Skip to main content
Log in

The rôle of light in the life of plants II. The influence of light upon growth and differentiation

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. Adams, J. The effect on tomato, soy bean, and other plants of altering the daily period of light. Am. Jour. Bot. 11: 229–232. 1924.

    Article  Google Scholar 

  2. —. Some further experiments on the relation of light to growth. Am. Jour. Bot.12: 398–412. 1925.

    Article  Google Scholar 

  3. Allard, H. A. Response of the woody plantsHibiscus syriacus, Malvaviscus conzattii andBougainvillea glabra to length of day. Jour. Agr. Res.51: 27–34. 1935.

    Google Scholar 

  4. Almoslechner, Elfriede. Die Hefe als Indikator für Wuchsstoffe. Planta22: 515–542. 1934.

    Article  Google Scholar 

  5. Anderson, D. B. The structure of the walls of the higher plants. Bot. Rev.1: 52–75. 1935.

    Article  CAS  Google Scholar 

  6. Andrews, F. M. Etiolation. Proc. Indiana Acad. Sci.35: 180–181. 1925(26).

    Google Scholar 

  7. Arnold, W. The effect of ultra violet light on photosynthesis. Jour. Gen. Physiol.17: 135–143. 1933.

    Article  CAS  Google Scholar 

  8. Arthur, J. M. Some effects of radiant energy on plants. Jour. Optical Soc. Am. & Rev. Scient. Inst.18(3): 253–263. 1929.

    Google Scholar 

  9. —. Red pigment production in apples by means of artificial light sources. Contr. Boyce Thompson Inst. Plant Res.4: 1–18. 1932.

    Google Scholar 

  10. -. Artificial light and plant growth. Agr. Eng.13: 288–291. Also Boyce Thompson Inst. Plant Res. Prof. Paper 1(22): 212–221. 1932.

  11. — andStewart, W. D. Relative growth and dry weight production of plant tissue under Mazda, neon, sodium, and mercuryvapor lamps. Contr. Boyce Thompson Inst. Plant Res.7: 119–130. 1935.

    CAS  Google Scholar 

  12. —,Guthrie, J. D. andNewell, J. M. Some effects of artificial climates on the growth and chemical composition of plants. Am. Jour. Bot.17: 416–482. 1930.

    Article  CAS  Google Scholar 

  13. — andStewart, W. D. Transpiration of tobacco plants in relation to radiant energy in the visible and infra red. Contr. Boyce Thompson Inst. Plant Res.5: 483–501. 1933.

    CAS  Google Scholar 

  14. Ashby, Eric. The interaction of factors in the growth ofLemna. III. The interrelationship of duration and intensity of light. Ann. Botany43: 333–354. 1929.

    CAS  Google Scholar 

  15. —. Studies in the inheritance of physiological characters. Ann. Botany46: 1007–1032. 1932.

    Google Scholar 

  16. — andOxley, T. A. The interaction of factors in the growth ofLemna. VI. An analysis of the influence of light intensity and temperature on the assimilation rate and the rate of frond multiplication. Ann. Botany49: 309–336. 1935.

    CAS  Google Scholar 

  17. Avery, G. S. Differential distribution of a phytohormone in the developing leaf ofNicotiana, and its relation to polarized growth. Bull. Torrey Bot. Club62: 313–330. 1935.

    Article  Google Scholar 

  18. Axentjev, B. N. Über die Rolle der Schalen von Samen und Früchten, die bei der Keimung auf Licht reagieren. Beih. Bot. Centralbl. (Abt. I)46: 119–202. 1929.

    Google Scholar 

  19. Baly, E. C. C. The kinetics of photosynthesis. Proc. Roy. Soc. London, B.117: 218–239. #804. 1935.

    CAS  Google Scholar 

  20. — andSemmens, E. S. The selective photochemical action of polarised light. Proc. Roy. Soc. London, B.97: 250–253. 1924.

    CAS  Google Scholar 

  21. Bates, C. G. andRoeser, Jacob. Light intensities required for growth of coniferous seedlings. Am. Jour. Bot.15: 185–194. 1928.

    Article  Google Scholar 

  22. Bayliss, W. M. Principles of general physiology. 882 pp. 1927.

  23. Beikirch, H. Die Abhängigkeit der Protoplasmaströmung von Licht und Temperatur und ihre Bedingtheit durch andere Faktoren. Bot. Archiv.12: 389–445. 1925.

    Google Scholar 

  24. Bell, G. D. H. Preliminary experiments on vernalisation. Jour. Agr. Sci.25: 245–257. 1935.

    Google Scholar 

  25. Benedict, H. M. Effect of ultra-violet radiation on growth and on the calcium and phosphorus contents of plants. Bot. Gaz.96: 330–341. 1934.

    Article  CAS  Google Scholar 

  26. Berkley, E. E. Studies of the effects of different lengths of day, with variations in temperature, on vegetative growth and reproduction in cotton. Ann. Mo. Bot. Gard.18: 573–601. 1931.

    Article  Google Scholar 

  27. Bertrand, Gabriel etRosenblatt, M. Sur la teneur inégale en manganèse des feuilles vertes et des feuilles étiolées. Compt. Rend. Acad. Sci.194: 1405–1408. 1932.

    CAS  Google Scholar 

  28. Bessey, E. A. Sex problems in hemp. Quart. Rev. Biol.8: 194–200. 1933.

    Article  Google Scholar 

  29. Beutner, R. Physical chemistry of living tissues and life processes. 337 pp. 1933.

  30. Bezssonoff, N. Du rôle des vitamines chez les végétaux verts. Rev. Path. Vég. et Ent. Agr.14: 142–155. 1927.

    Google Scholar 

  31. Blaauw, A. H. Die Perzeption des Lichtes. Rec. Trav. Bot. Néerl.5: 209–372. 1909.

    Google Scholar 

  32. —. Licht und Wachstum. I. Zeits. Bot.6: 641–703. 1914; II.7: 465–532. 1915; III. Medd. Landbouwhoogsch. Wageningen. 15: 89–204. 1919

    Google Scholar 

  33. Blackman, F. F. Optima and limiting factors. Ann. Botany19: 281–295. 1905.

    Google Scholar 

  34. Blackman, V. H. The compound interest law and plant growth. Ann. Botany33: 353–360. 1919.

    Google Scholar 

  35. —. Plants in relation to light and temperature. Jour. Roy. Hort. Soc.59: 1–13. 1934.

    Google Scholar 

  36. —. Plants in relation to light and temperature. Jour. Roy. Hort. Soc.59: 292–299. 1934.

    Google Scholar 

  37. Blum, H. F. Photodynamic action. Physiol. Rev.12: 23–55. 1932.

    CAS  Google Scholar 

  38. — andScott, K. G. Photodynamically induced tropisms in plant roots. Plant Physiol.8: 525–535. 1933.

    PubMed  CAS  Google Scholar 

  39. Böhmer, Karl. Die Bedeutung der Samenteile für die Lichtwirkung und die Wechselbeziehung von Licht und Sauerstoff bei der Keimung lichtempfindlicher Samen. Jahrb. Wiss. Bot.68: 549–601. 1928.

    Google Scholar 

  40. Bolas, Bernard D. The influence of light and temperature on the assimilation rate of seedling tomato plants, variety E. S. I. Ann. Rep. Exp. Sta. Nursery & Mark. Gard. Industr. Soc. Cheshunt.19(1933): 84–37. 1934.

    Google Scholar 

  41. Bolas, B. D. andSelman, I. W. The effect of light on growth and differentiation in tomato seedlings, var. E. S. I. Ann. Rep. Exp. Sta. Nursery & Mark. Gard. Industr. Soc. Cheshunt.20(1934): 86–89. 1935.

    Google Scholar 

  42. Bonnier, G. Influence de la lumière électrique continue sur la forme et la structure des plantes. Rev. Gen. Bot.7: 241–257, 289–305, 332–342,407-419. 1895.

    Google Scholar 

  43. Boresch, K. Die Komplementäre chromatische Adaptation. Arch. Protistenk.44: 1–70. 1921.

    Google Scholar 

  44. Borodina, I. N. The influence of nitrogenous and mineral nutrition on the time of heading in barley and millet under the condition of different day length. Russian; Eng. summary. Bull. Appl. Bot., Genet. & Plant Breed.27: 171–195. 1931.

    CAS  Google Scholar 

  45. Borriss, H. Ueber den Einfluss ausserer Faktoren auf Wachstum und Entwicklung der Fruchtkorper vonCoprinus lagopus. Planta22: 644–684. 1934.

    Article  Google Scholar 

  46. Bose, J. C. Comparative electro-physiology. 760 pp. 1907.

  47. -. The motor mechanism of plants. 1928.

  48. Bosian, G. Assimilations- und Transpirationsbestimmungen an Pflanzen des Zentralkaiserstuhls. Zeits. Bot.26: 209–284. 1933.

    Google Scholar 

  49. Bottelier, H. P. Uber den Einfluss ausserer Faktoren auf die Protoplasmatromung in derAvena-Koleoptile. Rec. Trav. Bot. Néerl.31: 474–582. 1934.

    Google Scholar 

  50. Boysen-Jensen, P. Die Stoffproduktion der Pflanzen. 1932.

  51. —. Über die durch einseitige Lichtwirkung hervorgerufene transversale Leitung des Wuchsstoffes in derAveno-Coleoptile. Planta19: 335–344. 1933.

    Article  CAS  Google Scholar 

  52. -. Die Wuchsstofftheorie und ihre Bedeutung für die Analyse des Wachstums und der Wachstumsbewegungen der Pflanzen. 166 pp. 1935.

  53. Brauner, L. Permeabilität und Photopismus. Zeits. Bot.16: 113–132. 1924.

    Google Scholar 

  54. —. Untersuchungen über das geoelektrische Phänomen. Jahrb. Wiss. Bot.66: 381–428. 1927.

    Google Scholar 

  55. —. Zum Problem der transversalen Wuchsstoffverschiebung bei tropistischer Reizung. Proc. Int. Bot. Cong. Amsterdam (Abst. Sec. Papers)2: 269–271. 1935.

    Google Scholar 

  56. Bristol-Roach, B. M. On the influence of light and of glucose on the growth of a soil alga. Ann. Botany42: 317–345. 1928.

    Google Scholar 

  57. Brooks, M. M. The effects of light of different wave lengths on the penetration of 2,-6, dibromophenol indophenol intoValonia. Protoplasma1: 305–312. 1926.

    Article  Google Scholar 

  58. Brotherton, W. andBartlett, H. H. Cell measurement as an aid in the analysis of variation. Am. Jour. Bot.5: 192–206. 1918.

    Article  Google Scholar 

  59. Brown, W. H. andTrelease, S. F. Alternate shrinkage and elongation of growing stems ofCestrum nocturnum. Philippine Jour. Sci. C.13: 353–360. 1918.

    Google Scholar 

  60. Bunsen, R. W. andRoscoe, H. Photochemische Untersuchungen. VI. Meteorologische Licht-Messungen. Ann. Physik. & Chemie117: 529–562. 1862.

    Google Scholar 

  61. Burge, W. E. andBurge, E. L. Effect of temperature and light on catalase content ofSpirogyra. Bot. Gaz.77: 220–224. 1924.

    Article  CAS  Google Scholar 

  62. Burkholder, P. R. andPratt, R. The photeolic movements ofMimosa pudica in relation to intensity and wave-length. Am. Jour. Bot.21: 704. 1934. (Further data in press. Am. Jour. Bot. 1936.)

    Google Scholar 

  63. -. Studies on the leaf movements ofMimosa pudica in relation to light. Am. Jour. Bot. (unpublished). 1936.

  64. Burns, G. R. Photosynthesis in various portions of the spectrum. Plant Physiol.8: 247–262. 1933.

    PubMed  CAS  Google Scholar 

  65. Buy, H. G. du undNuernbergk, E. Phototropismus und Wachstum der Pflanzen. Ergeb. Biologie9: 358–555, 1932;10: 207–322. 1934.

    Google Scholar 

  66. Cannon, W. A. Absorption of oxygen by roots when the shoot is in darkness or in light. Plant Physiol.7: 673–684. 1932.

    PubMed  CAS  Google Scholar 

  67. Castle, E. S. Dark adaptation and the light-growth response ofPhycomyces. Jour. Gen. Physiol.12: 391–400. 1929.

    Article  CAS  Google Scholar 

  68. —. The phototropic sensitivity ofPhycomyces as related to wave-length. Jour. Gen. Physiol.14: 701–711. 1931.

    Article  CAS  Google Scholar 

  69. —. Dark adaptation and the dark growth response ofPhycomyces. Jour. Gen. Physiol.16: 75–88. 1932.

    Article  CAS  Google Scholar 

  70. — andHoneyman, A. J. M. The light growth response and the growth system ofPhycomyces. Jour. Gen. Physiol.18: 385–397. 1935.

    Article  CAS  Google Scholar 

  71. Chailakhian, M. The age of plants and the photoperiodic reaction. Dokl. Akad. Nauk SSSR. (Compt. Rend. Acad. Sci. URSS). 1933, A: 306–314.

