. B. Koch. 1962. Food production by submerged culture of plant tissue cells. Science135: 215–216.

    PubMed  CAS  Google Scholar 

  • Cabrai, J. M. S., P. Fevereiro, J. M. Novais &M. S. S. Pais. 1983. Comparison of immobilization methods for plant cells and protoplasts. Ann. N.Y. Acad. Sci.413: Biochemical Engineering III 501–503.

    Google Scholar 

  • Calcott, P. H. 1981. Continuous cultures of cells. 2 vols. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Calderon, M. &R. Barkai-Golan (eds.). 1990. Food preservation by modified atmospheres. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Caplin, S. M. 1959. Mineral oil overlay for conservation of plant tissues. Amer. J. Bot.46: 324–329.

    Google Scholar 

  • Carman, J. 1990. Embryogenic cells in plant tissue cultures: Occurrence and behavior.In vitro Cell Develop. Biol.26: 746–753.

    Google Scholar 

  • Charlwood, B. &M. Rhodes (eds.). 1990. Secondary products from plant tissue culture. Clarendon Press, Oxford.

    Google Scholar 

  • Chasan, R. 1991. Searching for signals. Pl. Cell3: 848–850.

    Google Scholar 

  • Chen, T. H. H., B. G. Thompson &D. F. Geson. 1987.In vitro production of alfalfa somatic embryos in fermentation systems. J. Ferment. Techn.65: 353–357.

    Google Scholar 

  • Chen, Z., D. Evans, W. Sharp, P. Ammirato &M. Sondahl (eds.). 1990. Handbook of plant cell culture. Vol. 6. Perennial crops. McGraw-Hill, New York.

    Google Scholar 

  • Chmiel, H., W. P. Hames &J. E. Bailey (eds.). 1988. Biochemical engineering. A challenge for interdisciplinary cooperation. Gustav Fischer, New York.

    Google Scholar 

  • Chong, C. &C. D. Taper. 1972.Malus tissue cultures. I. Sorbitol (D-glucitol) as a carbon source for callus initiation and growth. Canad. J. Bot.50: 1399–1404.

    CAS  Google Scholar 

  • ——. 1974.Malus tissue cultures. II. Sorbitol metabolism and carbon nutrition. Canad. J. Bot.52: 2361–2364.

    CAS  Google Scholar 

  • Christen, A. A. &D. M. Gibson. 1987. A method for growing stationary plant suspension cell cultures. In Vitro Cell. Developmental Biol.23: 315–316.

    Google Scholar 

  • Christen, P., M. F. Roberts, J. D. Phillipson &W. C. Evans. 1989. High-yield production of tropane alkaloids by hairy-root cultures of aDatura Candida hybrid. Pl. Cell Rep.8: 75–77.

    CAS  Google Scholar 

  • Clark, A. H. &S. B. Ross-Murphy. 1987. Structural and mechanical properties of biopolymer gels. Adv. Polymer Sci.83: 57–192.

    CAS  Google Scholar 

  • Clutter, M. (ed.). 1978. Dormancy and developmental arrest. Experimental analysis in plants and animals. Academic Press, New York.

    Google Scholar 

  • Cogoli, A. &F. K. Gmünder. 1991. Gravity effects on single cells. Adv. Space Biol. Med.1: 183–248.

    PubMed  CAS  Google Scholar 

  • — &A. Tschopp. 1982. Biotechnology in space laboratories. Adv. Biochem. Eng.22: 1–50.

    Google Scholar 

  • —,T. H. Iversen, A. Johnsson, D. Mesland &H. Oser. 1989. Cell biology. Pages 49–64in H. Oser & B. Battrick (eds.), Life sciences research in space. ESA SP-1105. European Space Agency, Paris.

    Google Scholar 

  • Collin, H. A. 1987. Determinants of yield of secondary products in plant tissue cultures. Adv. Bot. Res.13: 145–187.

    CAS  Google Scholar 

  • Côme, D., F. Corbineau &P. Soudain. 1991. Beneficial effects of oxygen stress on germination and plant development. Pages 69–83in M. B. Jackson, D. D. Davies & H. Lambers (eds.), Plant life under oxygen deprivation. SBP Academic Publishing, The Hague.

    Google Scholar 

  • Compton, M. E. &R. E. Veilleux. 1991. Shoot, root and flower morphogenesis on tomato inflorescence explants. Pl. Cell, Tissue Organ Cult.24: 223–231.

    CAS  Google Scholar 

  • ——. 1992. Thin cell layer morphogenesis. Hort. Rev.14: 239–264.

    Google Scholar 

  • Constabel, F. &J. P. Shyluk. 1994. Initiation, nutrition, and maintenance of plant cell and tissue cultures. Pages 3–15in I. K. Vasil & T. A. Thorpe (eds.), Plant tissue culture. Kluwer, Dordrecht.

    Google Scholar 

  • — &R. T. Tyler. 1994. Cell culture for production of secondary metabolites. Pages 271–289in I. K. Vasil & T. A. Thorpe (eds.), Plant tissue culture. Kluwer, Dordrecht.

    Google Scholar 

  • — &I. K. Vasil (eds.). 1987. Cell culture in phytochemistry. Vol. 4 of Cell culture and somatic cell genetics of plants. Academic Press, San Diego.

    Google Scholar 

  • Crafts, A. S. 1968. Water deficits and physiological processes. Pages 85–133in T. T. Kozlowski (ed.), Water deficits and plant growth. Vol. 2. Water consumption and response. Academic Press, New York.

    Google Scholar 

  • Craigie, J. S. 1991. Cell walls. Pages 221–257 in K. M. Cole & R. G. Sheath (eds.), Biology of the red algae. Cambridge University Press, Cambridge.

    Google Scholar 

  • Crawford, R. M. M. 1992. Oxygen availability as an ecological limit to plant distribution. Adv. Ecol. Res.23: 93–185.

    CAS  Google Scholar 

  • Cress, D. 1982. Osmotic stress inhibits thymidine incorporation into soybean protoplast DNA. Pl. Cell Rep.1: 186–188.

    Google Scholar 

  • Crocker, W. 1948. Growth of plants. Reinhold Publishing, New York.

    Google Scholar 

  • Crowe, J. H. &J. S. Clegg (eds.). 1973. Anhydrobiosis. Benchmark papers in biological concepts. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Dalton, C. &I. MacKenzie. 1987. Culture and characteristics of green plant cells. Methods in Enzymol.148: 16–27.

    CAS  Google Scholar 

  • D’Amato, F. 1977. Nuclear cytology in relation to development. Cambridge University Press, Cambridge.

    Google Scholar 

  • Davidson, D. 1991. Cell division. Pages 341–436in R. G. S. Bidwell & F. C. Steward (eds.), Plant physiology: A treatise. Vol. 10, Growth and development. Academic Press, San Diego.

    Google Scholar 

  • Davies, P. (ed.). 1995. Plant hormones: Physiology, biochemistry and molecular biology. Kluwer, Dordrecht.

    Google Scholar 

  • Davies, W. &H. Jones (eds.). 1991. Abscisic acid: Physiology and biochemistry. Bios Scientific, Oxford.

    Google Scholar 

  • Davis, T. &E. Curry. 1991. Chemical regulation of vegetative growth. Crit. Rev. Pl. Sci.10: 151–188.

    CAS  Google Scholar 

  • Day, J. G. &M. R. McLellan (eds.). 1990. Cryopreservation and freeze-drying protocols. Methods in molecular biology 38. Human Press, Totawa, New Jersey.

    Google Scholar 

  • Debergh, P., Y. Harbaoui &R. Lemeur. 1981. Mass propagation of globe artichoke (Cynara scolymus): Evaluation of different hypotheses to overcome vitrification with special reference to water potential. Physiol. Pl.53: 181–187.

    Google Scholar 

  • —,J. Aitken-Christie, D. Cohen, B. Grout, S. Von Arnold, R. Zimmerman &M. Ziv. 1992. Reconsideration of the term “vitrification” as used in micropropagation. Pl. Cell, Tissue Organ Cult.30: 135–140.

    Google Scholar 

  • De-Eknamkul, W. &B. E. Ellis. 1984. Rosmarinic acid production and growth characteristics ofAnchusa officinalis cell suspension cultures. Pl. Med.50: 346–350.

    CAS  Google Scholar 

  • De Groot, R. P., P. J. Rijken, J. Den Hertog, J. Boonstra, A. J. Verkleij, S. W. De Laat &W. Kruijer. 1990. Microgravity decreases c-fos induction and serum response element activity. J. Cell Sci.97: 33–38.

    PubMed  Google Scholar 

  • De Jong, A., J. Cordewener, F. Lo Schiavo, M. Terzi, J. Vanderkerckhove, A. Van Kammen &S. De Vries. 1992. A carrot somatic embryo mutant is rescued by chitinase. Pl. Cell4: 425–433.

    Google Scholar 

  • Dennison, D. S. 1961. Tropic responses ofPhycomyces sporangiophores to gravitational and centrifugal stimuli. J. Gen. Physiol.45: 23–38.

    PubMed  CAS  Google Scholar 

  • Devine, M., S. O. Duke &C. Fedtke. 1993. Microtubule disruptors. Pages 189–224in Physiology of herbicide action. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • De Vries, S., H. Booij, R. Janssens, R. Vogels, L. Saris, F. LoSchiavo, M. Terzi &A. van Kammen. 1988. Carrot somatic embryogenesis depends on the phytohormone-controlled presence of correctly glycosylated extracellular proteins. Genes & Developm.2: 462–476.

    Google Scholar 

  • DiCosmo, F. &G. H. N. Towers. 1983. Stress and secondary metabolism in cultured plant cells. Rec. Adv. Phytochem.18: 97–175.

    Google Scholar 

  • Ding, J. P. &B. G. Pickard. 1993. Mechanosensory calcium-selective cation channels in epidermal cells. Pl. J.3: 83–110

    CAS  Google Scholar 

  • Dix, P. J. 1977. Chilling resistance is not transmitted sexually in plants regenerated fromNicotiana sylvestris cell lines. Z. Pflanzenphysiol.84: 223–226.

    Google Scholar 

  • —. 1979. Cell culture manipulations as a potential breeding tool. Pages 463–472in J. M. Lyons, D. Graham & J. K. Raison (eds.), Low temperature stress in crop plants. Academic Press, New York.

    Google Scholar 

  • —. 1986. Cell line selection. Pages 143–201in M. M. Yeoman (ed.), Plant cell culture technology. Blackwell Scientific, Oxford.

    Google Scholar 

  • —(ed.). 1990. Plant cell line selection. Procedures and applications. VCH, Weinheim.

    Google Scholar 

  • — &H. E. Street. 1976. Selection of plant cell lines with enhanced chilling resistance. Ann. Bot.40: 903–910.

    Google Scholar 

  • Dixon, R. A. (ed.). 1985. Plant cell culture. A practical approach. IRL Press, Oxford.

    Google Scholar 

  • — &R. A. Gonzales. 1994. Plant cell culture. A practical approach. Ed. 2. IRL Press, Oxford.

    Google Scholar 

  • Doran, P. M. 1993. Design of reactors for plant cells and organs. Adv. Biochem. Eng. Biotech.48: 115–168.

    Google Scholar 

  • Dracup, M., J. Gibbs &H. Greenway. 1986. Melibiose, a suitable, non-permeating osmoticum for suspension-cultured tobacco cells. J. Exp. Bot.37: 1079–1089.

    CAS  Google Scholar 

  • Draget, K., S. Myhre, G. Skjåk-Bræk &K. Østgaard. 1988. Regeneration, cultivation and differentiation of plant protoplasts immobilized in Ca-alginate beads. J. Pl. Physiol.132: 552–556.

    Google Scholar 

  • Dunlop, D. S. &W. R. Curtis. 1991. Synergistic response of plant hairy-root cultures to phosphate limitation and fungal elicitation. Biotechn. Prog.7: 434–438.

    CAS  Google Scholar 

  • Durzan, D. J. 1987. Metabolic phenotypes in somatic embryogenesis and polyembryogenesis. Pages 293–311in J. W. Hanover & D. K. Heathley (eds.), Genetic manipulation of woody plants. Plenum Press, New York.