    Google Scholar 

  72. —. Jarovization of plants by the action of light. Dokl. Akad. SSSR. (Compt. Rend. Acad. Sci. URSS). 1933, A: 224–229.

    Google Scholar 

  73. -. The effect of length of the day upon the chlorophyll apparatus of plants. Dokl. Akad. Nauk. SSSR. (Compt. Rend. Acad. Sci. URSS). 1934:37-42.

  74. -and Aleksandrovskaia, V. A. On the nature of the photoperiodic after-effect (induction) and on the effect of the length of day on the activity of the oxidizing enzymes. Dokl. Akad. Nauk. SSSR. (Compt. Rend. Acad. Sci. URSS). 1935(2): 161–166.

  75. Chesley, L. C. The effect of light upon the sensitivity of wheat seedlings to X-rays. Jour. Cell. & Comp. Physiol.6: 69–84. 1935.

    Article  CAS  Google Scholar 

  76. Chodat, F. Influence de la lumière sur la transpiration végétale. Compt. Rend. Soc. Phys. & Hist. Nat. Genève.48: 55–58. 1931.

    Google Scholar 

  77. Ckouchak, D. L’assimilation chlorophylliene de l’acide carbonique par les feuilles vertes dans un champ électrique. Rev. Gén. Bot.41: 465–468. 1929.

    Google Scholar 

  78. Chroboczek, E. Premature seed and stalk formation in table beets. Proc. Am. Soc. Hort. Sci.28: 323–327. 1931.

    Google Scholar 

  79. -. A study of some ecological factors influencing seedstalk development in beets (Beta vulgaris L.). Cornell Agr, Exp. Sta. Mem. 154. 84 pp. 1934.

  80. Clark, R. H., Fowler, F. L. andBlack, P. T. The activation of amylase. Tr. Roy. Soc. Canada, III,25 (3): 99–105. 1931.

    CAS  Google Scholar 

  81. Clements, F. E. andLong, F. L. Factors in elongation and expansion under reduced light intensity. Plant Physiol.9: 767–781. 1934.

    PubMed  CAS  Google Scholar 

  82. Colla, Silvia. Action of ultra-violet rays on etiolated plants. Boll. Soc. Ital. Biol. Sperim.2: 724–726. 1927.

    Google Scholar 

  83. —. Sulla fioritura alla sola luce di Wood. Nuovo Gior. Bot. Ital.38: 509–514. 1931.

    Google Scholar 

  84. Correns, C. Bestimmung, Vererbung und Verteilung des Geschlechtes bei den höheren Pflanzen. Hand. Vererbungswiss. hrsg. von. E. Baur u. M. Hartmann, Berlin, Borntraeger. 1928.

  85. Coupin, H. Sur les plantules qui verdissent à l’obscurité. Compt. Rend. Acad. Sci.170: 1071–1072. 1920.

    Google Scholar 

  86. —. Sur les causes de l’élongation de la tige des plantes étiolées. Compt. Rend. Acad. Sci.170: 189–191. 1920.

    Google Scholar 

  87. Coward, K. H. The influence of light and heat on the formation of vitaminA in plant tissues. Jour. Biol. Chem.72: 781–799. 1927.

    CAS  Google Scholar 

  88. Crozier, W. J. andCole, W. H. The phototropic excitation ofLimax. Jour. Gen. Physiol.12: 669–674. 1929.

    Article  CAS  Google Scholar 

  89. Curtis, O. F. The translocation of solutes in plants. 273 pp. 1935.

  90. Czaja, A. T. Photo-periodizität. Tabulae Biol. Period.3: 1–49. 1933.

    Google Scholar 

  91. Daniel, L. Production expérimentale de bulbilles chez le poireau. Compt. Rend. Acad. Sci.195: 567–569. 1932.

    Google Scholar 

  92. Darrow G. M. Tomatoes, berries and other crops under continuous light in Alaska. Science78: 370. 1933.

    Article  PubMed  CAS  Google Scholar 

  93. Darwin, C. and Darwin, F. The power of movement in plants. 1881.

  94. Davies, P. A. Distribution of total nitrogen in regeneration of the willow. Bot. Gaz.91: 320–326. 1931.

    Article  CAS  Google Scholar 

  95. Davis, A. R. andHoagland, D. R. Further experiments on the growth of plants in a controlled environment. I. The relation of light intensity and exposure time to yield. II. The interrelationship of temperature and light. Am. Jour. Bot.15: 624. 1928.

    Google Scholar 

  96. Deats, M. E. The effect on plants of the increase and decrease of the period of illumination over that of the normal day period. Am. Jour. Bot.12: 384–392. 1925.

    Article  Google Scholar 

  97. Demkovskii, P. I. Data on the study of certain biochemical phenomena connected with iarovization. Biull. Iaroviz.2/3: 105–108. 1932.

    Google Scholar 

  98. Denny, F. E. Chemical changes induced in potato tubers by treatments that break the rest period. Am. Jour. Bot.16: 326–337. 1929.

    Article  CAS  Google Scholar 

  99. —,Miller, L. P. andGuthrie, J. D. Enzyme activities of juices from potatoes treated with chemicals that break the rest period. Am. Jour. Bot.17: 483–509. 1930.

    Article  CAS  Google Scholar 

  100. Dhéré, C. etRogowski, W. de. Sur l’absorption des rayons ultra violets par les chlorophylles α et β et par la chlorophylle cristallisee. Compt. Rend. Acad. Sci.155: 653–656. 1912.

    Google Scholar 

  101. Dillewijn, C. van. On the light-growth-reactions in different zones of the coleoptile ofAvena sativa. Proc. Kon. Akad. Wetensch. Amsterdam30: 2–9. 1927.

    Google Scholar 

  102. Dixon, H. H. Control of differentiation. Proc. Int. Bot. Cong. Amsterdam. (Abst. Sec. Papers)2: 116. 1935.

    Google Scholar 

  103. Dolgushin, D. A. On the problem of the photoperiodic after effect. Biull. Iaroviz.1: 30–35. 1932.

    Google Scholar 

  104. Doroshenko, A. V. Photoperiodism of some cultivated plants with reference to their origin. Bull. Appl. Bot., Genet. & Plant Breed.17: 167–220. 1927.

    Google Scholar 

  105. —andRasumov, V. I. Photoperiodism of some cultivated forms in connection with their geographical origin. Bull. Appl. Bot., Genet. & Plant Breed.22: 219–276. 1929.

    Google Scholar 

  106. —,Karpechenko, E. D. andNesterov, E. I. Influence of the length of day on the tuber set in potatoes and several other plants. Bull. Appl. Bot., Genet. & Plant Breed.23: 31–60. 1930.

    Google Scholar 

  107. Droogleever, F. C. E. Day arid night period in nuclear divisions. Proc. Kon. Akad. Wet. Amsterdam29: 979–988. 1926.

    Google Scholar 

  108. Dubosc, A. La chlorophyll et la lumiere. Moniteur Sci.16: 49–58. 1926.

    CAS  Google Scholar 

  109. Eaton, F. M. Assimilation-respiration balance as related to length of day reactions of soy beans. Bot. Gaz.77: 311–321. 1924.

    Article  CAS  Google Scholar 

  110. Eaton, S. V. Effects of variation in day-length and clipping of plants on nodule development and growth of soy bean. Bot. Gaz.91: 113–143. 1931.

    Article  Google Scholar 

  111. Eckerson, S. Protein synthesis by plants. Bot. Gaz.77: 377–390. 1924.

    Article  CAS  Google Scholar 

  112. Eghis, S. A. Contribution to the question on photoperiodism with soy beans and corn. Mem. Inst. Agron. Leningrad5: 5–32. 1928.

    Google Scholar 

  113. Eidelman, Z. M. Influence of various amounts of phosphorus and length of day on the physiological functions of the plant. Jour. Landwirtsch. Wiss. Moskva7: 387–402. 1930.

    CAS  Google Scholar 

  114. —. Combined action of different doses of phosphorus and of periodicity of lighting on the development of barley. Bull. Inst. Sci. Lesshaft 17/18: 411–428. 1934.

    Google Scholar 

  115. Einstein, A. Thermodynamische Begründung des photochemischen Aquivalentgesetzes. Ann. Physik IV.37: 832–838. 1912.

    Article  CAS  Google Scholar 

  116. Eisenmenger, W. S. The distribution of nitrogen in tobacco when the supplies of nitrogen and of light are varied during the growing period. Jour. Agr. Res.46: 255–265. 1933.

    CAS  Google Scholar 

  117. Emerson, R. A. Control of flowering in Teosinte. Jour. Heredity15: 41–48. 1924.

    Google Scholar 

  118. Emerson, Robert. The chlorophyll factor in photosynthesis. Am. Nat.64: 252–260. 1930.

    Article  CAS  Google Scholar 

  119. — andArnold, W. A. A separation of the reactions in photosynthesis by means of intermittent light. Jour. Gen. Physiol.15: 391–420. 1932.

    Article  CAS  Google Scholar 

  120. Euler, H. von undHellstrom, H. Über die Bildung von Xanthophyll, Carotin und Chlorophyll in belichteten und unbelichteten Gerstenkeimlingen. Zeits. Phys. Chem.183: 177–183. 1929.

    CAS  Google Scholar 

  121. Euler, H. von, Bergman, B. undHellstrom, H. Ueber das Verhältnis von chloroplastenzahl und Chlorophyllkonzentration beiElodea densa. Ber. Deut. Bot. Ges.52: 458–462. 1934.

    Google Scholar 

  122. Evans, M. W. Relation of latitude to time of blooming of timothy. Ecology12: 182–187. 1931.

    Article  Google Scholar 

  123. Eyster, W. H. Protochlorophyll. Science68: 569–570. 1928.

    Article  PubMed  CAS  Google Scholar 

  124. Fechner, G. T. Elemente der Psychophysik. I, 336 pp. II, 571 pp. 1860.

  125. Figdor, W. Über den Einfluss des Lichtes auf die Gestaltung derBowiea volubilis sowie über die Vermehrung und den Bau ihrer Zwiebel. Sitzungsb. Akad. Wiss. Wien, Math.-Nat. Kl. Abt. 1.137: 45–54. 1928.

    Google Scholar 

  126. Fisher, H. Zur Frage der Kohlensäure-Ernährung der Pflanzen. Gartenflora65: 232–237. 1916.

    Google Scholar 

  127. Fitting, Hans. Untersuchungen über Chemodinese beiVallisneria. Jahrb. Wiss. Bot.67: 427–596. 1927.

    CAS  Google Scholar 

  128. Fleischer, W. E. The relation between chlorophyll content and rate of photosynthesis. Jour. Gen. Physiol.18: 573–597. 1935.

    Article  CAS  Google Scholar 

  129. Fletcher, L. A. A preliminary study of the factors affecting the red color on apples. Proc. Am. Soc. Hort. Sci.26: 191–196. 1929.

    Google Scholar 

  130. Flint, L. H. Light in relation to dormancy and germination in lettuce seed. Science80: 38–40. 1934.

    Article  PubMed  CAS  Google Scholar 

  131. — andMcAlister, E. D. Wave lengths of radiation in the visible spectrum inhibiting the germination of light-sensitive lettuce seed. Smithson. Misc. Coll.94: 1–11. 1935.

    Google Scholar 

  132. Foerster, K. Die Wirkung ausserer Faktoren auf die Entwickelung und Gestaltbildung beiMarchantia polymorpha. Planta3: 325–390. 1927.

    Article  Google Scholar 

  133. Fowle, F. E. Smithsonian Physical Tables. Smithson. Misc. Coll.71(2): 1–458. Publ. No. 2539. 1927.

    Google Scholar 

  134. Fraps, G. S. andSterges, A. J. Effect of sunlight on the nitrification of ammonium salts in soils. Soil Sci.39: 85–94. 1935.

    Article  CAS  Google Scholar 

  135. Freund, Hans. Ueber die Bedingungen des Wachstums vonOedogonium pluviale. Ein Beitrag zur Frage des Stickstoff— und Phosphoretiolements. Planta5: 520–548. 1928.

    Article  CAS  Google Scholar 

  136. Freytag, H. Zur Kenntnis der UV-Strahlenwirkung auf Blätter und Fruchtschalen. Beih. Bot. Centralbl.51: 408–436. 1933.

    CAS  Google Scholar 

  137. Fuller, H. J. The injurious effects of ultra-violet and infra-red radiation on plants. Ann. Mo. Bot. Gard.19: 79–84. 1932.

    Article  Google Scholar 

  138. Funke, G. L. On the influence of light of different wave-lengths on the growth of plants. Rec. Trav. Bot. Néerl.28: 431–485. 1931.

    Google Scholar 

  139. Gabrielsen, E. K. Untersuchungen über den Kohlenstoffhaushalt einer Gewächshauspflanze im Winter bei Tageslicht und mit elektrischer Zusatzbeleuchtung. Planta22: 180–189. 1934.

    Article  Google Scholar 

  140. —. Die Kohlensäureassimilation der Laubblätter in verschiedenen Spektralgebieten. Planta23: 474–478. 1935.

    Article  Google Scholar 

  141. Gaidukov, N. Zur Farbenanalyse der Algen. Ber. Deut. Bot. Ges.22: 23–29. 1904.

    Google Scholar 

  142. Gardner, W. A. Effect of light on germination of light-sensitive seeds. Bot. Gaz.71: 249–288. 1921.

    Article  CAS  Google Scholar 

  143. Gardner, V. R. Studies in the nutrition of the strawberry. Univ. Mo. Agr. Exp. Sta. Bull. 57. 1923.

  144. Garner, W. W. Comparative responses of long-day and short-day plants to relative length of day and night. Plant Physiol.8: 347–356. 1933.

    PubMed  CAS  Google Scholar 

  145. — andAllard, H. A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Jour. Agr. Res.18: 553–606. 1920.

    Google Scholar 

  146. ——. Further studies in photoperiodism, the response of the plant to relative length of day and night. Jour. Agr. Res.23: 871–920. 1923.

    Google Scholar 

  147. ——. Localization of the response in plants to relative length of day and night. Jour. Agr. Res.31: 555–567. 1925.

    Google Scholar 

  148. ——. Effect of short alternating periods of light and darkness on plant growth. Science66: 40–42. 1927.

    Article  PubMed  CAS  Google Scholar 

  149. ——. Effect of abnormally long and short alternations of light and darkness on growth and development of plants. Jour. Agr. Res.42: 629–651. 1931.

    Google Scholar 

  150. Garner, W. W., Bacon, C. W. andAllard, H. A. Photoperiodism in relation to hydrogen-ion concentration of the cell sap and the carbohydrate content of the plant. Jour. Agr. Res.27: 119–156. 1924.

    CAS  Google Scholar 

  151. Gassner, G. Beiträge zur physiologischen Characteristik sommer- und winterannueller Gewächse, insbesondere der Getreidepflanzen. Zeits. Bot.10: 417–480. 1918.

    Google Scholar 

  152. — undGoeze, G. Assimilationsverhalten, Chlorophyllgehalt und Transpirationsgrösse von Getreideblättern mit besonderer Berucksichtigung der Kalium- und Stickstoffernährung. Zeits. Bot.27: 257–340. 1934.

    CAS  Google Scholar 

  153. Gates, F. L. The absorption of ultra-violet radiation by crystalline pepsin. Jour. Gen. Physiol.18: 265–278. 1934.

    Article  CAS  Google Scholar 

  154. Gautheret, R. J. Sur la production de chlorophylle dans les racines exposées à la lumière, en particulier dans la racine d’orge. Compt. Rend. Acad. Sci.194: 1510–1513. 1932.

    CAS  Google Scholar 

  155. Geiger, Max. Studien zum Gaswechsel einer extremen Schattenpflanze (Aspidistra) und zur Methodik der Gaswechselversuche. Jahrb. Wiss. Bot.67: 635–701. 1927.

    Google Scholar 

  156. Gessner, F. Wachstum und Wanddehnbarkeit amHelianthus hypokotyl. Jahrb. Wiss. Bot.80: 143–168. 1934.

    Google Scholar 

  157. Gilbert, B. E. Interrelation of relative day length and temperature. Bot. Gaz.81: 1–24. 1926.

    Article  CAS  Google Scholar 

  158. —. The response of certain photoperiodic plants to differing temperature and humidity conditions. Ann. Botany40: 315–320. 1926.

    Google Scholar 

  159. Gile, P. L. Absorption of nitrates by corn in the dark. Science81: 520–521. 1935.

    Article  PubMed  CAS  Google Scholar 

  160. Giroud, A., Rakoto Ratsimamanga, A. andLeblond, C. P. Relations entre l’acide ascorbique et la chlorophylle. Bull. Soc. Chem. Biol.17: 232–251. 1935.

    CAS  Google Scholar 

  161. Gistl, R. Beziehung zwischen Licht undSchistostega-Vorkeim. Ber. Deut. Bot. Ges.44: 483–492. 1926.

    Google Scholar 

  162. Glass, H. B. Effect of light on the bioelectric potentials of isolatedElodea leaves. Plant Physiol.8: 263–274. 1933.

    PubMed  CAS  Google Scholar 

  163. Goebel, K. Morphologische und biologische Bemerkungen.32. Induzierte Dorsiventralität bei Flechten. Flora121: 177–188. 1927.

    Google Scholar 

  164. —. Ueber die Einwirkung des Lichtes auf die Flächentwicklung der Farnprothallien. Rec. Trav. Bot. Néerl.25A: 122–128. 1928.

    Google Scholar 

  165. Goldschmidt, R. Analysis of intersexuality in the gipsy-moth. Quart. Rev. Biol.6: 125–142. 1931.

    Article  Google Scholar 

  166. Goode, G. P. The formation of vitamin A in corn sprouts by light, and the transfer of the vitamin from the sprout to the grain. Bull. Basic Sci. Res., Univ. Cincinnati4: 55–58. 1932.

    CAS  Google Scholar 

  167. Goodspeed, T. H. Notes on the germination of tobacco seed. Univ. Cal. Pub. Bot.5: 451–455. 1919.

    Google Scholar 

  168. Gortner, R. A. Outlines of biochemistry. 793 pp. 1929.

  169. Gracanin, M. The effect of light on the resorption of salts by plants. (Rep. Czech. Bot. Soc.) Preslia11: 35–39. 1932.

    Google Scholar 

  170. Gray, G. F. Relation of light intensity to fruit setting in the sour cherry. Mich. Agr. Exp. Sta. Tech. Bull. 136. 1934.

  171. Greene, L., Withrow, R. B. and Richman, M. W. The response of greenhouse crops to electric light supplementing daylight. Purdue Univ. Agr. Exp. Sta. Bull. 366. 1932.

  172. Griffin, Agatha. Some notes on anthocyanin formation in leaves with cut veins. Butler Univ. Bot. Studies3: 139–140. 1935.

    CAS  Google Scholar 

  173. Grotthus, T. von. Uber die chemische Wirksamkeit des Lichtes und der Elektrizität. Jahresverhandl. Kurland. Ges. Literatur u. Kunst.1: 119–189. 1819. Reprinted in Ostwald’s “Klassiker der exakten Wissenschaften.” no. 152.

    Google Scholar 

  174. Guerrini, Guido. Influence delle luci monochromatiche sull’azione delSaccharomyces cerevisiae in presenza di’glucosio. Boll. Soc. Ital. Biol. Sperim.5: 635–636. 1930.

    CAS  Google Scholar 

  175. Gunderson, M. F. andSkinner, C. E. Production of vitamins by a pure culture ofChlorococcum grown in darkness on a synthetic medium. Plant Physiol.9: 807–815. 1934.

    PubMed  CAS  Google Scholar 

  176. Guthrie, John D. Effect of environmental conditions on the chloroplast pigments. Am. Jour. Bot.16: 716–746. 1929.

    Article  CAS  Google Scholar 

  177. Haberlandt, G. Ueber die Sonnen- und Schattenblätter der Crataegomespili und ihrer Eltern. Sitzungsber. Preuss. Akad. Wiss. 1934: 365–376.

  178. Hackbarth, J. Versuche über Photoperiodismus bei südamerikanischen Kartoffelklonen. Der Züchter7: 95–104. 1935.

    Google Scholar 

  179. Haig, C. The spectral sensibility ofAvena. Proc. Nat. Acad. Sci.20: 476–479. 1934.

    Article  PubMed  CAS  Google Scholar 

  180. Hall, Muriel P. An analysis of the factors controlling the growth form of certain fungi, with especial reference toSclerotinia fructigena. Ann. Botany47: 543–578. 1933.

    CAS  Google Scholar 

  181. Hamada, Hideo. Uber die Beeinflussung des Wachstums des Mesokotyls und der Koleoptile vonAvena-Keimlingen durch das Licht. Mem. Coll. Sci. Kyoto Imp. Univ. Sci. B.6: 161–238. 1931.

    Google Scholar 

  182. Hammett, F. S. The natural chemical equilibrium regulative of growth by increase in cell number. Protoplasma11: 382–411. 1930.

    Article  CAS  Google Scholar 

  183. Hanna, W. F. The nature of the growth rate in plants. Sci. Agr.5: 133–138. 1925.

    Google Scholar 

  184. Harder, R. Uber die Bedeutung von Lichtintensität und Wellenlänge fur die Assimilation farbiger Algen. Zeits. Bot.15: 305–355. 1923.

    Google Scholar 

  185. Harned, H. S. Radiation and chemical reaction. Jour. Frank. Inst.196: 181–202. 1923.

    Article  CAS  Google Scholar 

  186. Harper, R. A. Organization and light relations inPolysphondylium. Bull. Torrey Bot. Club59: 49–84. 1932.

    Article  Google Scholar 

  187. Harrington, J. B. Growing wheat and barley hybrids in winter by means of artificial light. Sci. Agr.7: 125–130. 1926.

    Google Scholar 

  188. Harvey, R. B. Growth of plants in artificial light. Bot. Gaz.74: 447–451. 1922.

    Article  CAS  Google Scholar 

  189. Harvey, E. M. and Murneek, A. E. The relation of carbohydrates and nitrogen to the behavior of apple spurs. Oregon Agr. Exp. Sta. Bull. 176. 1921.

  190. Haut, I. C. The photoperiodic response of the sweet pea. Proc. Am. Soc. Hort. Sci.27(1930): 314–318. 1931.

    CAS  Google Scholar 

  191. Hecht, S. Intensity and the process of photoreception. Jour. Gen. Physiol.2: 337–347. 1919–20.

    Article  Google Scholar 

  192. -. The nature of the photoreceptor process, pp. 704–828 in Murchison’s “Handbook of Experimental Psychology.” 1125 pp. 1934.

  193. Heller, V. G. Vitamin synthesis in plants as affected by light source. Jour. Biol. Chem.76: 499–511. 1928.

    CAS  Google Scholar 

  194. Hendricks, E. andHarvey, R. B. Growth of plants in artificial light. Bot. Gaz.77: 330–334. 1924.

    Article  Google Scholar 

  195. Hercik, F. The photocapillary reaction of plant sap. Biochem. Jour.21: 1253–1258. 1927.

    CAS  Google Scholar 

  196. —. Die photoelektrischen Grundlagen der photokapillaren Reaktion. Protoplasma5: 400–411. 1928.

    Article  Google Scholar 

  197. Hertel, E. Ueber physiologische Wirkung von Strahlen verschiedener Wellenlänge. Zeits. Allg. Physiol.5: 95–122. 1905.

    Google Scholar 

  198. Hibbard, R. P. and Grigsby, B. H. Relation of light, potassium, and calcium deficiencies to photosynthesis, protein synthesis, and translocation. Mich. Agr. Exp. Stat. Tech. Bull. 141. 1934.

  199. Hicks, Phyllis A. Chemistry of growth as represented by carbon/nitrogen ratio. Bot. Gaz.86: 193–209. 1928.

    Article  CAS  Google Scholar 

  200. —. The carbon/nitrogen ratio in the wheat plant. New Phyt.27: 1–46. 1928.

    Article  CAS  Google Scholar 

  201. —. Interaction of factors in the growth of Lemna. V. Some preliminary observations upon the interaction of temperature and light on the growth of Lemna. Ann. Botany48: 515–525. 1934.

    Google Scholar 

  202. Hoagland, D. R. andDavis, A. R. Further experiments on the absorption of ions by plants, including observations on the effect of light. Jour. Gen. Physiol.6: 47–62. 1923.

    Article  CAS  Google Scholar 

  203. —, — andHibbard, P. L. The influence of light, temperature, and other conditions on the ability ofNitella cells to concentrate halogens in the cell sap. Jour. Gen. Physiol.10: 121–146. 1926.

    Article  CAS  Google Scholar 

  204. Hoffman, Curt. Uber die Durchlassigkeit kernloser Zellen. Planta4: 584–605. 1927.

    Article  Google Scholar 

  205. Holman, R. On solarization of leaves. Univ. Cal. Pub. Bot.16: 139–151. 1930.

    CAS  Google Scholar 

  206. Hommer, Maria. Uber das Etiolement bei Farnpflanzen und die Ursachen des Etiolements im Allgemeinen. Bot. Archiv.14: 1–46. 1926.

    Google Scholar 

  207. Honert, T. H. van den. Carbon dioxide assimilation and limiting factors. Rec. Trav. Bot. Néerl.27: 149–286. 1930.

    Google Scholar 

  208. Honing, J. A. The heredity of the need of light for germination in tobacco seeds. Proc. Kon. Akad. Wet. Amsterdam.29: 823–833. 1926.

    Google Scholar 

  209. Hooker, H. D. The physiological significance of carbohydrate accumulation. Proc. Int. Congr. Plant Sci. Ithaca, 1926,2: 1071–1080. 1929.

    Google Scholar 

  210. -and Bradford, F. C. Localization of the factors determining fruit bud formation. Mo. Agr. Exp. Sta. Res. Bull. 47. 1921.

  211. Hopkins, E. W. The effect of long and short day and shading on nodule development and composition of the soy-bean. Soil Sci.39: 297–320. 1935.