    Google Scholar 

  • Dutcher, F. R., E. L. Hess &T. W. Halstead. 1994. Progress in plant research in space. Adv. Space Res.14: 159–171.

    PubMed  CAS  Google Scholar 

  • Edwards, G. A., C. B. Buell &W. H. Weston. 1947. The influence of mineral oil upon the oxygen consumption ofSordaria fimicola. Amer. J. Bot.34: 551–555.

    CAS  Google Scholar 

  • Einspahr, K. &G. Thompson. 1990. Transmembrane signaling via phosphatidylinositol 4,5-bisphosphate hydrolysis in plants. Pl. Physiol.93: 361–366.

    CAS  Google Scholar 

  • Ellis, R. H., T. D. Hong &E. H. Roberts. 1985. Handbook of seed technology for genebanks. Vol. 2. Compendium of specific germination information and test recommendations. International Board for Plant Genetic Resources, Rome.

    Google Scholar 

  • Endres, R. 1994. Plant cell biotechnology. Springer-Verlag, Berlin.

    Google Scholar 

  • Engelmann, F. 1991.In vitro conservation of tropical plant germplasm—a review. Euphytica57: 227–243.

    Google Scholar 

  • Evans, D. A. &J. E. Bravo. 1983. Protoplast isolation and culture. Pages 124–176in D. A. Evans, W. R. Sharp, P. V. Ammirato & Y. Yamada (eds.), Handbook of plant cell culture. Vol.1. Macmillan, New York.

    Google Scholar 

  • Fahy, G. M., D. R. MacFarland, C. A. Angell &H. T. Meryman. 1984. Vitrification as an approach to cryopreservation. Cryobiology21: 407–426.

    PubMed  CAS  Google Scholar 

  • Fedtke, C. 1982. Biochemistry and physiology of herbicide action. Springer-Verlag, Berlin.

    Google Scholar 

  • Feito, I., A. Rodriguez, M. L. Centeno, R. Sánchez-Tamés &B. Ferná ndez. 1994. Effect of the physical nature of the culture medium on the metabolism of benzyladenine and endogenous cytokinins inActinidia deliciosa tissues cultured in vitro. Physiol. Pl.91: 449–453.

    CAS  Google Scholar 

  • Felle, H. 1989. pH as a second messenger in plants. Pages 145–166in W. F. Boss & D. J. Morré (eds.), Second messengers in plant growth and development. Alan R. Liss, New York.

    Google Scholar 

  • Fellman, C. &P. Read. 1987. Effects of thidiazuron and CPPU on meristem formation and shoot proliferation. HortScience22: 1197–1200.

    CAS  Google Scholar 

  • Filatti, J. J. 1990. Strategies for plant transformation. Pages 51–69in A. B. Bennett & S. D. O’Neill (eds.), Horticultural biotechnology. Wiley-Liss, New York.

    Google Scholar 

  • Fink, D. J., L. M. Curran &B. R. Allen (eds.). 1983. Research needs in non-conventional bioprocesses. Proceedings of the workshop on bioprocess scale-up. Batelle Press, Columbus, Ohio.

    Google Scholar 

  • Firn, R. D. &A. B. Myers. 1987. Hormones and plant tropisms—the degradation of a model of hormonal control. Pages 251–261in G. V. Hoad, J. R. Lenton, M. B. Jackson & R. K. Atkin (eds.), Hormone action in plant development—a critical appraisal. Butterworths, London.

    Google Scholar 

  • Fitter, M. S. &A. D. Krikorian. 1983. Plant protoplasts: Some guidelines for their preparation and manipulation in culture. Doc. Number 8134–1083. Calbiochem-Behring, Division of American Hoechst Corp., La Jolla, California.

    Google Scholar 

  • ——. 1988. Daylily protoplasts: Isolation, culture and organized development into plants. Pages 242–256in F. Valentine (ed.), Progress and prospects in crop and forest biotechnology. State University of New York College of Environmental Science and Forestry Colloquium, April 18—20, 1985, Syracuse. Springer-Verlag, New York.

    Google Scholar 

  • Flores, H., R. Arteca &J. Shannon. 1990. Polyamines and ethylene: Biochemistry, physiology, and interactions. Vol. 5 of Current topics in plant physiology. American Society of Plant Physiologists, Rockville.

    Google Scholar 

  • Forster, R. E. &R. W. Estabrook. 1993. Is oxygen an essential nutrient? Annual Rev. Nutr.13: 383–403.

    CAS  Google Scholar 

  • Fosket, D. E. 1994. Plant growth and development. A molecular approach. Academic Press, San Diego.

    Google Scholar 

  • Fowke, L. C. &F. Constabel (eds.). 1985. Plant protoplasts. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Fowler, M. W. 1987. Process possibilities for plant-cell cultures. Pages 21–32in C. Webb & F. Mavituna (eds.), Plant and animal cells: Process possibilities. Ellis Horwood, Chichester.

    Google Scholar 

  • —,R. C. Cresswell &A. M. Stafford. 1990. An economic and technical assessment of the use of plant cell cultures for natural product synthesis on an industrial scale. Pages 157–176in D. J. Chadwick & J. March (eds.), Bioactive compounds from plants. Ciba Foundation Symposia 154. John Wiley, New York.

    Google Scholar 

  • Francis, D. 1992. The cell cycle in plant development. New Phytol.122: 1–20

    CAS  Google Scholar 

  • Frenkel, C. &N. Haard. 1973. Initiation of ripening in Bartlett pear with an anti-auxin α (p-chlorophenoxy)isobutyric acid. Pl. Physiol.52: 380–384.

    CAS  Google Scholar 

  • Fry, S. &H. E. Street. 1980. Gibberellin-sensitive cultures. Pl. Physiol.65: 472–477.

    CAS  Google Scholar 

  • Fukui, H., N. Yoshikawa &M. Tabata. 1983. Induction of shikonin by agar inLithospermum erythrhizon cell suspension cultures. Phytochemistry22: 2451–2453.

    CAS  Google Scholar 

  • Furusaki, S. &M. Seki. 1992. Use and engineering aspects of immobilized cells in biotechnology. Adv. Biochem. Eng. Biotechnol.46: 161–185.

    PubMed  CAS  Google Scholar 

  • Furuya, T., T. Yoshikawa &M. Taira. 1984. Biotransformation of codeinone to codeine by immobilized cells ofPapaver somniferum. Phytochemistry23: 999–1001.

    CAS  Google Scholar 

  • Gao, J. &J. M. Lee. 1992. Effect of oxygen supply on the suspension culture of genetically modified tobacco cells. Biotechnol. Progr.8: 285–290.

    CAS  Google Scholar 

  • Gelvin, S., R. Schilperoot &D. Verma (eds.). 1988. Plant molecular biology manual. Kluwer, Dordrecht.

    Google Scholar 

  • George, E. F. 1993. Plant propagation by tissue culture. Part 1, The technology. Ed. 2. Exegetics, Edington, U.K.

    Google Scholar 

  • — &P. Sherrington. 1984. Plant propagation by tissue culture. Handbook and directory of commercial operations. Exegetics, Eversley, U.K.

    Google Scholar 

  • Gershenzon, J. 1983. Changes in the levels of plant secondary metabolites under water and nutrient stress. Recent Adv. Phytochem.18: 273–320.

    Google Scholar 

  • Gibbs, J. L. &D. K. Dougall. 1963. Growth of single plant cells. Science141: 1059.

    PubMed  Google Scholar 

  • ——. 1965. The growth of single cells fromNicotiana tobacum [sic] callus tissue in nutrient medium containing agar. Exp. Cell Res.40: 85–95.

    PubMed  CAS  Google Scholar 

  • Gnanapragasam, S. &I. K. Vasil. 1990. Plant regeneration from a cryopreserved embryogenic cell suspension of a commercial sugarcane hybrid (Saccharum sp.). Pl. Cell Rep.9: 419–423.

    CAS  Google Scholar 

  • Gould, A. R. 1984. Control of the cell cycle in cultured plant cells. Crit. Rev. Pl. Sci.1: 315–344.

    Google Scholar 

  • Graham, D. &B. D. Patterson. 1982. Responses of plants to low, non-freezing temperatures: Proteins, metabolism, and acclimation. Ann. Rev. Pl. Physiol.33: 347–372.

    CAS  Google Scholar 

  • Gray, D. &B. Conger. 1985. Influence of dicamba and casein hydrolysate on somatic embryo number and culture quality in cell suspensions ofDactylis glomerata (Gramineae). Pl. Cell, Tissue Organ Cult.4: 123–133.

    CAS  Google Scholar 

  • — &A. Purohit. 1991. Somatic embryogenesis and development of synthetic seed technology. Crit. Rev. Pl. Sci.10: 33–61.

    Google Scholar 

  • Gray, S. W. &B. F. Edwards. 1971. Plant responses to chronic acceleration. Pages 117–125in S. A. Gordon & M. J. Cohen (eds.), Gravity and the organism. University of Chicago Press, Chicago.

    Google Scholar 

  • Grierson, D. (ed.). 1991. Plant genetic engineering. Blackie, Glasgow.

    Google Scholar 

  • Grossmann, K. &J. Jung. 1984. A new micro-method for testing plant growth retardants in cell suspension cultures. Pl. Cell Rep.3: 156–158.

    CAS  Google Scholar 

  • Grout, B. W. W. 1995. Cryopreservation of plant protoplasts. Pages 91–101in J. G. Day & M. R. McLellan (eds.), Cryopreservation and freeze-drying protocols. Methods in molecular biology 38. Human Press, Totawa, New Jersey.

    Google Scholar 

  • — &G. J. Morris (eds.). 1987. The effects of low temperatures on biological systems. Edward Arnold, London.

    Google Scholar 

  • Gruener, R. 1985. Simulated hypogravity and synaptogenesis in culture. Physiologist, suppl.28(6): S79–80.

    PubMed  CAS  Google Scholar 

  • Guri, A., A. Zelcer &S. Izhar. 1984. Induction of high mitotic index inPetunia suspension cultures by sequential treatment with aphidicolin and colchicine. Pl. Cell Rep.3: 219–221.

    CAS  Google Scholar 

  • Hagen, S., P. Muneta, J. Augustin &D. LeTourneau. 1991. Stability and utilization of picloram, vitamins, and sucrose in a tissue culture medium. Pl. Cell, Tissue Organ Cult.25: 45–48.

    CAS  Google Scholar 

  • Hahn-Hagerdahl, B. 1990. Physiological aspects of immobilized cells: A general overview. Pages 481–486in J. A. M. de Bont, J. Visser & J. Tramper (eds.), Physiology of immobilized cells. Proceedings of an international symposium held at Wageningen, the Netherlands, 10–13 December 1989. Elsevier, Amsterdam.

    Google Scholar 

  • Halmann, M. 1990. Synthetic plant growth regulators. Adv. Agron.43: 47–105.

    CAS  Google Scholar 

  • Halstead, T. W. &F. R. Dutcher. 1987. Plants in space. Ann. Rev. Pl. Physiol.38: 317–345.

    CAS  Google Scholar 

  • — (eds.). 1984. Plant gravitational and space research. Workshop summaries III. American Society of Plant Physiology, Rockville, Maryland.

    Google Scholar 

  • ——. 1990. Experiments on plants in space. Pages 9–19in M. Asashima & G. Malacinski (eds.), Fundamentals of space biology. Japan Scientific Societies Press, Tokyo; Springer-Verlag, Berlin.

    Google Scholar 

  • -,P. Todd & J. V. Powers (eds.). 1991. Gravity and the cell. Amer. Soc. Gravitational and Space Biol., ASGSB Bull.4(2): 1–260.

  • -, -& -(eds.). 1992. Clinostats and centrifuges: Their use, value, and limitations in gravitational biological research. Amer. Soc. Gravitational and Space Biology, ASGSB, Bull.5(2): 1–83.

  • Halvorson, H. O. 1961. Cryptobiotic stages in biology. Pages 51–64in N. Grossowicz et al. (eds.), Cryptobiotic stages in biological systems. Elsevier, Amsterdam.