    Article  CAS  Google Scholar 

  212. Hubert, B. On the photodecomposition of chlorophyll. Proc. Kon. Akad. Wet. Amsterdam37: 684–688. 1934.

    CAS  Google Scholar 

  213. Hurd-Karrer, Annie May. The formative effect of day length on wheat seedlings. Jour. Maryland Acad. Sci.1: 115–126. 1930.

    Google Scholar 

  214. —. Titration curves of etiolated and of green wheat seedlings reproduced with buffer mixtures. Plant Physiol.5: 307–328. 1930.

    PubMed  CAS  Google Scholar 

  215. —. Comparative responses of a spring and a winter wheat to day length and temperature. Jour. Agr. Res.46: 867–888. 1933.

    Google Scholar 

  216. — andDickson, A. D. Carbohydrate and nitrogen relations in wheat plants with reference to type of growth under different environmental conditions. Plant Physiol.9: 533–565. 1934.

    PubMed  CAS  Google Scholar 

  217. Hutchings, S. S. Light in relation to the seed germination ofMimulus ringens L. Am. Jour. Bot.19: 632–643. 1932.

    Article  Google Scholar 

  218. Hutchinson, A. H. andAshton, Miriam R. The effect of radiant energy on diastase activity. Canad. Jour. Res.9: 49–64. 1933.

    CAS  Google Scholar 

  219. Huxley, J. S. Problems of relative growth. 276 pp. 1932.

  220. Ivanov, L. A. undOrlova, I. M. K. Zur Frage über die Winterassimilation von Kohlensäure unserer Nadelhölzer. Zhurn. Russk. Bot. Obshch.16: 139–157. 1931.

    Google Scholar 

  221. Jaccard, P. andJaag, O. Photosynthese und Photoperiodizität in kohlensaurereicher Luft. Beih. Bot. Centralbl.50: 150–195. 1932.

    CAS  Google Scholar 

  222. James, W. O. The dynamics of photosynthesis. New Phyt.33: 8–40. 1934.

    Article  CAS  Google Scholar 

  223. Jansen, B. C. P. Identity of Vitamine B2 and flavine and the nomenclature of vitamins. Nature135: 267. 1935.

    Article  Google Scholar 

  224. Jeffs, Royal E. The elongation of root hairs as affected by light and temperature. Am. Jour. Bot.12: 577–606. 1925.

    Article  Google Scholar 

  225. Jirovec, O. undVácha, K. Photodynamische Erscheinungen an grünen und farblosen Stämmen vonEuglena gracilis. Protoplasma22: 203–208. 1934.

    Article  Google Scholar 

  226. Johansson, N. Einige Versuche über die Einwirkung verschiedener Belichtung auf die vegetative Entwicklung vonRaphanus sativus L. Flora121: 222–235. 1927.

    Google Scholar 

  227. Johnston, E. S. The functions of radiation in the physiology of plants. Smithsonian Misc. Coll.87(14): 1–15. 1932.

    Google Scholar 

  228. —. Phototropic sensitivity in relation to wave length. Smithsonian Misc. Coll.92(11): 1–17. 1934.

    Google Scholar 

  229. Jones, W. N. Selective action of polarized light upon starch grains. Nature117: 15–16. 1926.

    Article  Google Scholar 

  230. Kahane, O. Ein Beitrag zur Analyse der Lichtwirkung auf die Polarität der Erbsenkeimlinge (Pisum sativum). Pub. Biol. Ecole Veterinaires Brno.6: 325–346. 1927.

    Google Scholar 

  231. Karling, J. S. Dendrograph studies onAchras Zapota in relation to the optimum conditions for tapping. Am. Jour. Bot.21: 161–193. 1934.

    Article  Google Scholar 

  232. Karrer, P. andHelfenstein, A. Plant pigments. Ann Rev. Biochem. Stanford Univ. Press1: 551–580. 1932;2: 397–418. 1933.

    CAS  Google Scholar 

  233. Keilin, D. Cytochrome and respiratory enzymes. Proc. Roy. Soc. B.104: 206–252. 1929.

    CAS  Google Scholar 

  234. Kellerman, K. F. A review of the discovery of photoperiodism: The influence of the length of daily light periods upon the growth of plants. Quart. Rev. Biol.1: 87–94. 1926.

    Article  Google Scholar 

  235. Kimball, H. H. Intensity of solar radiation at the surface of the earth and its variations with latitude, altitude, season and time of the day. Monthly Weather Rev.63: 1–4. 1935.

    Article  Google Scholar 

  236. Kind, W. Elektrisches Licht und Pflanzenwachstum. Die Umschau39: 52–53, 55. 1935.

    Google Scholar 

  237. Kinzel, W. Neue Tabellen zu Frost und Licht als beeinflussende Kräfte bei der Samenkeimung. 80 pp. 1926.

  238. Kishi, Y. andYokota, Y. Studies in the change of chemical constituents of mulberry leaves in the intercepted sunlight. Eng. Summary. Bull. Sci. Fak. Terkult Kyusu Imp. Univ.6: 103–104. 1935.

    Google Scholar 

  239. Kistiakowsky, G. B. Photochemical processes. Chem. Catalog Co. New York, 270 pp. 1928.

    Google Scholar 

  240. Klebs, G. Alterations in the delevopment and forms of plants as a result of environment. Proc. Roy. Soc. London. B.82: 547–558. 1910.

    Google Scholar 

  241. —. Uber die Blütenbildung vonSempervivum. Flora111–112: 128–151. 1918.

    Google Scholar 

  242. Klugh, A. B. The effect of light of different wave lengths on the rate of reproduction ofVolvox aureus andClosterium acerosum. New Phyt.24: 186–190. 1925.

    Article  CAS  Google Scholar 

  243. Knott, J. E. Further localization of the response in plant tissue to relative length of day and night. Proc. Am. Soc. Hort. Sci.23 (1926): 67–70. 1927.

    Google Scholar 

  244. —. Rapidity of response of spinach to change in photoperiod. Plant Physiol.7: 125–130. 1932.

    PubMed  CAS  Google Scholar 

  245. —. Effect of a localized photoperiod on spinach. Proc. Am. Soc. Hort. Sci.31(suppl): 152–154. 1934.

    Google Scholar 

  246. Koch, Kurt. Untersuchungen über den Quer- und Längstransport des Wuchsstoffs in Pflanzenorganen. Planta22: 190–220. 1934.

    Article  CAS  Google Scholar 

  247. Kögl, F. Uber Wuchstoffe der Auxin- und der Bios-Gruppe. Ber. Deut. Chem. Ges.68: 16–28. 1935.

    Article  Google Scholar 

  248. Kokin, Abram. Der Einfluss des verkürzten Tages und der mechanischen Verringerung der Blätterzahl auf die Aufspeicherung von Zucker in den Wurzeln der Zuckerrübe. I. Arb. Ukrainisch. Inst. Angew. Bot.1: 122–140. 1930.

    Google Scholar 

  249. Kommerell, Elisabeth. Quantitative Versuche über den Einfluss des Lichtes verschiedener Wellenlängen auf die Keimung von Samen. Jahrb. Wiss. Bot.66: 461–512. 1927.

    Google Scholar 

  250. Kondo, M., Okamura, T., Isshiki, S. andKasahara, Y. Untersuchungen über “Photoperiodismus” der Reispflanzen. Ber. Ohara Inst. Landw. Forsch.6: 307–330. 1934.

    Google Scholar 

  251. Kosaka, H. Ueber den Einfluss des Lichtes, der Temperatur und des Wassermangels auf die Färbung der Chrysanthemum-Blüten. Bot. Mag. Tokyo46: 551–560. 1932.

    Google Scholar 

  252. Kramer, P. J. Some reactions of tree seedlings to variations in length of day. Abstracts of papers presented before 11th annual meeting of Am. Soc. Plant Physiol. Dec. 27–29, 1934. Pittsburgh, Pa. p. 7. 1934.

  253. Kraus, E. J. The modification of vegetative and reproductive functions under some varying conditions of metabolism. Am. Jour. Bot.7: 409–416. 1920.

    Article  Google Scholar 

  254. -and Kraybill, H. R. Vegetation and reproduction with special reference to the tomato. Oregon Agr. Exp. Sta. Bull. 149. 1918.

  255. Kraus, G. Ueber die Ursachen der Formänderungen etiolierenden Pflanzen. Jahrb. Wiss. Bot.7: 209–260. 1869–1870.

    Google Scholar 

  256. Kraybill, H. R. Effect of shading and ringing upon the chemical composition of apple and peach trees. N. H. Agr. Exp. Sta. Tech. Bull. 23. 1923.

  257. Kuhn, R. Plant pigments. Ann. Rev. Biochem.4: 479–496. 1935.

    Article  CAS  Google Scholar 

  258. —,Wagner-Jauregg, T. andKaltschmitt, H. Uber die Verbreitung der Flavine im Pflanzenreich. Ber. Deut. Chem. Ges.67: 1452–1457. 1934.

    Article  Google Scholar 

  259. Kuilman, L. W. Physiologische Untersuchungen über die Anthocyane. Rec. Trav. Bot. Néerl.27: 287–416. 1930.

    Google Scholar 

  260. Küster, E. Pathologische Pflanzenanatomie. 3 Aufl. 558 pp. 1925.

  261. Kustner, Heinz. Hormonwirkung bei den Pflanzen und Hormonsteigerung durch rotes Licht. Klin. Woch.10: 1585. 1931.

    Article  Google Scholar 

  262. Laibach, F. Ueber die Auslösung von Kallus und Wurzelbildung durch Indolylessigsaure. Ber. Deut. Bot. Ges.53: 359–364. 1935.

    CAS  Google Scholar 

  263. Laibach, F., Mai, G. undMuller, A. Über ein Zellteilungshormon. Naturwiss.17/18: 288. 1934.

    Article  Google Scholar 

  264. Lange, S. Über den Einfluss weissen und roten Lichtes auf die Entwicklung des Mesokotyls bei Haferkeimlingen. Jahrb. Wiss. Bot.71: 1–25. 1929.

    Google Scholar 

  265. Laurens, Henry. The physiological effects of radiant energy. 616 pp. 1933.

  266. Laurie, Alex. Photoperiodism—Practical application to greenhouse culture. Proc. Am. Soc. Hort. Sci.27: 319–322. 1930.

    Google Scholar 

  267. -and Chadwick, L. C. Commercial flower forcing, etc. 519 pp. 1934.

  268. — andPoesch, G. H. Photoperiodism. The value of supplementary illumination and reduction of light on flowering plants in the greenhouse. Ohio Agr. Exp. Sta. Bull.512: 142. 1932.

    Google Scholar 

  269. Lazarev, P. P. undFormazova, L. N. Ueber den Einfluss der Beleuchtung auf einige Prozesse in Pflanzen. Dokl. Akad. Nauk. SSSR (Compt. Rend Acad. Sci. URSS)1935 (2): 414–418 (also 419–421). 1935.

    Google Scholar 

  270. Lebedeff, A. F. Vergleichende Untersuchungen über einige physiologische Prozesse bei albinotischem und grünem Mais. Verhandl. V. Int. Kon. Vererbungs-Wiss. Berlin.2(1927): 955–972. 1928.

    Google Scholar 

  271. Lederer, E. Les carotenoids des plantes. 82 pp. 1934.

  272. Lepeschkin, W. W. Light and the permeability of protoplasm. Am. Jour. Bot.17: 953–970. 1930.

    Article  Google Scholar 

  273. —. Influence of visible and ultra-violet rays on the stability of protoplasm. Am. Jour. Bot.19: 547–558. 1932.

    Article  Google Scholar 

  274. — andDavis, G. E. Hemolysis and the solar spectrum. Protoplasma20: 189–194. 1933.

    Article  Google Scholar 

  275. Lewkowitsch, Elsa. Ultra-violet absorption spectrum of chlorophyll in alcoholic solution. Biochem. Jour.22: 777–778. 1928.

    CAS  Google Scholar 

  276. Li, T.-T. Light and leaf development inGinkgo biloba. Sci. Rep. Nat. Tsing Hua Univ. B, Biol. & Psychol. Sci.2: 11–27. 1934.

    Google Scholar 

  277. Loehwing, W. F. Some effects of insolation on mineral nutrition ofTriticum. Proc. Soc. Exp. Biol. & Med.26: 662–663. 1929.

    Google Scholar 

  278. Loew, O. Was gibt den Anstoss zur Blutenbildung? Fortschr. Landw.2: 105–106. 1927.

    Google Scholar 

  279. Lojkin, M. Some effects of ultra-violet rays on vitamin D content of plants as compared with the direct irradiation of the animal. Contr. Boyce Thompson Inst. Plant Res.3: 245–265. 1931.

    CAS  Google Scholar 

  280. Long, E. R. Growth and colloid hydration in cacti. Bot. Gaz.59: 491–497. 1915.

    Article  CAS  Google Scholar 

  281. Loomrs, W. E. Growth-differentiation balance vs. carbohydrate-nitrogen ratio. Proc. Am. Soc. Hort. Sci.29: 240–245. 1933.