    Google Scholar 

  • Hamer, G. 1990. Immobilized microbes: Interfaces, gradients and physiology. Pages 15–24 in J. A. M. de Bont, J. Visser & J. Tramper (eds.), Physiology of immobilized cells. Proceedings of an international symposium held at Wageningen, the Netherlands, 10–13 December 1989. Elsevier, Amsterdam.

    Google Scholar 

  • Hammerschlag, F. &R. Litz (eds.). 1992. Biotechnology of perennial fruit crops. C.A.B. International, Wallingford, U.K.

    Google Scholar 

  • Han, H. &H. Yang. 1986. Haploids of higher plants in vitro. China Academic Publishers, Beijing; Springer-Verlag, Berlin.

    Google Scholar 

  • Hart, J. W. &D. D. Sabnis. 1976. Colchicine and plant microtubules: A critical evaluation. Curr. Adv. Pl. Sci.8: 1095–1104.

    Google Scholar 

  • Hashimoto, T. &Y. Yamada. 1991. Organ culture and manipulation. Methods Biochem.6: 323–350.

    CAS  Google Scholar 

  • Hayashi, T. &K. Yoshida. 1988. Cell expansion and single-cell separation induced by colchicine in suspension-cultured soybean cells. Proc. Natl. Acad. Sciences (U.S.A.)85: 2618–2622.

    CAS  Google Scholar 

  • Hegarty, P. K., N. J. Smart, A. G. Scragg &M. W. Fowler. 1986. The aeration ofCatharanthus roseus L. G. Don suspension cultures in airlift reactors: The inhibitory effect at high aeration rates on culture growth. J. Exp. Bot.37: 191–1920.

    Google Scholar 

  • Hemerly, A., P. Ferreira, J. Engler, D. Inzé &M. Van Mointegu. 1993. The control of cell cycle inArabidopsis plant cell cultures. J. Pl. Res. Special issue3: 51–56.

    Google Scholar 

  • Herman, E. B. (ed.). 1993. Secondary metabolite production 1988–1993. Recent Advances in Plant Tissue Culture. Agricell Consultants, New York.

    Google Scholar 

  • Hildebrandt, A. C. &A. J. Riker. 1949. The influence of various carbon compounds on the growth of marigold, paris-daisy, periwinkle, sunflower and tobacco tissuesin vitro. Amer. J. Bot.36: 74–85.

    CAS  Google Scholar 

  • —,J. C. Wilmar, H. Johns &A. J. Riker. 1963. Growth of edible chlorophyllous plant tissues in vitro. Amer. J. Bot.50: 248–254.

    CAS  Google Scholar 

  • Hiraoka, N. &T. Kodama. 1982. Effects of non-frozen cold storage on the growth, organogenesis, and secondary metabolite production of callus cultures. Pages 359–360in A. Fujiwara (ed.), Plant tissue culture 1982. Proceedings of the 5th International Congress of Plant Tissue and Cell Culture held at Tokyo and Lake Yamanaka, Japan, July 11–16, 1982. Japanese Association for Plant Tissue Culture, Tokyo.

    Google Scholar 

  • Hirsch, A. G. 1987. Vitrification in plants as a natural form of cryopreservation. Cryobiology24: 214–228.

    Google Scholar 

  • Hook, D. D. &R. M. M. Crawford. 1978. Plant life in anaerobic environments. Ann Arbor Scientific Publishers, Ann Arbor.

    Google Scholar 

  • Horgan, R. &I. Scott. 1991. Cytokinins. Methods Pl. Biochem.5: 91–121.

    CAS  Google Scholar 

  • Hoshizaki, T. 1973. Influence of gravitational forces on plants. Environm. Biol. Med.2: 47–79.

    CAS  Google Scholar 

  • Hülst, A. C., J. Tramper, P. Brodelius, L. J. C. Eijkenboom &K. Ch. A. M. Luyben. 1985. Immobilized plant cells: Respiration and oxygen transfer. J. Chem. Technol. Biotechnol.35B: 198–204.

    Google Scholar 

  • Ingber, D. E. 1993. Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton. J. Cell Sci.104: 613–627.

    PubMed  Google Scholar 

  • Ishimaru, K., M. Hirose, K. Takahashi, K. Koyama &K. Shimomura. 1990. Tannin production in root culture ofSanquisorba officinalis. Phytochemistry29: 3827–3830.

    CAS  Google Scholar 

  • Ito, M. &A. Komamine. 1993. Molecular mechanisms of the cell cycle in synchronous cultures of plant cells. J. Pl. Res. Special Issue3: 17–28.

    Google Scholar 

  • Iversen, T.-H. 1985. Protoplasts and gravity activity. Pages 236–249in P. E. Pilet (ed.), The physiological properties of plant protoplasts. Springer-Verlag, Berlin.

    Google Scholar 

  • —,C. Baggerud &O. Rasmussen. 1990. The effect of clinostat rotation on plant protoplasts. Pages 65–68 in T. Duc Guyenne (ed.), Microgravity as a tool in developmental biology. ESA SP-1123. ISBN 92-9092-064-5. European Space Agency, Paris.

    Google Scholar 

  • Jackson, M. B., A. J. Abbott, A. R. Belcher, K. C. Hall, R. Butler &J. Cameron. 1991. Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and expiant development. Ann. Bot.67: 229–237.

    CAS  Google Scholar 

  • —,D. D. Davies &H. Lambers (eds.). 1991. Plant life under oxygen deprivation. SBP Academic Publishing, The Hague.

    Google Scholar 

  • Jackson, M., S. Mantell & J. Blake (eds.). 1987. Advances in the chemical manipulation of plant tissue cultures. Proceedings of a meeting organized by The British Plant Growth Regulator Group … on 6–7 July, 1987 at Wye College (University of London). British Plant Growth Regulator Group Monograph 16.

  • Jackson, W. T. 1962. Use of carbowaxes (polyethylene glycols) as osmotic agents. Pl. Physiol.37: 513–519.

    CAS  Google Scholar 

  • —. 1965. Mannitol-induced stimulation of elongation of root hairs ofAgrostis alba L. Physiol. Pl.18: 24–30.

    CAS  Google Scholar 

  • James, E. 1983. Low-temperature preservation of living cells. Pages 163–186in S. H. Mantell & H. Smith, (eds.), Plant biotechnology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jamieson, W. 1980a. Use of hypobaric conditions for refrigerated storage of meats, fruits and vegetables. Food Technol.34: 64–71.

    Google Scholar 

  • —. 1980b. Hypobaric intermodal containers. CSIRO Food Res. Quart.40(3/4): 129–137.

    Google Scholar 

  • Jansen, M. A. K., H. Booij, J. H. N. Schel &S. C. de Vries. 1990. Calcium increases the yield of somatic embryos in carrot embryogenie suspension cultures. Pl. Cell Rep.9: 221–223.

    CAS  Google Scholar 

  • Jay, V., S. Genestier &J.-C. Courduroux. 1992. Bioreactor studies on the effect of dissolved oxygen concentrations on growth and differentiation of carrot (Daucus carota L.) cell cultures. Pl. Cell Rep.11: 605–608.

    CAS  Google Scholar 

  • Jensen, M. D. 1979. The application of environment control to continuous culture and vaccine production. Pages 115–136in K. Maramorsch (ed.), Practical tissue culture applications. Academic Press, New York.

    Google Scholar 

  • Jones, R. L. 1969. Inhibition of gibberellic acid-induced α-amylase formation by polyethylene glycol and mannitol. Pl. Physiol.44: 101–104.

    CAS  Google Scholar 

  • Joyce, C. M. &T. A. Steitz. 1994. Function and structure relationships in DNA polymerases. Ann. Rev. Biochem.63: 777–822.

    PubMed  CAS  Google Scholar 

  • Kabata-Pendias, A. &H. Pendias. 1992. Trace elements in soils and plants. Ed. 2. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Kader, A. A. 1986. Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technol.40: 99–104.

    CAS  Google Scholar 

  • —. 1992. Postharvest biology and technology: An overview. Pages 15–20in A. A. Kader (ed.), Postharvest technology of horticultural crops. Ed. 2. University of California, Publication 3311, Oakland.

    Google Scholar 

  • Kaeppler, S. M. &R. L. Phillips. 1993. DNA methylation and tissue culture-induced variation in plants. In Vitro Cell Developm. Biol.29P: 125–130.

    CAS  Google Scholar 

  • Kaminek, M., D. Mok &E. Zazimalova. 1992. Physiology and biochemistry of cytokinins in plants. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Kanabus, J., N. C. Carpita &R. A. Bressan. 1985. Carbon utilization by carrot cells in culture. Pl. Physiol.77 (Suppl.): 13.

    Google Scholar 

  • Karel, S. F., P. M. Salmon, P. S. Stewart &C. R. Robertson. 1990. Reaction and diffusion in immobilized cells: Fact and fancy. Pages 115–126in J. A. M. de Bont, J. Visser & J. Tramper (eds.), Physiology of immobilized cells, Proceedings of an international symposium held at Wageningen, the Netherlands 10–13 December 1989. Elsevier, Amsterdam.

    Google Scholar 

  • Kargi, F. &M. Z. Rosenberg. 1987. Plant cell bioreactors: Present status and future trends. Biotechnol. Progr.3(1): 1–8.

    CAS  Google Scholar 

  • Karp, A. 1989. Can genetic instability be controlled in plant tissue cultures? Intl. Assoc. Pl. Tissue Cult. Newsl.58: 2–11.

    Google Scholar 

  • —. 1991. On the current understanding of somaclonal variation. Oxford Surveys Pl. Molec. Cell Biol.2: 199–234.

    Google Scholar 

  • —. 1994. Origins, causes and uses of variation in plant tissue cultures. Pages 139–151in I. K. Vasil & T. A. Thorpe (eds.), Plant tissue culture. Kluwer, Dordrecht.

    Google Scholar 

  • Kartha, K. K. 1982. Cryopreservation of germplasm using meristem and tissue culture. Pages 139–161in D. T. Tomes, B. E. Ellis, P. M. Harney, K. J. Kashaj & R. L. Peterson (eds.), Applications of plant cell and tissue culture to agriculture and industry. University of Guelph, Guelph.

    Google Scholar 

  • —. 1985. Cryopreservation of plant cells and organs. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • — &F. Engelmann. 1994. Cryopreservation and germplasm storage. Pages 194–230in I. K. Vasil & T. A. Thorpe (eds.), Plant tissue culture. Kluwer, Dordrecht.

    Google Scholar 

  • Kaufman, P. B., L.-L. Wu, T. G. Brock &D. Kim. 1995. Hormones and the orientation of growth. Pages 547–571in P. J. Davies (ed.), Plant hormones. Physiology, biochemistry and molecular biology. Kluwer, Dordrecht.

    Google Scholar 

  • Kavi Kishor, P. B. &A. R. Mehta. 1988. Effect of rifamycin and gentamycin on growth, organogenesis and carbohydrate metabolising enzymes in callus cultures of tobacco. Phytomorphology38: 327–331.

    Google Scholar 

  • — &G. M. Reddy. 1986. Osmoregulation and organogenesis in callus tissues of rice. Indian J. Exp. Biol.24: 700–702.

    CAS  Google Scholar 

  • Kawasaki, Y., T. Kiryu, K. Usui &H. Mizutani. 1991. Growth of the cellular slime mold,Dictyostelium discoideum, is gravity dependent. Pl. Physiol.93: 1568–1672.

    Google Scholar 

  • Keefe, J. R. & A. D. Krikorian. 1983. Gravitational biology on the space platform. Paper presented in the 13th Intersociety Conference on Environmental Systems. 11–13 July 1983, San Francisco. Society of Automotive Engineers Technical Paper Series 831133.

  • Keilin, D. 1959. The problem of anabiosis or latent life: History and current concept. Proc. Roy. Soc. (London)B150: 149–191.

    Google Scholar 

  • Kelly, C. F. &A. H. Smith. 1974. Experimental procedures in gravitational biology. Pages 1–50in Aeromedical review. Principles of biodynamics. Review 9–74 USAF School of Aerospace Medicine, Aerospace Medical Division (AFCS), Brooks Air Force Base, Texas.

    Google Scholar 

  • Kessler, J. O. 1992. The internal dynamics of slowly rotating biological systems. Amer. Soc. Gravitational and Space Biol., ASGSB Bull.5(2): 11–21.

    CAS  Google Scholar 

  • Ketel, D. H., A. C. Hulst, H. Gruppen, H. Breteler &J. Tramper. 1987. Effects of immobilization and environmental stress on growth and production of non-polar metabolites ofTagetes minuta cells. Enzyme Microb. Technol.9: 303–307

    CAS  Google Scholar 

  • Kevers, C., M. Coumans, M.-F. Coumans-Gillès &Th. Gaspar. 1984. Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiol. Pl.61: 69–74.

    CAS  Google Scholar 

  • Kiyousue, T., K. Takano, H. Kamada &H. Harada. 1990. Induction of somatic embryogenesis in carrot by heavy metal ions. Canad. J. Bot.68: 2301–2303.

    Google Scholar 

  • —,Satoh, H. Kamada &H. Harada. 1993. Somatic embryogenesis in plants. J. Pl. Res. Special issue3: 75–82.

    Google Scholar 

  • Knox, J. P. 1992. Cell adhesion, cell separation and plant morphogenesis. Pl. J.2: 137–141.

    CAS  Google Scholar 

  • Komamine, A., R. Kawahara, M. Matsumoto, S. Sunabori, T. Toya, A. Fujiwara, M. Tsukahara, J. Smith, M. Ito, H. Fukuda, K. Nomura &T. Fujimura. 1992. Mechanisms of somatic embryogenesis in cell cultures: Physiology, biochemistry, and molecular biology.In vitro Cell Developm. Biol.28: 11–14.

    Google Scholar 

  • Konar, R. N. 1966. Single cell culture and morphogenesis. (Review). Portugaliae Acta Biol. Sér. A.10: 1–32.

    Google Scholar 

  • Krauss, R. W. 1962. Mass culture of algae for food and other organic compounds. Amer. J. Bot.49: 425–435.

    Google Scholar 

  • Krikorian, A. D. 1982. Cloning higher plants from aseptically cultured tissues and cells. Biol. Rev.57: 151–218.

    Google Scholar 

  • —. 1985. Concepts, strategies and potentials using hypo-g and other features of the space environment for commercialization using higher plants. Physiologist28(6): S-179–180.

    CAS  Google Scholar 

  • —. 1988. Plant tissue culture: Perceptions and realities. Proc. Indian Acad. Sci. (Pl. Sci.)98: 425–464.

    Google Scholar 

  • —. 1989. The context and strategies for tissue culture of date, African oil and coconut palms. Pages 119–144in V. Dhawan (ed.), Applications of biotechnology in forestry and horticulture. Plenum Press, New York.

    Google Scholar 

  • —. 1990. Plant biology research on ‘LifeSat.’ SAE Technical Paper Series. 901227. 20th Intersociety Conference on Environmental Systems. Williamsburg, Virginia. July 9–12, 1990. Society of Automotive Engineers, Warrendale, Pennsylvania.

    Google Scholar 

  • —. 1991. Embryogenic plant cells in microgravity. Amer. Soc. Gravitational Space Biol., ASGSB Bull.5(2): 65–72.

    Google Scholar 

  • —. 1995. Hormones in tissue culture and micropropagation. Pages 774–796in P. J. Davies (ed.), Plant hormones: Physiology, biochemistry and molecular biology. Kluwer, Dordrecht.

    Google Scholar 

  • — &H. G. Levine. 1991. Development and growth in Space. Pages 491–555in R. G. S. Bidwell & F. C. Steward (eds.). Plant physiology: A treatise. Vol. 10. Academic Press, New York.

    Google Scholar 

  • — &D. L. Smith. 1992. Somatic embryogenesis in carrot (Daucus carota). Pages PTCM-A9 1–32in K. Lindsey (ed.), Plant tissue culture manual: Fundamentals and applications. Kluwer, Dordrecht.

    Google Scholar 

  • — &F. C. Steward. 1978. Morphogenetic responses of cultured totipotent cells of carrot (Daucus carota var.carota) at zero gravity. Science200: 67–68.

    PubMed  Google Scholar 

  • ——. 1979. Is gravity a morphological determinant in plants at the cellular level? (COSPAR) Life Sci. Space Res.17: 271–284.

    CAS  Google Scholar 

  • —,R. P. Kann, S. A. O’Connor &M. S. Fitter. 1986. Totipotent suspensions and means of multiplication. Pages 61–72in R. Zimmerman (ed.), Tissue culture as a plant production system for horticultural crops. U.S. Dept. of Agriculture Symposium, October 20–23, 1985, Beltsville. Martinus Nijhoff/Junk, The Hague.

    Google Scholar 

  • —,K. Kelly &D. L. Smith. 1987. Hormones in plant tissue culture and propagation. Pages 592–613in P. Davies (ed.), Plant hormones and their role in plant growth and development. Kluwer, Dordrecht.

    Google Scholar 

  • —,H. G. Levine, R. P. Kann &S. A. O’Connor. 1992. Effects of spaceflight on growth and cell division in higher plants. Pages 181–209in S. L. Bonting (ed.), Advances in space biology and medicine. Vol 2. JAI Press, Greenwich, Connecticut.

    Google Scholar 

  • -,S. A. O’Connor, R. P. Kann, and M. S. Fitter. 1982. Development of, and karyotype stability in,Hemerocallis plants reared via tissue, suspension and protoplast culture. Pages 429–430in V International Congress of Plant Tissue and Cell Cultures, 11–16 July 1982, Tokyo, Japan. Proceedings.

  • —,S. A. O’Connor &M. S. Fitter. 1983. Chromosomal stability in cultured plant cells and tissues. Pages 541–581in D. A. Evans, W. R. Sharp, P. V. Ammirato & Y. Yamada (eds.), Handbook of plant cell culture. Vol. I. Macmillan, New York.

    Google Scholar 

  • Kubie, L. S. 1927. The solubility of O2, CO2, and N2 in mineral oil, and the transfer of carbon dioxide from oil to air. J. Biol. Chem.72: 545–548.

    CAS  Google Scholar 

  • Kung, S.-D. &R. Wu (eds.). 1992. Transgenic plants. 2 vols. Academic Press, San Diego.

    Google Scholar 

  • Kurkdjian, A. &J. Guern. 1989. Intracellular pH: Measurement and importance in cell activity. Ann. Rev. Pl. Physiol. Pl. Molec. Biol.40: 271–303.

    CAS  Google Scholar 

  • Kutney, J. P. 1993. Plant cell cultures and synthetic chemistryroutes to clinically important compounds. Recent Adv. Phytochem.27: 235–265.

    CAS  Google Scholar 

  • Kutschera, U. &P. Schopfer. 1985. Evidence against the acid-growth theory of auxin action. Planta163: 483–493.

    CAS  Google Scholar 

  • Kysely, W. &H.-J. Jacobsen. 1990. Somatic embryogenesis from pea embryos and shoot apices. Pl. Cell, Tissue Organ Cult.20: 7–14.

    CAS  Google Scholar 

  • Laetsch, M. 1971. Tissue culture: Pl. Methods Enzymol. Photosynth.23A: 96–109.

    Google Scholar 

  • Lambers, H. &L. H. W. Van der Plas (eds.). 1992. Molecular, biochemical and physiological aspects of plant respiration. SBP Academic Publishing, The Hague.

    Google Scholar 

  • Lambie, A. J. 1990. Commercial aspects of the production of secondary compounds by immobilized plant cells. Pages 265–278in B. V. Charlwood & M. J. C. Rhodes (eds.), Secondary products from plant tissue culture. Clarendon Press, Oxford.

    Google Scholar 

  • Lancelle, S. A., D. A. Callaham &P. K. Hepler. 1986. A method for rapid freeze fixation of plant cells. Protoplasma131: 153–165.

    Google Scholar 

  • Larkin, P. J. 1987. Somaclonal variation: History, method, and meaning. Iowa State J. Res.61: 393–434.

    Google Scholar 

  • — &W. R. Snowcroft. 1981. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet.60: 197–214.

    Google Scholar 

  • —,P. M. Banks, R. Bhati, R. I. S. Brettell, P. A. Davies, S. A. Ryan, W. R. Snowcroft, L. H. Spindler &G. J. Tanner. 1989. From somatic variation to variant plants: Mechanisms and applications. Genome31: 705–711.

    Google Scholar 

  • Larsen, P. 1962. Geotropism: An introduction. Handb. Pflanzenphysiol.17/2: 34–73.

    Google Scholar 

  • Lembi, C. A. &J. R. Waaland. 1988. Algae and human affairs. Cambridge University Press, Cambridge.

    Google Scholar 

  • Leonhardt, W. &R. Kandeler. 1987. Ethylene accumulation in culture vesssels—a reason for vitrification? Acta Hort.212: 223–229.

    Google Scholar 

  • Leshem, B., D. P. Shaley &S. Izhar. 1988. Cytokinin as an inducer of vitrification in melon. Ann. Bot.61: 255–260.

    CAS  Google Scholar 

  • Letham, D. S. 1962. Separation of plant cells with hexametaphosphate and the nature of intercellular bonding. Exp. Cell Res.27: 352–360.

    CAS  Google Scholar 

  • Leva, A. R. &R. Muleo. 1993. Effects of “media osmotic agents” on the growth and morphogenesis ofActinidia deliciosa cv “Hayward” callus.In Vitro Cell. Developm. Biol.29P: 59–64.

    CAS  Google Scholar 

  • Levett, P. N. (ed.). 1991. Anaerobic microbiology. A practical approach. Oxford University Press, Oxford.

    Google Scholar 

  • Levitt, J. 1972. Responses of plants to environmental stresses. Academic Press, New York.

    Google Scholar 

  • —. 1980. Responses of plants to environmental stress. Vol. 1, Chilling, freezing and high temperature stress. Academic Press, New York.

    Google Scholar 

  • Lewis, M. L., W. H. Bowie, M. H. Huls, R. P. Schwarz, J. H. Cross & D. A. Wolf. 1987. Growth and maintenance of anchorage dependent cells in zero headspace bioreactor systems designed for microgravity. Pages 265–278in Proceedings of the Spacebound ’87 Canadian workshop on R & D opportunities on board the Space station, Ottawa, Ontario.

  • —,D. M. Moriarty &P. S. Campbell. 1993. Use of microgravity bioreactors for development of an in vitro salivary gland cell culture model. J. Cell. Biochem.51: 265–273.

    PubMed  CAS  Google Scholar 

  • Li, P. H. 1984. Subzero temperatures stress physiology of herbaceous plants. Hort. Rev.6: 373–416.

    CAS  Google Scholar 

  • Lin, M. &E. J. Staba. 1961. Peppermint and spearmint tissue cultures. I. Callus formation and submerged culture. Lloydia24: 139–145.

    CAS  Google Scholar 

  • Lindsey, K. 1992. Plant tissue culture manual. Kluwer, Dordrecht.

    Google Scholar 

  • — &M. M. Yeoman. 1985. Immobilized plant cell culture systems. Pages 304–315in K.-H. Neumann, W. Barz & E. Reinhard (eds.), Primary and secondary metabolism of plant cell cultures. Springer-Verlag, Berlin.

    Google Scholar 

  • ——. 1986. Immobilized plant cells. Pages 228–267in M. M. Yeoman (ed.), Plant culture technology. Blackwell, Oxford.

    Google Scholar 

  • Liners, F., T. Gaspar &P. Van Cutsem. 1994. Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: Consequences for intercellular adhesion. Planta192: 545–556.

    CAS  Google Scholar 

  • Litz, R. E. 1986. Effect of osmotic stress on somatic embryogenesis inCarica suspension cultures. J. Amer. Soc. Hort. Sci.111: 969–972.

    CAS  Google Scholar 

  • Loewus, F. 1990. Cyclitols. Methods Pl. Biochem.2: 219–233.