    Google Scholar 

  282. —. Daily growth of maize. Am. Jour. Bot.21: 1–6. 1934.

    Article  Google Scholar 

  283. Lubimenko, V. N. La biologie de la photosynthèse. Rev. Gén. Bot.40: 486–504. See also 40: 415–447. 1928.

  284. — andHubbenet, E. R. The influence of temperature on the rate of accumulation of chlorophyll in etiolated seedlings. New Phyt.31: 26–57. 1932.

    Article  CAS  Google Scholar 

  285. — andSzeglova, O. A. Sur l’adaptation photopériodique chez les plantes vertes. Jour. Soc. Bot. Russie12: 113–162. 1927.

    Google Scholar 

  286. ——. L’adaptation photopériodique des plantes. Rev. Gén. Bot.40: 577–590. 1928.

    Google Scholar 

  287. ——. Sur l’induction photopériodique dans le processus du développement des plantes. Bull. Jard. Bot. Acad. Sci. URSS.30: 1–52. 1932.

    Google Scholar 

  288. -and Tikhovskaiia, Z. P. Photosynthesis in sea weeds and their chromatic adaptation. Proc. All-Russ. Cong. Bot. Leningrad, 1928. Publ. 1928: 40–41.

  289. Luckiesh, M. Artificial sunlight. 254 pp. 1930.

  290. Lund, E. J. Comparison of the effects of temperature on the radial and longitudinal electric polarities in wood and cortex of the Douglas fir. Plant Physiol.7: 505–516. 1932.

    PubMed  CAS  Google Scholar 

  291. Lundegardh, H. Environment and plant development. Trans. by E. Ashby. 330 pp. 1931.

  292. Lysenko, T. D. Iarovization of the agricultural plants. Odessa, Ukrainskii Inst. Selek. Bull. Iaroviz.1: 14–29. 1932.

    Google Scholar 

  293. —. Do agricultural plants require photoperiodism ? Odessa, Ukrainskii Inst. Selek. Bull. Iaroviz.2/3: 16–34. 1932.

    Google Scholar 

  294. MacDougal, D. T. The influence of light and darkness upon growth and development. Mem. N. Y. Bot. Gard.2: 1–319. 1903.

    Google Scholar 

  295. MacKinney, G. Development of the chlorophyll and carotinoid pigments in barley seedlings. Plant Physiol.10: 365–373. 1935.

    PubMed  CAS  Google Scholar 

  296. Macht, David I. Photopharmacology.VI. Influence of sun’s rays on growth of yeast in some fluorescent solutions. Proc. Soc. Exp. Biol. & Med.23: 639–641. 1926.

    CAS  Google Scholar 

  297. —. Effect of polarized light on plants. Am. Jour. Bot.15: 621. 1928.

    Google Scholar 

  298. — andHill, J. H. The influence of polarized light on yeast and bacteria. Proc. Soc. Exp. Biol. & Med.22: 474–475. 1925.

    Google Scholar 

  299. Magness, J. R. Observations on color development in apples. Proc. Wash. State Hort. Ass.24: 128–130. 1928.

    Google Scholar 

  300. Maier, Willi. Untersuchungen zur Frage der Lichtwirkung auf die Keimung einigerPoa-arten. Jahrb. Wiss. Bot.77: 321–392. 1932.

    Google Scholar 

  301. Malinowski, E. Effect of the relative length of day and night on hybrid vigor inPhaseolus vulgaris. Polish Agr. & Forest Ann.33: 50–58. 1934.

    Google Scholar 

  302. Martin, E. V. Effect of solar radiation on transpiration ofHelianthus annuus. Plant Physiol.10: 341–354. 1935.

    PubMed  CAS  Google Scholar 

  303. Mason, S. C. The inhibitive effect of direct sunlight on the growth of the date palm. Jour. Agr. Res.31: 455–468. 1925.

    Google Scholar 

  304. Matskov, Fedor. The influence of intermittent artificial light on the assimilating and enzymic mechanism of the sugar beet. Physiol. Studien an der Zuckerrübe Arb. Ukrainisches Inst. Angew. Bot. Sect. Pflanzenphysiol. Trudy Ukrains. Inst. Prikl. Bot.1: 191–211. 1930.

    Google Scholar 

  305. Maximov, N. A. Pflanzenkultur bei electrischem Licht und ihre Anwendung bei Samenprüfung und Pflanzenzüchtung. Biol. Centralbl.45: 627–639. 1925.

    Google Scholar 

  306. —. Physiological factors controlling the length of the vegetative period. Bull. Appl. Bot., Genet. & Plant Breed.20: 169–212. 1929.

    Google Scholar 

  307. -. A textbook of plant physiology. Trans, by A. E. Murneek and R. B. Harvey. 381 p. 1930.

  308. —,Lebedintsev, E. V. andKrasnoselsky, T. A. Ueber den Einfluss von Beleuchtungsverhältnissen auf die Entwicklung und Tätigkeit des Wurzelsystems. Bull. Jard. Bot. Rép. Russe.23: 1–11. 1924.

    Google Scholar 

  309. -,Razumov, V. I. and Borodina, I. N. Physiology of photoperiodism. Proc. All-Union Cong. Bot., Leningrad. 1928:42.

  310. McClelland, T. B. Studies of the photoperiodism of some economic plants. Jour. Agr. Res.37: 603–628. 1928.

    Google Scholar 

  311. McCollum, J. P. Vegetative and reproductive responses associated with fruit development in the cucumber. Cornell Agr. Exp. Sta. Mem. 163. 27 p. 1934.

  312. McCrea, Adelia. The reactions ofClaviceps purpurea to variations of environment. Am. Jour. Bot.18: 50–78. 1931.

    Article  Google Scholar 

  313. McKinney, H. H. andSando, W. J. Earliness and -seasonal growth habit in wheat, as influenced by temperature and photoperiodism. Jour. Hered.24: 169–179. 1933.

    Google Scholar 

  314. McPhee, H. C. The influence of environment on sex in hemp,Cannabis sativa L. Jour. Agr. Res.28: 1067–1080. 1924.

    Google Scholar 

  315. Meier, F. E. Effects of intensities and wave lengths of light on unicellular green algae. Smithson. Misc. Coll.92(6): 1–27. 1934.

    Google Scholar 

  316. —. Colonial formation of unicellular green algae under various light conditions. Smithson. Misc. Coll.92(5): 1–14. 1934.

    Google Scholar 

  317. —. Lethal response of the algaChlorella vulgaris to ultraviolet rays. Smithson. Misc. Coll.92(3): 1–12. 1934.

    Google Scholar 

  318. Melas-Joannides, Zoé. La substance phototoxique deYHypericum crispum. Arch. Inst. Pasteur Hellénique2: 161–165. 1928.

    Google Scholar 

  319. Mevius, W. Licht und Adventivwurzelbildung bei Commelinaceen. Zeits. Bot.23: 481–509. 1930.

    Google Scholar 

  320. Miller, E. C. Plant physiology. 900 p. 1931.

  321. Miller, E. S. andBurr, G. O. Carbon dioxide balance at high light intensities. Plant Physiol.10: 93–114. 1935.

    PubMed  CAS  Google Scholar 

  322. —,Mackinney, G. andZscheile, F. P. Absorption spectra of alpha and beta carotenes and lycopene. Plant Physiol.10: 375–381. 1935.

    PubMed  CAS  Google Scholar 

  323. Miller, J. C. A study of some factors affecting seed stalk development in cabbage. Cornell Univ. Agr. Exp. Sta. Bull. 488. 46 p. 1929.

  324. Miller, W. L. Bios. Jour. Chem. Educ.7(2): 257–267. 1930.

    CAS  Google Scholar 

  325. Mirande, M. Influence de la lumière sur la formation de l’anthocyanine dans les écailles des bulbes de Lis. Compt. Rend. Acad. Sci.175: 496–498. 1922.

    CAS  Google Scholar 

  326. —. Sur la relation existant entre l’anthocyanine et les oxydases. Compt. Rend. Acad. Sci.175: 595–597. 1922.

    CAS  Google Scholar 

  327. Mobius, M. Die Farbstoffe der Pflanzen. Berlin, Borntraeger. Handbuch der Pflanzenanatomie hrsg. K. Linsbauer, abt. I, t. 1.6: 1–200. 1927.

  328. Mohr, J. C. v. d. Meer. Über die Wirkung von Eosin, Erythrosin- und Methylenblaulösungen auf Keimung und Wachstum einiger Pflanzen. Rec. Trav. Bot. Néerl.23: 245–262. 1926.

    CAS  Google Scholar 

  329. Montemartini, Luici. Ancora sull’ azione della luce sopra la forza di attrazione del protoplasma per l’acqua. Lavori R. Inst. Bot. Palermo4: 68–83. 1933.

    Google Scholar 

  330. Montfort, C. Die photosynthetischen Leistungen litoraler Farbentypen in grösserer Meerestiefe. Jahrb. Wiss. Bot.72: 776–843. 1930.

    Google Scholar 

  331. —. Farbe und Stoffgewinn im Meer. Untersuchungen zur Theorie der komplementären Farbenanpassung nordischer Meeresalgen. Jahrb. Wiss. Bot.79: 493–592. 1934.

    CAS  Google Scholar 

  332. Moore, A. R. andCole, W. H. The response ofPopillia japonica to light and the Weber-Fechner law. Jour. Gen. Physiol.3: 331–335. 1921.

    Article  CAS  Google Scholar 

  333. Moore, B., Whitley, E. and Webster, T. A. Studies of photosynthesis in marine algae. 36 Ann. Rep. Oceanog. Dept. L’pool. 1922. Also in Proc. Roy. Soc. London B.92: 51–60. 1921.

  334. Moore, T. VitaminA and carotene. I. The association of vitaminA activity with carotene in the carrot root. Biochem. Jour.23: 803–811. 1929.

    CAS  Google Scholar 

  335. —. VitaminA and carotene. II. The vitaminA activity of red palm oil carotene. Biochem. Jour.23: 1267–1269. 1929.

    CAS  Google Scholar 

  336. —. VitaminA and carotene. III. The absence of vitaminD from carotene. Biochem. Jour.23: 1270. 1929.

    Google Scholar 

  337. Moschkov, B. On the question of photoperiodism of certain woody species. Bull. Appl. Bot., Genet. & Plant Breed. (Russian; Eng. summary)23(2): 479–510. 1930.

    Google Scholar 

  338. Muenscher, W. C. Protein synthesis inChlorella. Bot. Gaz.75: 249–267. 1923.

    Article  Google Scholar 

  339. Müller, Anna Marie. Über den Einfluss von Wuchsstoff auf das Austreiben der Seitenknospen und auf die Wurzelbildung. Jahrb. Wiss. Bot.81: 497–540. 1935.

    Google Scholar 

  340. Müller, D. Analyse der verminderten Stoffproduktion bei Stickstoffmangel. Planta16: 1–9. 1932.

    Article  Google Scholar 

  341. — undLarsen, P. Analyse der Stoffproduktion bei Stickstoff und Kalimangel. Planta23: 501–517. 1935.

    Article  Google Scholar 

  342. Murneek, A. E. Effects of correlation between vegetative and reproductive functions in the tomato (Lycopersicum esculentum Mill.). Plant Physiol.1: 3–56. 1926.

    PubMed  CAS  Google Scholar 

  343. —. Physiology of reproduction in horticultural plants. II. The physiological basis of intermittent sterility with special reference to the spider flower. Mo. Agr. Exp. Sta. Bull.106: 1–37. 1927.

    Google Scholar 

  344. —. Nitrogen and carbohydrate distribution in organs of bearing apple spurs. Mo. Agr. Exp. Sta. Res. Bull.119: 1–50. 1928.

    Google Scholar 

  345. —. Growth and development as influenced by fruit and seed formation. Plant Physiol.7: 79–90. 1932.

    PubMed  CAS  Google Scholar 

  346. —. Relation of carotinoid pigments to sexual reproduction in plants. Science79: 528. 1934.

    Article  PubMed  CAS  Google Scholar 

  347. Navez, A. E. Growth promoting substance and illumination. Proc. Nat. Acad. Sci.19: 636–637. 1933.

    Article  PubMed  CAS  Google Scholar 

  348. Navez, A. E. andRubenstein, B. B. Starch hydrolysis as affected by polarized light. Jour. Biol. Chem.80: 503–513. 1928.

    CAS  Google Scholar 

  349. ——. Starch hydrolysis as affected by light. Jour. Biol. Chem.95: 645–660. 1932.

    CAS  Google Scholar 

  350. Needham, Joseph. Chemical heterogony and the ground-plan of animal growth. Biol. Rev. & Proc. Cambridge Phil. Soc.9: 79–109. 1934.

    Article  CAS  Google Scholar 

  351. Nemec, A. etGracanin, M.. Influence de la lumière sur l’absorption de l’acide phosphorique et du potassium par les plantes. Compt. Rend. Acad. Sci.182: 806–808. 1926.

    CAS  Google Scholar 

  352. --. Der Einfluss des Lichtes auf die Resorption von Kali- und Phosphorsäure bei Neubaueruntersuchungen. Zeits. Pflanzenernahrung Dung. u. Bodenk. A. Wissensch. Teil.16: 102–110. 1930.

  353. Newcombe, F. C. Twining of plants as related to withdrawal of light. Science39: 294. 1914.

    Google Scholar 

  354. Nienburg, W. Die Keimungsrichtung von Fucus-eiern und die Theorie der Lichtperzeption. Ber. Deut. Bot. Ges.40: 38–40. 1922.

    Google Scholar 

  355. Niethammer, A. Über die Wirkung von Photokatalysatoren auf das Frühtreiben ruhender Knospen und auf die Samenkeimung. Biochem Zeits.158: 278–305. 1925.

    CAS  Google Scholar 

  356. —. Keimungphysiologische Studien unter Hervorhebung des Lichtkeimungsproblems. Biochem. Zeits.185: 205–215. 1927.

    CAS  Google Scholar 

  357. —. Licht, Dunkelheit und Strahlung als Faktoren bei der Samen-keimung. Tabulae Biol. Period.4: 45–77. 1934.

    Google Scholar 

  358. Nightingale, G. T. Light in relation to growth and chemical composition of some horticultural plants. Proc. Am. Soc. Hort. Sci.19: 18–29. 1933.

    Google Scholar 

  359. —. The chemical composition of plants in relation to photoperiodic changes. Univ. Wis. Agr. Exp. Sta. Res. Bull.74: 1–68. 1927.

    CAS  Google Scholar 

  360. — andSchermerhorn, L. G. Nitrate utilization by asparagus in the absence of light. Science64: 282. 1926.

    Article  PubMed  CAS  Google Scholar 

  361. ——. Nitrate assimilation by asparagus in the absence of light. N. J. Agr. Exp. Sta. Bull.476: 1–24. 1928.

    CAS  Google Scholar 

  362. —, — andRobbins, W. R. The growth status of the tomato as correlated with organic nitrogen and carbohydrates in roots, stems, and leaves. N. J. Agr. Exp. Sta. Bull.461: 1–38. 1928.

    CAS  Google Scholar 

  363. Nikolic, M. Über den Einfluss des Lichtes auf die Keimung vonPhacelia tanacetifolia. Sitzungsb. Akad. Wiss. Wien. Math.-Naturw. Kl. Abt. 1.133: 625–641. 1924.

    Google Scholar 

  364. Noguchi, Y. On the control of flowering time of paddy rice plants by the action of light. Proc. Crop Sci. Soc. Japan2: 153–160. 1930.

    Google Scholar 

  365. Noll, F. Ueber rotirende Nutation an etiolierten Keimpflanzen. Bot. Zeit.43: 664–670. 1885.

    Google Scholar 

  366. Norris, Robert J. Observation on the development of chlorophyll and carotinoid pigments in etiolated plants. Bull. Basic Sci., Univ. Cincinnati5: 23–32. 1933.

    CAS  Google Scholar 

  367. Nuernbergk, Erich. Physikalische Methoden der pflanzlichen Lichtphysiologie. Handbuch der biol. Arbeitsmethoden E. Abderhalden. Abt. XI, Teil4: 739–950. 1932.

  368. Odén, S. Plant growth in electric light. Medd. K. Landtbruksakad. Skogs-o. Trädgardsavd.I. 161 p. (English summary p. 135–138). 1929.

  369. —,Köhler, G. andNilsson, G. Plant cultivation with the aid of electric light. A report on investigations in Sweden. Proc. Int. Illumin. Cong. (Great Britain)2: 1298–1326. 1932.

    Google Scholar 

  370. Onslow, M. W. The anthocyanin pigments of plants. 314 p. 1925.

  371. Orcutt, F. S. andFred E. B. Light as an inhibiting factor in the fixation of atmospheric nitrogen by Manchu soy beans. Jour. Am. Soc. Agron.27: 550–558. 1935.

    CAS  Google Scholar 

  372. Osterhout, W. J. V. Physiological studies of single plant cells. Biol. Rev. & Biol. Proc. Cambridge Phil. Soc.6: 369–411. 1931.

    Article  Google Scholar 

  373. Overbeek, J. van. An analysis of phototropism in dicotyledons. Proc. Kon. Akad. Wetensch. Amsterdam35: 1325–1335. 1932.

    Google Scholar 

  374. —. Wuchsstoff, Lichtwachstumsreaktion und Phototropismus bei Raphanus. Rec. Trav. Bot. Néerl.30: 537–626. 1933.

    Google Scholar 

  375. Paauw, F. van der. The indirect action of external factors on photosynthesis. Rec. Trav. Bot. Néerl.29: 497–620. 1932.

    Google Scholar 

  376. —. Der Einfluss der Temperatur auf Atmung und Kohlensäureassimilation einiger Grünalgen. Planta22: 396–403. 1934.

    Article  Google Scholar 

  377. Packard, C. The effect of light on the permeability ofParamecium. Jour. Gen. Phvsiol.7: 363–372. 1925.

    Article  CAS  Google Scholar 

  378. Paetz, K. W. Untersuchungen über die Zusammenhänge zwischen stomatärer Öffhungsweite und bekannten Intensitäten bestimmter Spektralbezirke. Planta10: 611–665. 1930.

    Article  Google Scholar 

  379. Palmer, L. S. Carotinoids and related pigments. 316 p. 1922.

  380. Panchaud, J. Mlle. Action du milieu extérieur sur le métabolisme végétal. II. L’absorption de la matière minérale et l’élaboration de la matière organique chez une plante herbacée dévelopé à des intensités lumineuses différentes. Rev. Gén. Bot.46: 586–603. 1934.

    CAS  Google Scholar 

  381. Parija, P. andSaran, A. B. The effect of light on the respiration of starved leaves. Ann. Botany48: 347–354. 1934.

    CAS  Google Scholar 

  382. Pearce, G. W. andStreeter, L. R. A report on the effect of light on pigment formation in apples. Jour. Biol. Chem.92: 743–749. 1931.

    CAS  Google Scholar 

  383. Pearsall, W. H. Growth Studies. VI. On the relative sizes of growing plant organs. Ann. Botany41: 549–556. 1927.

    Google Scholar 

  384. — andHanby, A. M. The variation of leaf form inPotamogeton perfoliatus. New Phyt.24: 112–120. 1925.

    Article  Google Scholar 

  385. Pekarek, J. Ueber die Aziditätsverhältnisse in den Epidermis- und Schliesszellen beiRumex acetosa im Licht und im Dunkeln. Planta21: 419–446. 1933.

    Article  CAS  Google Scholar 

  386. Penfound, W. T. Plant anatomy as conditioned by light intensity and soil moisture. Am. Jour. Bot.18: 558–572. 1931.

    Article  Google Scholar 

  387. —. The anatomy of the castor bean as conditioned by light intensity and soil moisture. Am. Jour. Bot.19: 538–546. 1932.

    Article  Google Scholar 

  388. Peto, F. H. The cause of bolting in Swede turnips (Brassica napus var.napobrassica (L.) Peterm.) Canad. Jour. Res.11: 733–750. 1934.

    CAS  Google Scholar 

  389. Petri, L. eCecco, M. de. Ricerche sulle sostanze fluorescenti delle piante in rapporte al alcuni fenomeni di fotolici. Boll. R. Staz. Patol. Veg-Roma8: 374–406. 1928.

    CAS  Google Scholar 

  390. Pfeiffer, Norma E. Microchemical and morphological studies of effect of light on plants. Bot. Gaz.81: 173–195. 1926.

    Article  CAS  Google Scholar 

  391. —. Anatomical study of plants grown under glasses transmitting light of various ranges of wave lengths. Bot. Gaz.85: 427–436. 1928.

    Article  Google Scholar 

  392. Pierce, G. J. andRandolph, F. A. Studies of irritability in algae. Bot. Gaz.40: 321–350. 1905.

    Article  Google Scholar 

  393. Pincussen, L. Fermente und Licht. I. Diastase. Biochem. Zeits.134: 459–469. 1923.

    CAS  Google Scholar 

  394. -. Photobiologie. 543 p. 1930.

  395. -. Methodik der biologischen Lichtwirkungen. AbderhaldenHandb. Biol. Arb. Meth. Lief. 413, Ab., V, Teil 10, Hefte1: 13–85. 1933.

  396. Platenius, H. Carbohydrate and nitrogen metabolism in the celery plant as related to premature seeding. Cornell Agr. Exp. Sta. Mem. 140: 66 p. 1932.

  397. Plitt, Thora M. Some photoperiodic and temperature responses of the radish. Plant Physiol.7: 337–339. 1932.

    PubMed  CAS  Google Scholar 

  398. Pobedimova;E. G. Einwirkung der elektrischen Beleuchtung auf die Entwicklung derStellaria media (L.) Cyr. Izv. Glavn. Bot. Sada SSSR. (Bull. Jard. Bot. Prin. URSS.)28: 75–94. 1929.

    Google Scholar 

  399. Pollacci, G. Sul parziale albinismo del frumento. Italia Agr.68: 435–438. 1931.

    Google Scholar 

  400. Popp, H. W. Effect of light intensity on growth of soy beans and its relation to the auto-catalyst theory of growth. Bot. Gaz.82: 306–319. 1926.

    Article  CAS  Google Scholar 

  401. —. A physiological study of the effect of light of various ranges of wave length on the growth of plants. Am. Jour. Bot.13: 706–736. 1926.

    Article  CAS  Google Scholar 

  402. — andBrown, F. A review of recent work on the effect of ultra-violet radiation upon seed plants. Bull. Torrey Bot. Club60: 161–210. 1933.

    Article  CAS  Google Scholar 

  403. Porterfield, W. M. A study of the grand period of growth in bamboo. Bull. Torrey Bot. Club55: 327–405. 1928.

    Article  CAS  Google Scholar 

  404. Potter, G. F. and Phillips, T. G. Composition and fruit bud formation in non-bearing spurs of the Baldwin apple. N. H. Agr. Exp. Sta. Tech. Bull.42: 42 p. 1930.

  405. Powell, Doris. The development and distribution of chlorophyll in roots of flowering plants grown in the light. Ann. Botany39: 503–513. 1925.

    CAS  Google Scholar 

  406. Prescher, W. Über die photodynamische Wirkung des Eosins auf die Wurzelspitzen vonVicia faba. Planta17: 461–488. 1932.

    Article  CAS  Google Scholar 

  407. Priestley, J. H. Light and growth. I. The effect of brief light exposure upon etiolated plants. New Phyt.24: 271–283. 1925.

    Article  CAS  Google Scholar 

  408. —. Light and growth. II. On the anatomy of etiolated plants. New Phyt.25: 145–170. 1926.

    Article  Google Scholar 

  409. —. Light and growth. III. An interpretation of phototropic growth curvatures. New Phyt.25: 213–247. 1926.

    Article  Google Scholar 

  410. —. The meristematic tissues of the plant. Biol. Rev. Cambridge Phil. Soc.3: 1–20. 1928.

    Article  Google Scholar 

  411. —. The biology of the living chloroplast. New Phyt.28: 197–217. 1929.

    Article  Google Scholar 

  412. —. Studies in the physiology of cambial activity. III. The seasonal activity of the cambium. New Phyt.29: 316–354. 1930.

    Article  Google Scholar 

  413. Priestley, J. H. andEwing, J. Physiological studies in plant anatomy. VI. Etiolation. New Phyt.22: 30–44. 1923.

    Article  Google Scholar 

  414. Probst, Siegmund. Über den Einfluss einer Sprossbelichtung auf das Wurzelwachstum und denjenigen einer Wurzelbelichtung auf das Sprosswachstum. Planta4: 651–709. 1927.

    Article  Google Scholar 

  415. Pulling, H. E. Sunlight and its measurement. Plant World22: 151–171, 187–209. 1919.

    Google Scholar 

  416. Purvis, O. N. An analysis of the influence of temperature during germination on the subsequent development of certain winter cereals and its relation to the effect of length of day. Ann. Botany48: 919–955. 1934.

    CAS  Google Scholar 

  417. Ramaley, Francis. Some Caryophyllaceous plants influenced in growth and structure by artificial illumination supplemental to daylight. Bot. Gaz.92: 311–320. 1931.

    Article  Google Scholar 

  418. —. Influence of supplemental light on blooming. Bot. Gaz.96: 165–174. 1934.

    Article  Google Scholar 

  419. Ramshorn, K. Zur electrophysiologischen Theorie des Wachstums bei Pflanzen. Ber. Sächs. Ges. (Akad.) Wiss. Verh. Math.-Phys. Kl., Leipzig86: 199–206. 1934.

    Google Scholar 

  420. -. Experimentalle Beiträge zur elektrophysiologischen Wachstumstheorie. Planta 22: 737–766.

  421. Rao, L. Quantitative Untersuchungen über die Wirkung des Lichtes auf die Samenkeimung vonLythrum salicaria. Jahrb. Wiss. Bot.64: 249–280. 1925.

    Google Scholar 

  422. Rasmusson, J. Studies on the inheritance of quantitative characters inPisum. I. Preliminary note on the genetics of time of flowering. Hereditas20: 161–180. 1935.