    CAS  Google Scholar 

  • Longevialle, M. 1970. Action comparée de deux antimétabolites soufrés, la d-1-éthionine et le β mercaptoéthanol, dur les cellules méristématiques des racines d’Alliumsativum. Soc. Bot. Mém.1970: 175–188.

    Google Scholar 

  • LoSchiavo, F., V. Nuti Ronchi &M. Terzi. 1980. Genetic effects of griseofulvin on plant cell cultures. Theor. Appl. Genet.58: 43–47.

    CAS  Google Scholar 

  • Lyndon, R. 1990. Plant development. The cellular basis. Unwin Hyman, London.

    Google Scholar 

  • Mangenot, G. 1941. Substances mitoclastiques et cellules végétales. Etat actuel de la question d’ après les travaux publiés jusqu’à la fin de 1940. Rev. Cytol. Cytophysiol. Végétales5: 169–264.

    CAS  Google Scholar 

  • Mantell, S. H. &H. Smith. 1983. Plant biotechnology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Marchant, R., M. R. Davey &J. B. Power. 1993. Protoplast fusion. Methods Pl. Biochem.10: 187–205.

    CAS  Google Scholar 

  • Markert, C. L. & A. D. Krikorian. 1993. Life: Origin and evolution on earth; How can we escape? Pages 35–39in A Scientific Role for Space Station Freedom—How Space platforms can serve research in life sciences. AIAA-92-1348. Presented at a Symposium at AIAA [American Institute of Aeronautics and Astronautics Space Programs and Technologies Conference], Huntsville, Alabama, 24 March 1992. NASA Technical Memorandum 4502.

  • Marschner, H. 1994. Mineral nutrition of higher plants. Ed. 2. Academic Press, San Diego.

    Google Scholar 

  • Matsumoto, T., A. Sakai &K. Yamada. 1994. Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Pl. Cell Rep.13: 442–446.

    Google Scholar 

  • Mattiasson, B. (ed.). 1983. Immobilized cells and organelles. 2 vols. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Mavituna, F., J. M. Park, A. K. Wilkinson &P. D. Williams. 1987. Characteristics of immobilised plant-cell reactors. Pages 92–116in C. Webb & F. Mavituna (eds.), Plant and animal cells: process possibilities. Ellis Horwood, Chichester, U.K.

    Google Scholar 

  • Meijer, E. 1989. Developmental aspects of ethylene biosynthesis during somatic embryogenesis in tissue cultures ofMedicago sativa. J. Exp. Bot.40: 479–484.

    CAS  Google Scholar 

  • Merkys, A. &R. Laurinavicius, R. 1991. Development of higher plants under altered gravitational conditions. Adv. Space Biol. Med.1: 155–181.

    PubMed  CAS  Google Scholar 

  • Mesland, D. A. M. 1987. The D-l Biorack results: Abase for further space biological investigations. Pages 376–382in Proceedings of the 8th ESA symposium on European rocket and balloon programmes and related research, Sunne, Sweden, 17–23 May 1987. ESA SP-270. European Space Agency, Paris.

    Google Scholar 

  • —. 1992. Mechanisms of gravity effects on cells: Are there gravity-sensitive windows? Adv. Space Biol. Med.2: 211–228.

    PubMed  CAS  Google Scholar 

  • Michel, B. E. 1970. Carbowax 6000 compared with mannitol as a suppressant of cucumber hypocotyl elongation. Pl. Physiol.45: 507–509.

    CAS  Google Scholar 

  • —. 1972. Solute potentials of sucrose solutions. Pl. Physiol.50: 196–198.

    CAS  Google Scholar 

  • — &M. R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Pl. Physiol.51: 914–916.

    CAS  Google Scholar 

  • Minocha, S. C. 1987. pH of the medium and the growth and metabolism of cells in culture. Pages 125–141in J. M. Bonga & D. J. Durzan (eds.), Cell and tissue culture in forestry. Vol. 1. Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Mitz, M. A. 1979. CO2 biodynamics: A new concept of cellular control. J. Theor. Biol.80: 537–551.

    PubMed  CAS  Google Scholar 

  • Mizrahi, A. (ed.). 1988. Biotechnology in agriculture. Alan R. Liss, New York.

    Google Scholar 

  • Mok, D. W. S. &M. C. Mok (eds.). 1994. Cytokinins; chemistry, activity, and function. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Mok, M. C. 1994. Cytokinins and plant development—An overview. Pages 155–166in D. W. S. Mok & M. C. Mok (eds.), Cytokinins; chemistry, activity, and function. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Molisch, H. 1897. Untersuchungen über das Erfrieren der Pflanzen. Verlag Gustav Fischer, Jena. [Investigations into the Freezing Death of Plants]. First English translation of the classic monograph by Molisch, published in 1897 but as relevant today as it was then. CryoLetters3(6): 328–390.

    Google Scholar 

  • Moore, D. 1991. Perception and response to gravity in higher fungi—A critical appraisal. New Phytol.117: 3–23.

    PubMed  CAS  Google Scholar 

  • Moore, P. H. 1987. Breeding for stress resistance. Pages 503–542in D. J. Heinz (ed.), Sugarcane improvement through breeding. Elsevier, Amsterdam.

    Google Scholar 

  • Moore, R. 1990. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells. Ann. Bot.66: 541–549.

    PubMed  CAS  Google Scholar 

  • Moo-Young, M. &Y. Chisti. 1988. Considerations for designing bioreactors for shear-sensitive culture. Bio/Technology6 (11): 1291–1296.

    CAS  Google Scholar 

  • Moroz, P. 1984. The cell in the field of gravity and the centrifugal field. J. Theor. Biol.107: 303–320.

    PubMed  CAS  Google Scholar 

  • Morrison, D. R. (ed.). 1987. Space bioreactor science workshop. Proceedings of a workshop held Houston, August 22–23, 1985. NASA Conference Publication 2485, Johnson Space Center, Houston.

    Google Scholar 

  • Morton, H. E. &E. J. Pulaski. 1938. The preservation of bacterial cultures. I. J. Bacteriol.35: 163–183.

    PubMed  CAS  Google Scholar 

  • Muir, W. H., A. C. Hildebrandt &A. J. Riker. 1954. Plant tissue cultures produced from single isolated plant cells. Science119: 877–878.

    Google Scholar 

  • ———. 1958. The preparation, isolation and growth in culture of single cells from higher plants. Amer. J. Bot.45: 585–596.

    Google Scholar 

  • Murray, A. W. 1992. Creative blocks: Cell-cycle checkpoints and feedback controls. Nature359: 599–604.

    PubMed  CAS  Google Scholar 

  • Nakazawa, A. 1989. Cell polarity as the “logos” of morphogenesis. Cytologia (Tokyo)54: 293–298.

    Google Scholar 

  • Nechitailo, G. S. &A. L. Mashinsky. 1993. Space biology. Studies at orbital stations. Trans. from the Russian by Nikolai Lyubimov. Mir Publishers, Moscow.

    Google Scholar 

  • Negrutiu, I. &G. Gharti-Chhetri (eds.). 1991. A laboratory guide for cellular and developmental biology. Birkhauser Verlag, Basel.

    Google Scholar 

  • —,M. Jacobs &M. Caboche. 1984. Advances in somatic cell genetics of higher plants—The protoplast approach in basic studies on mutagenesis and isolation of biochemical mutants. Theoret. Appl. Genet.67: 289–304.

    Google Scholar 

  • Neilsen-Jones, W. 1937. Chimaeras: A summary and some special aspects. Bot. Rev. (Lancaster)3: 545–562.

    Google Scholar 

  • Netter, G. &J. Weiss. 1992. Fluid management under micro-gravity conditions in technical applications. Pages 165–166in H. J. Rath (ed.), Microgravity fluid mechanics. International Union of Theoretical and Applied Mechanics Symposium Bremen 1991. Springer-Verlag, Berlin.

    Google Scholar 

  • Neumann, K.-H., W. Barz &E. Reinhard (eds.). 1985. Primary and secondary metabolism of plant cell cultures. Springer-Verlag, Berlin.

    Google Scholar 

  • Nickell, L. G. 1962. Submerged growth of plant cells. Adv. Appl. Microbiol.4: 213–236.

    PubMed  CAS  Google Scholar 

  • —. 1982. Plant-growth substances. Pages 1–23in Kirk-Othmer encyclopedia of chemical technology. Ed. 3. Vol. 18. Wiley Interscience, New York.

    Google Scholar 

  • Nishimura, M., I. Hara-Nishimura &T. Akazawa. 1987. Preparation of protoplasts from plant tissues for organelle isolation. Methods Enzymol.148: 27–34.

    CAS  Google Scholar 

  • Nishizawa, S., A. Sakai, Y. Amano &T. Matsuzawa. 1993. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Pl. Sci.91: 67–73.

    CAS  Google Scholar 

  • Nitsch, J. P. 1967. Multicellular physiology: The role of plant hormones. Wiss. Zeitschr. Universität Rostock. Mat-Natur. Reihe16: 395–405.

    Google Scholar 

  • Onken, U. &E. Liefke. 1989. Effect of total and partial pressure (oxygen and carbon dioxide) on aerobic microbial processes. Adv. Biochem. Eng. Biotechnol.46: 161–185.

    Google Scholar 

  • Ormrod, J. (ed.). 1993. Molecular and cell biology of the plant cell cycle. Kluwer, Dordrecht.

    Google Scholar 

  • Ostrach, S. 1982. Low gravity fluid flows. Ann. Rev. Fluid Mech.14: 313–345.

    Google Scholar 

  • Packer, L. & R. Douce (eds.). 1987. Plant cell membranes. Methods Enzymol.148: 3–87.

  • Papoutsakis, E. T. &J. D. Michaels. 1993. Physical forces in mammalian cell bioreactors. Pages 291–345in J. A. Frangos (ed.), Physical forces and the mammalian cell. Academic Press, San Diego.

    Google Scholar 

  • Pâques, M. &Th. Boxus. 1987. “Vitrification”: A review of literature. Acta Hort.212: 155–166.

    Google Scholar 

  • Paupardin, C. &R. J. Gautheret. 1954. Recherches sur la dissociation des tissus végétaux cultivésin vitro. C. R. Acad. Sci. Paris238: 2334–2336.

    PubMed  CAS  Google Scholar 

  • Payne, G., V. Bringi, C. Prince &M. Shuler. 1991. Plant cell and tissue culture in liquid systems. Hanser, Munich.

    Google Scholar 

  • Pell, E. J. & K. L. Steffen (eds.). 1991. Active oxygen/oxidative stress and plant metabolism. Current Topics in Plant Physiology, vol. 6. American Society of Plant Physiologists.

  • Peschke, V. &R. Phillips. 1992. Genetic implications of somaclonal variation in plants. Adv. Genet.30: 41–75.

    CAS  Google Scholar 

  • Petersen, M. &A. W. Alfermann. 1993. Plant cell cultures. Pages 577–614in H.-J. Rehm, G. Reed, A. Pühler & P. Stadler (eds.), Biotechnology. Ed. 2. VCH, New York.

    Google Scholar 

  • Phan, C. T. &P. Hegedus. 1986. Possible metabolic basis for the developmental anomaly observed inin vitro culture, called ‘vitreous plants’. Pl. Cell Tissue Organ Cult.6: 83–94.

    CAS  Google Scholar 

  • Phillips, R. L. 1981. Plant cytogenetics. Pages 341–350in G. Clark (ed.), Staining procedures. Ed. 4. Biological Stain Commission, Williams & Wilkins, Baltimore.

    Google Scholar 

  • Planel, H., R. Tixador, G. Richoilley &G. Gasset. 1990. Effects of space flight on a single-cell organism. Pages 85–96in M. Asashima & G. M. Malacinski (eds.), Fundamentals of space biology. Japan Scientific Societies Press, Tokyo; Springer-Verlag, Berlin.

    Google Scholar 

  • Poethig, S. 1989. Genetic mosaics and cell lineage analysis in plants. Trends Genet.5: 273–277.