    Article  Google Scholar 

  423. Rasumov, V. I. Über die photoperiodische Nachwirkung in Zusammenhang mit der Wirkung verschiedener Aussaattermine auf die Pflanzen. Planta10: 345–373. 1930.

    Article  Google Scholar 

  424. —. Influence of alternate day length on tuber formation. (Russian; Eng. summary.) Bull. Appl. Bot., Genet. & Plant Breed.27: 3–46. 1931.

    Google Scholar 

  425. —. On the localization of photoperiodical stimulation. (Russian; Eng. summary.)Bull. Appl. Bot., Genet. & Plant Breed.27: 249–282. 1931.

    Google Scholar 

  426. —. The significance of the quality of light in photoperiodical response. (Russian; Eng. summary.) Bull. Appl. Bot., Genet. & Plant Breed. III. Ser. Phys., Biochem. & Anat. Plants3: 217–251. 1933.

    Google Scholar 

  427. —. Ueber die Lokalisierung der photoperiodischen Reizwirkung. Planta23: 384–414. 1935.

    Article  Google Scholar 

  428. Rayleigh, Selective action of polarized light upon starch grains. Nature117: 15. 1926.

    Article  Google Scholar 

  429. Redington, George. The effect of the duration of light upon the growth and development of the plant. Biol. Rev. & Proc. Cambridge Phil. Soc.4: 180–208. 1929.

    Article  Google Scholar 

  430. — A study of the effect of diurnal periodicity upon plant growth. Trans. Roy. Soc. Edin.56: 247–272. 1929–30.

    Google Scholar 

  431. Reep, H. S. Quantitative aspects of the problem of growth and differentiation. Proc. Int. Cong. Plant Sci., Ithaca2: 1095–1106. 1926.

    Google Scholar 

  432. —. The density of stomata inCitrus leaves. Jour. Agr. Res.43: 209–222. 1931.

    Google Scholar 

  433. Reid, M. E. Relation of kind of food reserves to regeneration in tomato plants. Bot. Gaz.77: 103–110. 1924.

    Article  CAS  Google Scholar 

  434. —. Quantitative relations of carbohydrates to nitrogen in determining growth responses in tomato cuttings. Bot. Gaz.77: 404–18. 1924.

    Article  CAS  Google Scholar 

  435. —. Growth of seedling in relation to composition of seed. Bot. Gaz.81: 196–203. 1926.

    Article  CAS  Google Scholar 

  436. —. Growth of seedlings in light and in darkness in relation to available nitrogen and carbon. Bot. Gaz.87: 81–118. 1929.

    Article  CAS  Google Scholar 

  437. —. Relation of composition of seed and the effects of light to growth of seedlings. Am. Jour. Bot.16: 747–769. 1929.

    Article  CAS  Google Scholar 

  438. —. The influence of nutritive conditions of seeds and cuttings upon the development of roots. Rep. & Proc. Int. Hort. Cong., London1930: 165–169. 1931. Also in Gard. Chron. III88: 392–393. 1930.

    Google Scholar 

  439. Robbins, W. J. andManeval, W. E. Effect of light on growth of excised root tips under sterile conditions. Bot. Gaz.78: 424–432. 1924.

    Article  CAS  Google Scholar 

  440. Roberts, R. H. andKraus, James E. Respiratory types and photoperiodism. Science80: 122–123. 1934.

    Article  PubMed  CAS  Google Scholar 

  441. Robinson, Gertrude M. andRobinson, Robert. A survey of anthocyanins. Biochem. Jour.25: 1687–1705, 1931;26: 1647–1664, 1932;27: 206–212, 1933.

    CAS  Google Scholar 

  442. ——. A survey of anthocyanins, IV. Biochem. Jour.28: 1712–1720. 1934.

    CAS  Google Scholar 

  443. Roelofsen, P. A. On photosynthesis of the Thiorhodaceae. Rotterdam N, De Voorpost, 1935, 127 p.

  444. Roodenburg, J. W. M. Kuntslichtkultur. Angew. Bot.13: 162–166. 1931.

    Google Scholar 

  445. Rosene, H. F. Proof of the principle of summation of cell E M Fs. Plant Physiol.10: 209–224. 1935.

    PubMed  CAS  Google Scholar 

  446. Rosenheim, O. Biochemical changes due to environment. Biochem. Jour.12: 283–289. 1918.

    CAS  Google Scholar 

  447. Rudolph, H. Über die Einwirkung des Farbigenlichtes auf die Entstehung der Chloroplastenfarbstoffe. Planta21: 104–155. 1933.

    Article  CAS  Google Scholar 

  448. Rudorf, W. andStelzner, G. Untersuchungen über Lichtperiodische- und Temperatur-nachwirkung bei Sorten von Salat (Lactuca sativa var.capitata L.) und die Möglichkeit ihrer Ausnutzung im Gemüsebau. Gartenbauwiss.9: 142–153. 1934.

    Google Scholar 

  449. Ruhland, W. Untersuchungen über den Kohlenhydratstoffwechsel vonBeta vulgaris. Jahrb. Wiss. Bot.50: 200–257. 1911.

    Google Scholar 

  450. Russell, W. C. The effect of the curing process upon the vitaminA andD content of alfalfa. Jour. Biol. Chem.85: 289–297.

  451. Rygh, O. Occurrence of antirachitic vitamin in green plants. Nature133: 255. 1934.

    Article  CAS  Google Scholar 

  452. Sachs, J. von. Über den Einfluss der Lufttemperatur und des Tageslichts auf die stündlichen und täglichen Aenderungen des Längenwachstums (Streckung) der Internodien. Arb. Bot. Inst. Würzburg1: 99–192. 1874.

    Google Scholar 

  453. —. Stoff und Form der Pflanzenorgane. Arb. Bot. Inst. Würzburg2: 452–488, 689–718. 1880/1882.

    Google Scholar 

  454. Sande-Bakhuyzen, H. L. van de. Studies upon wheat grown under constant conditions. Plant Physiol.3: 1–30. 1928.

    PubMed  CAS  Google Scholar 

  455. Sando, C. E. Autumnal coloring. Indus. & Eng. Chem. (News Ed.)9: 338. 1931.

    CAS  Google Scholar 

  456. Sayre, J. D. The development of chlorophyll in seedlings in different ranges of wave lengths of light. Plant Physiol.3: 71–77. 1928.

    PubMed  CAS  Google Scholar 

  457. —. Opening of stomata in different ranges of wave lengths of light. Plant Physiol.4: 323–328. 1929.

    PubMed  CAS  Google Scholar 

  458. Scarth, G. W. Stomatal movement: its regulation and regulatory rôle. Protoplasma2: 498–511. 1927.

    Article  CAS  Google Scholar 

  459. —. Mechanism of the action of light and other factors on stomatal movement. Plant Physiol.7: 481–504. 1932.

    PubMed  CAS  Google Scholar 

  460. Schaffner, J. H. The change of opposite to alternate phyllotaxy and repeated rejuvenations in hemp by means of changed photoperiodicity. Ecology7: 315–325. 1926.

    Article  Google Scholar 

  461. —. Sex and sex determination in the light of observations and experiments on dioecious plants. Am. Nat.61: 319–332. 1927.

    Article  Google Scholar 

  462. —. Sex reversal and the experimental production of neutral tassels inZea mays. Bot. Gaz.90: 279–298. 1930.

    Article  Google Scholar 

  463. —. The fluctuation curve of sex reversal in staminate hemp plants induced by photoperiodicity. Am. Jour. Bot.18: 424–430 1931.

    Article  Google Scholar 

  464. Schanderl, H. andKaempfert, W. Über die Strahlungsdurchlässigkeit von Blättern und Blattgeweben. Planta18: 700–750. 1933.

    Article  CAS  Google Scholar 

  465. Schappelle, N. A. A study to determine the range of wave length most effective in stimulating reproductive growth inMarchantia. Am. Jour. Bot.20: 677. 1933.

    Google Scholar 

  466. Scharrer, K. and Schropp, W. Ueber die Wirkung des Kalium-ions bei Mangeln der Lichtversorgung. Zeits. Pflanzenernähr. Dung. u. Bodenk. A, Wiss. Teil35: 185–193. 1934.

  467. Schechter, V. Electrical control of rhizoid formation in the red alga,Griffithsia Bornetiana. Jour. Gen. Physiol.18: 1–21. 1934.

    Article  CAS  Google Scholar 

  468. Schertz, F. M. The chloroplast pigments, their functions, and the probable relation of chlorophyll to the vitamins. Quart. Rev. Biol.3: 459–485. 1928.

    Article  CAS  Google Scholar 

  469. —. The quantitative determination of chlorophyll. Plant Physiol.3: 323–334. 1928.

    PubMed  CAS  Google Scholar 

  470. Schick, R. Der Einfluss der Tageslange auf die Knollenbildung der Kartoffel. Der Züchter3: 365–369. 1931.

    Google Scholar 

  471. Schmid, E. Ueber den Einfluss des Lichtes auf die Keimung der Lebermoossporen. Ber. Schweiz Bot. Ges.41: 9–72. 1932.

    Google Scholar 

  472. Schmucker, T. Über Assimilation der Kohlensäure in verschiedenen Spektralbezirken. (Die Energieaufnahme als Quantenvorgang.) Jahrb. Wiss. Bot.73: 824–852. 1930.

    Google Scholar 

  473. Schneider, E. Beiträge zur Physiologie der Farbstoffe der Purpurbakterien. Beitr. Biol. Pflanz. (Cohn)18: 81–115. 1934.

    Google Scholar 

  474. Schoder, A. Ueber die Beziehungen des Tagesganges der Kohlensäureassimilation von Frielandpflanzen zu den Aussenfaktoren. Jahrb. Wiss. Bot.76: 441–484. 1932.

    Google Scholar 

  475. Schou, S. A. Über die Lichtabsorption einiger anthocyanidine. Helvetica Chim. Acta10: 907–915. 1927.

    Article  CAS  Google Scholar 

  476. Schrader, A. L. The relation of chemical composition to the regeneration of roots and tops on tomato cuttings. Proc. Am. Soc. Hort. Sci.21(1924): 187–194. 1925.

    Google Scholar 

  477. Schröppel, F. Katalase, Peroxidase und Atmung bei der Keimung lichtempfindlicher Samen vonNicotiana tabacum. Beih. Bot. Centralbl.51: 377–407. 1933.

    Google Scholar 

  478. Schüepp, O. Meristeme. 114 p., 1926.

  479. Schulz, E. R. andThompson, N. F. Chemical composition of etiolated and greenBerberis sprouts and their respective roots. Bot. Gaz.81: 312–322. 1926.

    Article  Google Scholar 

  480. Schweickerdt, Herold. Untersuchungen über Photodinese beiVallisneria spiralis. Jahrb. Wiss. Bot.68: 79–134. 1928.

    Google Scholar 

  481. Scott, L. I. andPriestley, J. H. The root as an absorbing organ. I. A reconsideration of the entry of water and salts in the absorbing region. New Phyt.27: 125–140. 1928.

    Google Scholar 

  482. Sellei, J. Die wachstumfördernde und hemmende Wirkung der Farbstoffe auf Pflanzen. Arch. Pharm. Ber. Deut. Pharm. Ges.273: 285–288. 1935.

    CAS  Google Scholar 

  483. Semmens, E.S. Hydrolysis in the living plant by polarized light. Bot. Gaz.90: 412–126. 1930.

    Article  CAS  Google Scholar 

  484. —. Bursting of cell by polarized light. Nature134: 813. 1934.

    Article  CAS  Google Scholar 

  485. Seybold, A. Über die optischen Eigenschaften der Laubblätter. IV. Planta21: 251–265. 1933.

    Article  CAS  Google Scholar 

  486. —. Über den Lichtgenuss der Sonnen- und Schattenpflanzen. Ber. Deut. Bot. Ges.52: 493–505. 1934.

    Google Scholar 

  487. —. Ueber die Lichtenergiebilanz submerser Wasserpflanzen, vornehmlich der Meeresalgen. Jahrb. Wiss. Bot.79: 593–654. 1934.

    Google Scholar 

  488. Sharp, L. W. Introduction to cytology. 567 p. 1934.

  489. Sheard, Charles. Potentiometric and spectrophotometric changes in plants produced by infra-red and ultra-violet irradiation. Proc. Soc. Exp. Biol. & Med.26: 618–621. 1929.

    Google Scholar 

  490. Shirley, H. L. The influence of light intensity and light quality upon the growth of plants. Am. Jour. Bot.16: 354–390. 1929.

    Article  CAS  Google Scholar 

  491. —. Light intensity in relation to plant growth in a virgin Norway pine forest. Jour. Agr. Res.44: 227–244. 1932.

    Google Scholar 

  492. —. Light as an ecological factor and its measurement. Bot. Rev.1: 355–381. 1935.

    Article  Google Scholar 

  493. Shuck, A. L. A growth-inhibiting substance in lettuce seeds. Science81: 236. 1935.

    Article  PubMed  CAS  Google Scholar 

  494. —. Light as a factor influencing the dormancy of lettuce seeds. Plant Physiol.10: 193–196. 1935.