    PubMed  CAS  Google Scholar 

  • Polezhaev, V. I. &M. K. Ermakov. 1992. Thermal convection in microgravity during a slow rotation. Pages 253–261in H. J. Rath (ed.), Microgravity fluid mechanics. International Union of Theoretical and Applied Mechanics Symposium, Bremen, 1991. Springer-Verlag, Berlin.

    Google Scholar 

  • Pollard, J. &J. Walker (eds.). 1990. Plant cell and tissue culture. Methods in molecular biology. Vol. 6. Humana Press, Clifton, New Jersey.

    Google Scholar 

  • Pollock, K., D. G. Barfield &R. Shields. 1983. The toxicity of antibiotics to plant cell cultures. Pl. Cell Rep.2: 36–39.

    CAS  Google Scholar 

  • Power, J. B., M. McLellan &M. R. Davey. 1989. Laboratory manual—Plant tissue culture. University of Nottingham, Nottingham, U.K.

    Google Scholar 

  • Preil, W. 1991. Application of bioreactors in plant propagation. Pages 425–445in P. C. Debergh & R. H. Zimmerman (eds.), Micropropagation. Technology and application. Kluwer, Dordrecht.

    Google Scholar 

  • —,P. Florek, U. Wix &A. Beck. 1988. Toward mass propagation by use of bioreactors. Acta Hort.226: 99–106.

    Google Scholar 

  • Prenosil, J. E. &H. Pedersen. 1983. Immobilized plant cell reactors. Enzyme Microbiol. Technol.5: 323–331.

    CAS  Google Scholar 

  • Prince, C. L., V. Bringi &M. L. Shuler. 1991. Convective mass transfer in large porous biocatalysts: Plant organ cultures. Biotechnol. Progr.7: 195–199.

    CAS  Google Scholar 

  • Prince, T. A. 1989. Modified atmosphere packaging of horticultural commodities. Pages 67–100in A. L. Brody (ed.), Controlled/modified atmosphere/vacuum packaging of foods. Food & Nutrition Press, Trumbull, Connecticut.

    Google Scholar 

  • Prokop, A. &M. Z. Rosenberg. 1989. Bioreactor for mammalian cell culture. Adv. Biochem. Eng. Biotechnol.39: 29–71.

    PubMed  CAS  Google Scholar 

  • Pua, E.-C. &C. Chong. 1985. Regulation ofin vitro shoot and root regeneration in ‘Macspur’ apple by sorbitol (D-glucitol) and related carbon sources. J. Amer. Soc. Hort. Sci.110: 705–709.

    CAS  Google Scholar 

  • Puite, K. (ed.). 1988. Progress in plant protoplast research: Proceedings of the 7th International Protoplast Symposium, Wageningen, Netherlands, Dec. 6–11, 1987. Kluwer, Dordrecht.

    Google Scholar 

  • Rademacher, W. 1991. Biochemical effects of plant growth retardants. Pages 169–200in H. Gaussman (ed.), Plant biochemical regulators. Marcel Dekker, New York.

    Google Scholar 

  • Rahbar, K. &R. N. Chopra. 1982. Effect of liquid medium, activated charcoal and pH on the onset of reproductive phase in the mossBartramidula batramioides. Z. Pflanzenphysiol.106: 185–189.

    Google Scholar 

  • Rasmussen, O. 1987. The use of plant protoplasts in biotechnological space research. Pages. 107–111in Proceedings of the third european symposium on life sciences research in space. 14–18 September 1987, Graz, Austria. ESA SP-271. European Space Agency, Paris.

    Google Scholar 

  • —,C. Baggerud &T.-H. Iversen. 1989. Preparatory studies for the use of plant protoplasts in space. Physiol. Pl.76: 431–437.

    CAS  Google Scholar 

  • —,F. Gmünder, M. Tairbekov, E. L. Kordyum, C. H. Lozovaya, C. Baggerud &T.-H. Iversen. 1990. Plant protoplast development on “Biokosmos 9.” Pages 527–530in Life sciences and space research. ESA SP-307. European Space Agency ESTEC, Noordwijk, Netherlands.

    Google Scholar 

  • Redenbaugh, K. (ed.). 1993. Synseeds. Applications of synthetic seeds to crop improvement. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Reinhoud, P. J., A. Uragami, A. Sakai &F. Van Iren. 1995. Pages 113–120in J. G. Day & M. R. McLellan (eds.), Cryopreservation and freeze-drying protocols. Methods in molecular biology 38. Human Press, Totowa, New Jersey.

    Google Scholar 

  • Reuveni, M., H. R. Lerner &A. Poljakoff-Mayber. 1991. Osmotic adjustment and dynamic changes in distribution of low molecular weight solutes between cellular compartments of carrot and beet root cells exposed to salinity. Amer. J. Bot.78: 601–609.

    CAS  Google Scholar 

  • Rhodes, M. J. C. 1985. Immobilized plant cell cultures. Pages 51–87in A. Wisemena (ed.), Topics in enzyme and fermentation biotechnology 10. Ellis Horwood, Chichester; John Wiley, New York.

    Google Scholar 

  • —,R. J. Robins, J. D. Hamill, A. J. Parr, M. G. Hilton &N. J. Walton. 1990. Properties of transformed root cultures. Pages 201–225in B. V. Charlwood & M. J. C. Rhodes (eds.), Secondary products from plant tissue culture. Clarendon Press, Oxford.

    Google Scholar 

  • Richoilley, G., R. Tixador, G. Gasset, G. Templier &H. Planel. 1986. Preliminary results of the “Paramecium” experiment. Naturwissenschaften73: 404–406.

    PubMed  CAS  Google Scholar 

  • ——,J. C. Bés, G. Gasset &H. Planel. 1988. The Paramecium experiment. Pages 69–73in Biorack on spacelab Dl. An overview of the first flight of Biorack, an ESA facility for life sciences research in microgravity. ESA SP-1091. European Space Agency, Paris.

    Google Scholar 

  • Riker, A. J. &A. E. Gutsche. 1948. The growth of sunflower tissue in vitro on synthetic media with various organic and inorganic sources of nitrogen. Amer. J. Bot.35: 227–238.

    CAS  Google Scholar 

  • Robbins, W. J. &I. McVeigh. 1946. Effect of hydroxy-proline onTrichophyton mentagrophytes and other fungi. Amer. J. Bot.33: 638–647.

    CAS  Google Scholar 

  • Robert, M. L., M. R. Flores &V. M. Loyola-Vargas. 1989. Growth promoting activity of certain penicillins on cultivated cells ofBouvardia ternifolia. Phytochemistry28: 2659–2662.

    CAS  Google Scholar 

  • Roberts-Oehlschlager, S. L. &J. M. Dunwell. 1990. Barley anther culture: Pretreatment on mannitol stimulates production of microspore-derived embryos. Pl. Cell, Tissue Organ Cult.20: 235–240.

    CAS  Google Scholar 

  • Robins, R. J. &M. J. C. Rhodes (eds.). 1988. Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge.

    Google Scholar 

  • Robinson, D. G., M. Andreae &P. Blankenstein. 1990. Plant prolyl hydroxylase. Pages 283–299in W. S. Adair & R. P. Mecham (eds.), Organization and assembly of plant and animal extracellular matrix. Academic Press, San Diego.

    Google Scholar 

  • Rodnight, R. 1954. Manometric determination of the solubility of oxygen in liquid paraffin, olive oil and silicone fluids. Biochem. J.57: 661–663.

    PubMed  CAS  Google Scholar 

  • Roest, S. &L. J. W. Gilissen. 1989. Plant regeneration from protoplasts: A literature review. Acta Bot. Neerl.38: 1–23.

    Google Scholar 

  • Rosevear, A. &C. A. Lambe. 1985. Immobilized plant cells. Adv. Biochem. Eng. Biotech.31: 37–58.

    CAS  Google Scholar 

  • ——. 1986. The potential of immobilised plant and animal cells. Pages 225–237in C. Webb, G. M. Black & B. Atkinson (eds.), Process engineering aspects of immobilised cell systems. Institution of Chemical Engineers, Rugby, U.K.

    Google Scholar 

  • Rost, T. L. &E. M. Gifford (eds.). 1977. Mechanisms and control of cell division. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Sachs, T. 1991. Pattern formation in plant tissues. Cambridge University Press, Cambridge.

    Google Scholar 

  • Sack, F. 1991. Perception of gravity by plants. Intl. Rev. Cytol.127: 193–252.

    CAS  Google Scholar 

  • —. 1993. Gravitropism in protonemata of the mossCeratodon. Mem. Torrey Bot. Club25: 36–44.

    Google Scholar 

  • Sakai, A. 1984. Cryopreservation of apical meristems. Hort. Rev.6: 357–372.

    Google Scholar 

  • Salisbury, F. B. 1991a. Lunar farming: Achieving maximum yield for the exploration of space. HortScience26: 827–833.

    PubMed  CAS  Google Scholar 

  • —. 1991b. Some challenges in designing a lunar, martian, or microgravity CELSS. Acta Astronautica27: 211–217.

    Google Scholar 

  • —. 1993. Gravitropism: Changing ideas. Hort. Rev.15: 233–278.

    Google Scholar 

  • Salle, A. J. 1967. Fundamental principles of bacteriology. Ed. 6. McGraw-Hill, New York.

    Google Scholar 

  • Sato, S., T. Toya, R. Kawahara, R. F. Whittier, H. Fukuda &A. Komamine. 1995. Isolation of a carrot gene expressed specifically during early-stage somatic embryogenesis. Pl. Molec. Biol.28: 39–46.

    CAS  Google Scholar 

  • Sauerbeck, D. R. &H. M. Helal. 1990. Factors affecting the nutrient efficiency of plants. Pages 11–17in N. El Bassham, M. Dambroth & B. C. Loughman (eds.), Genetic aspects of plant mineral nutrition. Kluwer, Dordrecht.

    Google Scholar 

  • Schaeffer, R. L., G. C. Jahns &D. Reiss-Bubenheim. 1993. Plant response to the microgravity environment of space. Pages 59–70in P. M. Gresshoff, (ed.), Plant responses to the environment. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Schaffner, C. P. 1979. Animal and plant tissue culture decontamination. Pages 203–214in K. Maramosrosch & H. Hirumi (eds.), Practical tissue culture applications. Academic Press, New York.

    Google Scholar 

  • Schaller, G. E. &M. R. Sussman. 1988. Phosphorylation of the plasma-membrane H+-ATPase of oat roots by a calcium-stimulated protein kinase. Planta173: 509–518.

    CAS  Google Scholar 

  • Scheel, D. &J. E. Casida. 1985. Acetohydroxyacid synthetase inhibitors as herbicides. Pages 344–355in K.-H. Neumann, W. Barz & E. Reinhard (eds.), Primary and secondary metabolism of plant cell cultures. Springer-Verlag, Berlin.

    Google Scholar 

  • Scheld, H. W., A. D. Krikorian &J. W. Magnuson. 1985. Tissue culture apparatus for flight experimentation. Physiologist28(6): S167-S168.

    PubMed  CAS  Google Scholar 

  • Schlatmann, J. E., P. R. H. Moreno, J. L. Vinke, H. J. G. ten Hoopen, R. Verpoorte &J. J. Heijnen. 1994. Effect of oxygen and nutrient limitation on ajmalicine production and related enzyme activities in high density cultures ofCatharanthus roseus. Biotechnol. Bioeng.44: 461–468.

    CAS  Google Scholar 

  • Schnabl, H., P. Scheurich &U. Zimmermann. 1980. Mechanical stabilization of guard cell protoplasts ofVicia faba. Planta149: 280–282.

    CAS  Google Scholar 

  • —,R. J. Youngman &U. Zimmermann. 1983. Maintenance of plant membrane integrity and function by immobilization of plant protoplasts in alginate matrices. Planta158: 392–397.

    CAS  Google Scholar 

  • Schnapp, S. R., W. R. Curtis, R. A. Bressan &P. M. Hasegawa. 1991a. Estimation of growth yield and maintenance coefficient of plant cell suspensions. Biotechnol. Bioeng.38: 1131–1136.

    Google Scholar 

  • ————. 1991b. Growth yields and maintenance coefficients of unadapted and NaCl-adapted tobacco cells grown in semicontinuous culture. Pl. Physiol.96: 1289–1293.

    Google Scholar 

  • Schripsema, J. &R. Verpoorte. 1995. Novel techniques for growth characterization and phytochemical analysis of plant cell suspension culture. J. Nat. Prod.58: 1305–1314.

    CAS  Google Scholar 

  • Schüler, M. L., O. P. Sahai &G. A. Hallsby. 1983. Entrapped plant cell tissue cultures. Annals of the N.Y. Acad. Sci.413, Biochem. Engin.III: 373–382.

    Google Scholar 

  • Schulze, A., P. J. Jensen, M. Desrosiers, J. G. Buta &R. S. Bandurski. 1992. Studies on growth and indole-3-acetic acid and abscisic acid content ofZea mays seedlings grown in microgravity. Pl. Physiol.100: 692–698.

    CAS  Google Scholar 

  • Scragg, A. H. 1990. Fermentation systems for plant cells. Pages 243–263in B. V. Charlwood & M. J. C. Rhodes (eds.), Secondary products from plant tissue culture. Clarendon Press, Oxford.

    Google Scholar 

  • —,P. Morris, E. J. Allan, P. Bond, P. Hegarty, N. J. Smart &M. W. Fowler. 1987. The effect of scale-up on plant-cell culture performance. Pages 77–91in C. Webb & F. Mavituna (eds.), Plant and animal cells: Process possibilities. Ellis Horwood, Chichester, U.K.

    Google Scholar 

  • Seitz, U., I. Reuff &E. Reinhard. 1985. Cryopreservation of plant cell cultures. Pages 323–333in K.-H. Neumann, W. Barz & E. Reinhard (eds.), Primary and secondary metabolism of plant cell cultures. Springer-Verlag, Berlin.

    Google Scholar 

  • Shaner, D. L. 1987. Sites of action of herbicides in amino acid metabolism: Primary and secondary physiological effects. Recent Adv. Phytochem.23: 227–261.

    Google Scholar 

  • Sharma, A. K. &A. Sharma. 1980. Chromosome techniques. Theory and practice. Ed. 3. Butterworths, London.

    Google Scholar 

  • Sherf, A. G. 1943. A method of maintainingPhytomonas sepedonica in culture for long periods without transfer. Phytopathology33: 330–332.

    Google Scholar 

  • Showalter, A. 1993. Structure and function of plant cell wall proteins. Pl. Cell5: 9–23.

    CAS  Google Scholar 

  • — &D. Rumeau. 1990. Molecular biology of plant cell wall hydroxyproline-rich glycoproteins. Pages 247–281in W. S. Adair & R. P. Mecham (eds.), Organization and assembly of plant and animal extracellular matrix. Academic Press, San Diego.

    Google Scholar 

  • Sidorenko, P. G., A. F. Popova, D. A. Klimchuk, G. M. Martin & G. F. Ivanenkc. 1983. Single cell algae and higher plant cell cultures using [sic] in space biology. International Astronautical Federation, International Astronautical Congress, 34th. Budapest, Hungary, Oct. 10–15, 1983. IAF Paper 83–185.

  • Sievers, A. &D. Volkmann. 1979. Gravitropism in single cells. Pages 567–572in Encyclopedia of plant physiology, n.s. Vol. 7. Springer-Verlag, Berlin.

    Google Scholar 

  • Silver, I. L. 1976. The dynamics of a discrete geotropic sensor subject to rotation-induced gravity compensation. J. Theor. Biol.61: 353–362.

    PubMed  CAS  Google Scholar 

  • Singh, R.J. 1993. Plant cytogenetics. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Skjak-Braek, G. &A. Martinsen. 1991. Applications of some algal polysaccharides in biotechnology. Pages 219–257in M. D. Guiry & G. Blunden (eds.), Seaweed resosuces in Europe: Uses and potential. John Wiley, New York.

    Google Scholar 

  • Sloan, M. E. &N. D. Camper. 1981. Effects of colchicine on carrot growth—growth and energy status. Pl. Cell, Tissue Organ Cult.1: 69–75.

    CAS  Google Scholar 

  • Smith, A. H. 1974. Introduction to gravitational biology. Pages 1–51in Aeromedical review. Principles of biodynamics. Review 8–74 USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, Texas.

    Google Scholar 

  • —. 1975. Principles of gravitational biology. Pages 129–162in M. Calvin & O. G. Gazenko (eds.), Foundations of space Biology and medicine. Vol. II, Book 1. National Aeronautics and Space Administration, Washington, D.C.

    Google Scholar 

  • —,C. A. Fuller, C. A. Johnson &C. M. Winget. 1992. Space station centrifuge: A requirement for life science research. NASA Technological Memorandum 102873. NASA Ames Research Center, Moffett Field, California.

    Google Scholar 

  • Smith, D. L. &A. D. Krikorian. 1990a. Somatic proembryo production from excised, wounded zygotic carrot embryos on hormone-free medium: Evaluation of the effects of pH, ethylene and activated charcoal. Pl. Cell Rep.9: 34–37.

    CAS  Google Scholar 

  • ——. 1990b. Somatic embryogenesis of carrot in hormone-free medium: External pH control over morphogenesis. Amer. J. Bot.77: 1634–1647.

    CAS  Google Scholar 

  • ——. 1990c. Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D initiated embryogenic cells of carrot. Physiol. Pl.80: 329–336.

    CAS  Google Scholar 

  • ——. 1991. Growth and maintenance of an embryogenic cell culture of daylily (Hemerocallis) on hormone-free medium. Ann. Bot.67: 443–449.

    PubMed  CAS  Google Scholar 

  • —,K. Kelly &A. D. Krikorian. 1989. Ethylene-associated phase change from juvenile to mature phenotype of daylily (Hemerocallis) in vitro. Physiol. Pl.76: 466–473.

    CAS  Google Scholar 

  • Smock, R. M. 1970. Environmental factors affecting ripening of fruits. HortScience5: 37–39.

    Google Scholar 

  • Snape, J. B., N. H. Thomas &J. A. Callow. 1989.Catharanthus roseus respond to oxygen limitation: Small-scale tests with applications to large-scale cultures. Biotechnol. Bioeng.34: 1058–1062.

    CAS  Google Scholar 

  • Snowcroft, W. R. 1985. Somaclonal variation: The myth of clonal uniformity. Pages 217–245in B. Hohn & E. S. Dennis (eds.), Genetic flux in plants. Springer-Verlag, New York.

    Google Scholar 

  • Srb, A. M. 1956. Spontaneous and chemically-induced mutations giving rise to canavanine resistance in yeast. C. R. Lab. Carlsberg, Série Physiol.26: 363–380.

    CAS  Google Scholar 

  • Staba, E. J. (ed.). 1980. Plant tissue culture as a source of biochemicals. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • —. 1985. Milestones in plant tissue culture systems for the production of secondary products. J. Natural Prod.48: 203–209.

    CAS  Google Scholar 

  • Steeves, T. &I. Sussex. 1989. Patterns in plant development. Cambridge University Press, Cambridge.

    Google Scholar 

  • Steponkus, P. L., R. Langis &S. Fujikawa. 1992. Cryopreservation of plant tissues by vitrification. Adv. Low-Temp. Biol.1: 1–61.

    Google Scholar 

  • Steward, F. C. &R. G. S. Bidwell. 1958. Nitrogen metabolism, espiration and growth of cultured plant tissues. J. Exp. Bot.9: 285–305.

    CAS  Google Scholar 

  • — &A. D. Krikorian. 1971. Plants, chemicals and growth. Academic Press, New York.

    Google Scholar 

  • ——. 1978. The morphogenetic responses of cultured totipotent cells of carrot (Daucus carota L.) at zero gravity. Pages 71–159in S. N. Rosenzweig & K. A. Souza (eds.), Final reports of U.S. experiments flown on the Soviet satelliteCosmos 782. NASA Technical Memorandum 78525. NASA Ames Research Center, Moffett Field, California.

    Google Scholar 

  • — &J. K. Pollard. 1958.14C-proline and hydroxyproline in the protein metabolism of plants. Nature182: 828–832.

    PubMed  CAS  Google Scholar 

  • —,H. W. Israel, R. L. Mott, H. J. Wilson &A. D. Krikorian. 1975. Observations of growth and morphogenesis using cultured cells of carrot. Phil. Trans. Roy. Soc. (London)273B: 33–53.

    Google Scholar 

  • —,M. O. Mapes &J. Smith. 1958. Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Amer. J. Bot.45: 693–703.

    Google Scholar 

  • —,J. K. Pollard, A. A. Patchett &B. Witkop. 1958. The effects of selected nitrogen compounds on the growth of plant tissue cultures. Biochim. Biophys. Acta28: 308–317.

    PubMed  CAS  Google Scholar 

  • Stiles, W. 1960. The composition of the atmosphere (oxygen content of air, water, soil, intercellular spaces, diffusion, carbon dioxide and oxygen tension). Pages 114–148in W. Ruhland (ed.), Handbuch der Pflanzenphysiologie 12/II. Springer-Verlag, Berlin.

    Google Scholar 

  • Stolzenburg, M. C., J. R. Aist &H. W. Israel. 1984. The role of papillae in resistance to powdery mildew conditioned by the ml-o gene in barley. II. Experimental evidence. Physiol. Pl. Pathol.25: 347–361.

    Google Scholar 

  • Stoop, J. M. H., J. D. Willamson, M. A. Conkling &D. M. Pharr. 1995. Purification of NAD-dependent mannitol dehydrogenase from celery suspension cultures. Pl. Physiol.108: 1219–1225.

    CAS  Google Scholar 

  • Street, H. E. &G. G. Henshaw. 1963. Cell division and differentiation in suspension cultures of higher plant cells. Symp. Soc. Exp. Biol.17: 234–256.

    PubMed  CAS  Google Scholar 

  • —,P. J. King &K. J. Mansfield. 1971. Growth control in plant cell suspension cultures. Pages 17–40in Colloques internationaux du centre national de la recherche scientifique. No. 193. Les cultures de tissus de plantes. Éditions du Centre National de la Recherche Scientifique, Paris.

    Google Scholar 

  • Sulzman, F. M., C. A. Fuller, M. C. Moore-Ede &G. Wassner. 1984.Neurospora circadian rhythms in space. Science225: 232–234.

    PubMed  CAS  Google Scholar 

  • Tabata, M. 1991. Transport and secretion of natural products in plant cell cultures. Pl. Med.57(Suppl.): S21-S26.

    CAS  Google Scholar 

  • Tairbekov, M. G. 1991. Physiological mechanisms of cell adaptation to microgravitation. Physiologist34(1): S62–63.

    PubMed  CAS  Google Scholar 

  • Takahashi, N., B. Phinney &J. MacMillan (eds.). 1990. Gibberellins. Springer-Verlag, New York.

    Google Scholar 

  • Tamponnet, C. 1986. Role du calcium dans la conservation d’une algue unicellulaire immobiliséeEuglena gracilis Z. Université de Technologie de Compiègne. Thèse de Doctorat en Sciences. Compiègne, France.

    Google Scholar 

  • Tate, J. L. &G. F. Payne. 1991. Plant cell growth under different levels of oxygen and carbon dioxide. Pl. Cell Rep.10: 22–25.

    CAS  Google Scholar 

  • Theimer, R. R., R. A. Kudielka &I. Rösch. 1986. Induction of somatic embryogenesis in anise in microgravity. Naturwissenschaften73: 442–443.

    PubMed  CAS  Google Scholar 

  • Thomas, H. &D. Grierson (eds.). 1987. Developmental mutants in higher plants. Soc. Exp. Biol. Seminar Ser. 32. Cambridge University Press, Cambridge.

    Google Scholar 

  • Thomashow, M. F. 1994.Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. Pages 807–834in E. M. Meyerowitz & C. R. Somerville (eds.), Arabidopsis. Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  • —,S. J. Gilmour, R. Jhajela, D. Horvath, C. Lin &W. Guo. 1990. Studies on cold acclimation inArabidopsis thaliana. Pages 305–314in A. B. Bennett & S. D. O’Neill (eds.), Horticultural biotechnology. Wiley-Liss, New York.

    Google Scholar 

  • Thompson, M. R. &T. J. Douglas. 1986. Mannitol metabolism in cultured plant cells. Physiol. Pl.67: 365–369.

    CAS  Google Scholar 

  • Tiburcio, A., R. Kaur-Sawhney &A. W. Galston. 1990. Polyamine metabolism. Biochem. Pl.16: 283–325.

    CAS  Google Scholar 

  • Tiner, J. D. 1963. Sterile techniques and economic biology. Developm. Industrial Microbiol.4: 181–182.

    Google Scholar 

  • Todd, P. 1989. Gravity-dependent phenomena at the scale of the single cell. Amer. Soc. Gravitational and Space Biol., ASGSB Bull.2: 95–119.

    CAS  Google Scholar 

  • —. 1991. Gravity dependent processes and intercellular motion. Amer. Soc. Gravitational and Space Biol., ASGSB Bull.4(2): 35–39.

    CAS  Google Scholar 

  • —. 1993. Gravity and the mammalian cell. Pages 347–381in J. A. Frangos (ed.), Physical forces and the mammalian cell. Academic Press, San Diego.

    Google Scholar 

  • Torrey, J. G. 1957. Cell division in isolated single plant cellsin vitro. Proc. Natl. Acad. Sci. U.S.A.43: 887–891.

    PubMed  CAS  Google Scholar 

  • —. 1966. The initiation of organized development in plants. Adv. Morphogen.5: 39–91.

    CAS  Google Scholar 

  • —. 1971. Cytodifferentiation. Pages 177–186in Colloques internationaux du centre national de la recherche scientifique. No. 193. Les cultures de tissus de plantes,. Éditions du Centre National de la Recherche Scientifique, Paris.

    Google Scholar 

  • — &E. Galun. 1970. Apolar embryos ofFucus resulting from osmotic and chemical treatment. Amer. J. Bot.57: 111–119.

    CAS  Google Scholar 

  • — &J. Reinert. 1961. Suspension cultures of higher plant cells in synthetic medium. Pl. Physiol.36: 483–491.

    CAS  Google Scholar 

  • —— &N. Merkel. 1962. Mitosis in suspension cultures of higher plant cells in synthetic media. Amer. J. Bot.49: 420–425.

    Google Scholar 

  • Town, C. D., J. A. Dominov, B. A. Karpinski &J. E. Jentoft. 1987. Relationships between extracellular pH, intracellular pH and gene expression inDictyostelium discoideum. Develop. Biol.122: 354–362.

    PubMed  CAS  Google Scholar 

  • Trip, P., G. Krotkov &C. D. Nelson. 1964. Metabolism of mannitol in higher plants. Amer. J. Bot.51: 828–835.

    CAS  Google Scholar 

  • Tsang, E. W. T., H. David, A. David &D. I. Dunstan. 1989. Toxicity of antibiotics on zygotic embryos of white spruce (Picea glauca) culturedin vitro. Pl. Cell Rep.8: 214–216.

    CAS  Google Scholar 

  • Van Lookeren Campagne, M. M., R. J. Aerts, W. Spek, R. A. Firtel &P. Schaap. 1989. Cyclic-AMP-induced elevation of intracellular pH precedes, but does not mediate, the induction of prespore differentiation inDictyostelium discoideum. Development105: 401–406.

    PubMed  Google Scholar 

  • Van’t Hof, J. 1966. Experimental control of DNA synthesizing and dividing cells in excised root tips ofPisum. Amer. J. Bot.53: 970–976.

    Google Scholar 

  • —. 1970. Metabolism and the prolonged retention of cells in the Gl and S period of the mitotic cycle of cultured pea roots. Exp. Cell Res.61: 173–182.

    Google Scholar 

  • Varjú, D., L. Edgar &M. Delbrücke. 1961. Interplay between the reactions to light and to gravity inPhycomyces. J. Gen. Physiol.45: 47–58.

    PubMed  Google Scholar 

  • Varner, J. 1987. The hydroxyproline-rich glycoproteins of plants. Pages 441–447in J. E. Fox & M. Jacobs (eds.), Molecular biology of plant growth control. Alan R. Liss, New York.

    Google Scholar 

  • Vasil, I. &T. A. Thorpe (eds.). 1994. Plant tissue culture. Kluwer, Dordrecht.

    Google Scholar 

  • Vaughn, K. C. &M. A. Vaughan. 1988. Mitotic disrupters from higher plants. Pages 273–293in H. G. Cutler (ed.), Biologically active natural products. Potential use in agriculture. ACS Symp. Ser. 380. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Vegis, A. 1964. Dormancy in higher plants. Ann. Rev. Pl. Physiol.15: 185–224.

    CAS  Google Scholar 

  • Verpoorte, R., R. Van Der Heijden, W. M. Van Gulick &H. Ten Topen. 1991. Plant biotechnology for the production of alkaloids: Present status and prospects. The Alkaloids, Chem. Pharmacol.40: 1–187.

    CAS  Google Scholar 

  • Vorhoek-Köhler, B., R. Hampp, H. Ziegler &U. Zimmermann. 1983. Electro-fusion of mesophyll protoplasts ofAvena sativa. Planta158: 199–204.

    Google Scholar 

  • Vyas, S. C. 1988. Nontarget effects of agricultural fungicides. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Wallhäusser, K. H. 1982. Germ removal filtration. Adv. Pharmaceut. Sci.5: 1–116.

    Google Scholar 

  • Wallner, S. J. &D. J. Nevins. 1974. Changes in cell walls associated with cell separation in suspension cultures of Paul’s Scarlet Rose. J. Exp. Bot.25: 1020–1029.

    CAS  Google Scholar 

  • Waterman, M. A., J. R. Aist &H. W. Israel. 1978. A new technique for manipulating host-parasite interactions by low speed centrifugation. Canad. J. Bot.56: 542–545.

    Google Scholar 

  • Webb, C., G. M. Black &B. Atkinson (eds.). 1986. Process engineering aspects of immobilised cell systems. Institution of Chemical Engineers, Rugby, U.K.

    Google Scholar 

  • Weber, N., D. C. Taylor &E. W. Underbill. 1992. Biosynthesis of storage lipids in plant cell and embryo cultures. Adv. Biochem. Eng. Biotechnol.45: 99–131.

    PubMed  CAS  Google Scholar 

  • Westcott, R. J. 1981. Tissue culture storage of potato germplasm. 2. Use of growth retardants. Potato Res.24: 343–352.

    CAS  Google Scholar 

  • Wetherell, D. F. &D. K. Dougall. 1976. Sources of nitrogen supporting growth and embryogenesis in cultured wild carrot tissue. Physiol. Pl.37: 97–103.

    CAS  Google Scholar 

  • Whitney, P. J. &B. F. Beuschel. 1988. The axenic isolation of plant protoplasts using Percoll. Pages 269–272in R. J. Robins & M. J. C. Rhodes (eds.), Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge.

    Google Scholar 

  • Williams, A. K. &R. G. Eagon. 1962. Studies on the alginaseAgarbacterium alginicum. Canad. J. Microbiol.8: 649–654.

    CAS  Google Scholar 

  • Wilson, G. B. 1965. The assay of antimitotics. Chromosoma (Berl.)16: 133–143.

    CAS  Google Scholar 

  • Wilson, P. E. G. &M. G. Hilton. 1995. Plant cell bioreactors. Pages 413–439in J. A. Asenjo & J. C. Merchuk (eds.), Bioreactor system design. Marcell Dekker, New York.

    Google Scholar 

  • Withers, L. A. 1980. Tissue culture storage for genetic conservation. IBPGR Technical Report AGP: IBPGR/80/8. Pages 1–91. Rome.

  • —. 1983. Germplasm storage in plant biotechnology. Pages 187–218in S. H. Mantell & H. Smith, Plant biotechnology. Cambridge University Press, Cambridge.

    Google Scholar 

  • —. 1985. Cryopreservation of cultured plant cells and protoplasts. Pages 243–267in K. K. Kartha (ed.), Cryopreservation of plant cells and organs. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • —. 1986. Cryopreservation and genebanks. Pages 96–140in M. M. Yeoman (ed.), Plant cell culture technology. Blackwell Scientific, Oxford.

    Google Scholar 

  • — &H. E. Street. 1977. The freeze-preservation of plant cell cultures. Pages 226–244in W. Barz, E. Reinhard & M. H. Zenk (eds.), Plant tissue culture and its bio-technological application. Springer-Verlag, Berlin.

    Google Scholar 

  • Wohlfarth-Bottermann, K. E. 1977. Oscillating contractions in protoplasmic strands ofPhysarum: Simultaneous tensiometry of longitudinal and radial rhythms, periodicity analysis and temperature dependence. J. Exp. Biol.67: 49–59.

    PubMed  CAS  Google Scholar 

  • Wyn Jones, R. G. 1984. Phytochemical aspects of osmotic adaptation. Recent Adv. Phytochem.18: 55–78.

    Google Scholar 

  • Yamada, Y. &M. Mino. 1986. Instability of chromosomes and alkaloid content in cell lines derived from single protoplasts of culturedCoptis japonica cells. Current Topics Developm. Biol.20: 409–417.

    CAS  Google Scholar 

  • Yaphe, W. 1957. The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Canad. J. Microbiol.3: 987–993.

    CAS  Google Scholar 

  • Yeoman, M. M. 1976. Cell division in higher plants. Academic Press, London.

    Google Scholar 

  • — (ed.). 1986. Plant cell and culture technology. Botanical Monographs Vol. 23. Blackwell, Berkeley.

    Google Scholar 

  • —. 1987. Techniques, characteristics, properties, and commercial potential of immobilized plant cells. Pages 197–215in F. Constabel & I. K. Vasil (eds.), Cell culture in phytochemistry. Vol. 4 of Cell culture and somatic cell genetics of plants. Academic Press, San Diego.

    Google Scholar 

  • —,M. A. Holden, P. Corchet, P. R. Holden, J. G. Goy &M. C. Hobbs. 1990. Exploitation of disorganized plant cultures for the production of secondary metabolites. Pages 139–166in B. V. Charlwood & M. J. C. Rhodes (eds.), Secondary products from plant tissue culture. Clarendon Press, Oxford.

    Google Scholar 

  • Yopp, J., L. Aung &G. Steffens (eds.). 1986. Bioassays and other special techniques for plant hormones and plant growth regulators. Plant Growth Regulator Society of America, Lake Alfred, Florida.

    Google Scholar 

  • Zhang, N. &C. T. MacKown. 1992. Nitrate use by tobacco cells in response to N-stress and ammonium nutrition. Pl. Cell Rep.11: 470–475.

    CAS  Google Scholar 

  • Ziegler, G. R. &E. A. Foegeding. 1990. The gelation of proteins. Adv. Food Nutr. Res.34: 202–298.

    Google Scholar 

  • Zimmerman, R. &P. Debergh (eds.). 1991. Micropropagation. Kluwer, Dordrecht.

    Google Scholar 

  • Zimmermann, U. 1982. Electric field-mediated fusion and related electric phenomena. Biochim. Biophys. Acta694: 272–277.

    Google Scholar 

  • —,R. Schnettler &K. Hannig. 1988. Biotechnology in space: Potentials and perspectives. Pages 639–672in H.-J. Rehm & G. Reed (eds.), Biotechnology. Vol. 6b. Special microbial processes. VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Ziv, M. 1991. Vitrification: Morphological and physiological disorders ofin vitro plants. Pages 45–69in P. C. Debergh & R. H. Zimmerman (eds.), Micropropagation, technology and application. Kluwer, Dordrecht.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krikorian, A.D. Strategies for “minimal growth maintenance” of cell cultures: A perspective on management for extended duration experimentation in the microgravity environment of a space station. Bot. Rev 62, 41–108 (1996). https://doi.org/10.1007/BF02868920

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02868920

Keywords

Navigation