    PubMed  CAS  Google Scholar 

  495. Shull, C. A. A spectrophotometric study of reflection of light from leaf surfaces. Bot. Gaz.87: 583–607. 1929.

    Article  Google Scholar 

  496. Siebert, Alfred. Ergrünungsfähigkeit von Wurzeln. Beih. Bot. Centralbl.37: 185–215. 1920.

    Google Scholar 

  497. Sierp, H. Untersuchungen über die Öffnungsbewegungen der Stomata in verschiedenen Spektralbezirken. Flora128: 269–285. 1933.

    Google Scholar 

  498. Simon, S. V. Über den Einfluss des Lichtes auf die Entwicklung der Keimlinge vonBruguiera eriopetala. Ber. Deut. Bot. Ges.39: 165–172. 1921.

    Google Scholar 

  499. Sisa, M. Influence of the C/N ratio on growth of tomato cuttings. Agr. et Hort.3: 1422–1431. 1928.

    Google Scholar 

  500. Skoog, F. The effect of x-rays on growth substance and plant growth. Science79: 256. 1934.

    Article  PubMed  CAS  Google Scholar 

  501. Skutch, A. F. Some reactions of the banana to pressure, gravity and darkness. Plant Physiol.6: 73–102. 1931.

    PubMed  CAS  Google Scholar 

  502. Smirnov, E. andZhelochovtsev, A. N. Das Gesetz der Altersveränderungen der Blattform beiTropaeolum majus L. unter verschiedenen Beleuchtungsbedingungen. Planta15: 299–354. 1931.

    Article  Google Scholar 

  503. Smith, E. Philip andJolly, M. S. Stomatal movement and hydrogen-ion concentration. Nature129: 544. 1932.

    Article  Google Scholar 

  504. Smith, F. Researches on the influence of natural and artificial light on plants. I. On the influence of the length of day—preliminary researches. Meld. Norg. Landbrukshoiskole13: 1–228. 1933.

    CAS  Google Scholar 

  505. Smith, Laura Lee andMorgan, A. F. The effect of light upon the vitaminA activity and the carotinoid content of fruits. Jour. Biol. Chem.101: 43–54. 1933.

    CAS  Google Scholar 

  506. — andSmith, O. Light and the carotinoid content of certain fruits and vegetables. Plant Physiol.6: 265–275. 1931.

    PubMed  CAS  Google Scholar 

  507. Smith, Margaret C. andBriggs, I. A. The vitaminA content of alfalfa as affected by exposure to sunshine in the curing process. Jour. Agr. Res.46: 229–234. 1933.

    CAS  Google Scholar 

  508. —, —. The antirachitic value of alfalfa as affected by exposure to sunshine in the curing process. Jour. Agr. Res.46: 235–240. 1933.

    CAS  Google Scholar 

  509. Snow, R. The nature of the cambial stimulus. New Phyt.32: 288–296. 1933.

    Article  Google Scholar 

  510. — andLe Fanu, B. Activation of cambial growth. Nature135: 149. 1935.

    Article  CAS  Google Scholar 

  511. —, —. Activation of cambial growth by pure hormones. Nature135: 876. 1935.

    Article  CAS  Google Scholar 

  512. Snyder, C. D. Quantitative relations in biological processes and the radiation hypothesis of chemical activation. Quart. Rev. Biol.6: 281–305. 1931.

    Article  CAS  Google Scholar 

  513. Spoehr, H. A. Variations in respiratory activity in relation to sunlight. Bot. Gaz.59: 366–386. 1915.

    Article  CAS  Google Scholar 

  514. -. Photosynthesis. 393 p. 1926.

  515. Spohn, H. Ueber die optischen Eigenschaften herbstlich gefärbter Laubblätter. Planta23: 240–248. 1934.

    Article  CAS  Google Scholar 

  516. Stair, R. andCoblentz, W. W. Infra-red absorption spectra of some plant pigments. U. S. Bur. Stand. Jour. Res.11: 703–711. 1933.

    CAS  Google Scholar 

  517. Stanbury, F. A. The effect of light of different intensities, reduced selectively and non-selectively upon the rate of growth ofNitsschia closterium. Jour. Mar. Biol. Assoc. United Kingdom17: 633–653. 1931.

    CAS  Google Scholar 

  518. Steenbock, H. andBlack, A. Fat-soluble vitamins. XXIII. The induction of growth promoting and calcifying properties in fats and their unsaponifiable constituents by exposure to light. Jour. Biol. Chem.64: 263–298. 1925.

    CAS  Google Scholar 

  519. Steinbauer, George P. Growth of tree seedlings in relation to light intensity and concentration of nutrient solution. Plant Physiol.7: 742–745. 1932.

    PubMed  CAS  Google Scholar 

  520. Stephan, J. Der Einfluss von Lichtqualität und-quantität (einschliesslich ultra-rot) auf das Wachstum der Brutkörper vonMarchantia polymorpha. Planta6: 510–518. 1928.

    Article  Google Scholar 

  521. —. Entwicklungsphysiologische Untersuchungen an einigen Farnen. I. Jahrb. Wiss. Bot.70: 707–742. 1929.

    CAS  Google Scholar 

  522. Stern, K. Elektrophysiologie der Pflanzen. 219 p. 1924.

  523. Steward, F. C. The mineral nutrition of plants. Ann. Rev. Biochem.4: 519–544. 1935.

    Article  CAS  Google Scholar 

  524. Stewart, W. D. andArthur, J. M. Some effects of radiation from a quartz mercury vapor lamp upon the mineral composition of plants. Contr. Boyce Thompson Inst. Plant Res.6: 225–245. 1934.

    CAS  Google Scholar 

  525. Stiles, W. Permeability. 296 p. 1924. (Rep. from New Phyt.20–22, 1921–1923).

  526. -. Photosynthesis. 268 p. 1925.

  527. Street, O. E. Carbohydrate-nitrogen and base element relationships of peas grown in water culture under various light exposures. Plant Physiol.9: 301–322. 1934.

    PubMed  CAS  Google Scholar 

  528. Streeter, L. R. andPearce, G. W. Light and pigment development in apples. Proc. Am. Soc. Hort. Sci.28: 49–52. 1932.

    Google Scholar 

  529. Svedberg, The andKatsubai, T. The molecular weights of phycocyan and of phycoerythrin fromPorphyra tenera and phycocyan fromAphanizomenon flos-aquae. Tour. Am. Chem. Soc.51: 3573–3583. 1929.

    Article  CAS  Google Scholar 

  530. Tageeva, S. A study of photosynthesis in connection with photoperiodism. Bull. Appl. Bot., Genet. & Plant Breed.27: 197–247. 1931.

    CAS  Google Scholar 

  531. Tang, P. S. The effects of CO and light on the oxygen consumption and on the production of CO2 by germinating seeds ofLupinus albus. Jour. Gen. Physiol.15: 655–665. 1932.

    Article  CAS  Google Scholar 

  532. Tedin, Olof. Effect of full light, darkness and violet light on the germination of tomato seed. Nord. Jordbrugsforskn. (Kobenhavn) Heft. 2/3: 108–126. 1931.

  533. Teodoresco, E. C. Observations sur la croissance des plantes aux lumières de diverses longueurs d’onde. Ann. Sci. Nat. Bot.11: 201–335. 1929.

    Google Scholar 

  534. —. Le développement des algues et la réfrangibilité de la lumière. Rev. Gén. Bot.46: 65–74, 172–192, 229–256, 289–320, 360–384. 1934.

    Google Scholar 

  535. Theorell, H. Über die Wirkungsgruppe des gelben Ferments. Biochem. Zeit.275: 37. 1934.

    CAS  Google Scholar 

  536. Thimann, K. V. andSkoog, F. On the inhibition of bud development and other functions of growth-substance inVicia faba. Proc. Roy. Soc. London B.114: 317–339. 1934.

    CAS  Google Scholar 

  537. Thoday, D. Some physiological aspects of differentiation. New Phyt.32: 274–287. 1933.

    Article  Google Scholar 

  538. Thompson, H. C. Premature seeding of celery. Cornell Agr. Exp. Sta. Bull. 480: 50 p. 1929.

  539. —. The effect of temperature and’ photoperiod on the growth of lettuce. Proc. Am. Soc. Hort. Sci.30: 507–509. 1934.

    Google Scholar 

  540. Tiedjens, Victor A. Sex ratios in cucumber flowers as affected by different conditions of soil and light. Jour. Agr. Res.36: 721–746. 1928.

    Google Scholar 

  541. Tilly, F. Ueber Sensibilisierung und Desensibilisierung lichtempfindlicher Samen (Lythrum salicaria L.) Zeits. Bot.28: 401–445. 1935.

    CAS  Google Scholar 

  542. Tincker, M. A. H. The effect of length of day upon the growth and chemical composition of the tissues of certain economic plants. Ann. Botany42: 101–140. 1928.

    CAS  Google Scholar 

  543. — andDarbishire, F. V. Studies on the formation of tubers and other storage organs. The influence upon translocation of the period of light and the supply of potassium. Ann. Botany47: 27–53. 1933.

    CAS  Google Scholar 

  544. Tolmachev, Ivan. Effect of darkness and light on the organic acids in the plant. Zapiski Kiiv. Sil’s ’Ko-Gospod. Inst. (Kyiv. Agr. Inst. Mem.)2: 1–21. 1927.

    Google Scholar 

  545. Tottingham, W. E. Are leaf lipids responsive to solar radiation? Science75: 223–224. 1932.

    Article  PubMed  CAS  Google Scholar 

  546. — andLease, E. J. A photochemical aspect of nitrate assimilation in plants. Science80: 615–616. 1934.

    Article  PubMed  CAS  Google Scholar 

  547. Tottingham, W. E. andLowsma, H. Effects of light upon nitrate assimilation in wheat. Jour. Am. Chem. Soc.50: 2436–2445. 1928.

    Article  CAS  Google Scholar 

  548. —,Stephens, H. L. andLease, E. J. Influence of shorter light rays upon absorption of nitrate by the young wheat plant. Plant Physiol.9: 127–142. 1934.

    Article  PubMed  CAS  Google Scholar 

  549. Trelease, S. F. Night and day rates of elongation of banana leaves. Phillipine Jour. Sci.23: 85–96. 1923.

    Google Scholar 

  550. Trumpf, C. Ueber den Einfluss intermittierender Belichtung auf das Etiolement der Pflanzen. Bot. Arch.5: 381–410. 1924.

    Google Scholar 

  551. —. Ueber das Wachstum vonPhaseolus-Keimlingen im Presssaft normaler und etiolierter Pflanzen. Bot. Arch.5: 410–412. 1924.

    Google Scholar 

  552. Tschudy, R. H. Depth studies on photosynthesis of the red algae. Am. Jour. Bot.21: 546–556. 1934.

    Article  CAS  Google Scholar 

  553. Ulvin, G. B. Chlorophyll production under various environmental conditions. Plant Physiol.9: 59–81. 1934.

    PubMed  CAS  Google Scholar 

  554. Ursprung, A. Ueber die Starkebildung im Spektrum. Ber. Deut. Bot. Ges.35: 44–69. 1917.

    CAS  Google Scholar 

  555. —. Über die Absorptionskurve des grünen Farbstoffes lebender Blätter. Ber. Deut. Bot. Ges.36: 73–85. 1918.

    Google Scholar 

  556. Van Niel, C. B. Photosynthesis of bacteria. Contr. Marine Biol., Stanford Univ. Press. pp. 161–169. 1930.

  557. Veselkin, N. V., Liubimenko, V. N., Bulgakova, Z. P. andIljin, V. S. Influence de la lumière sur la synthèse de la vitamine C chez les plantules de l’orge. (Russian; French summary). Izv. Nauchn. Inst. P. F. Lesgafta (Bull. Inst. Sc. Lesshaft)17/18: 405–410. 1934.

    Google Scholar 

  558. —, —, —,Tikal’skaia, V. V. andEngel, P. S. Influence de la lumière sur la synthèse des vitamines. Izv. Nauchn. Inst. P. F. Lesgafta (Bull. Inst. Sc. Lesshaft)17/18: 389–404. 1934.

    Google Scholar 

  559. Virtanen, A. I. andHausen, S. V. Die Vitamenbildung in Pflanzen. Naturwiss.20: 905. 1932.

    Article  CAS  Google Scholar 

  560. Vöchting, H. Ueber Spitze und Basis an den Pflanzenorganen. Bot. Zeit.38: 593–605, 609–618. 1880.

    Google Scholar 

  561. —. Die Polarität der Gewächse. Review by P. Stark in Referate Zeits. Allg. Physiol.18: 29–30. 1919.

    Google Scholar 

  562. Voerkel, S. H. Untersuchungen über die Phototaxis der Chloroplasten. Planta21: 156–205. 1933.

    Article  CAS  Google Scholar 

  563. Voorhees, R. K. Effect of certain environmental factors on the germination of the sporangia ofPhysoderma zeae-maydis. Jour. Agr. Res.47: 609–615. 1933.

    Google Scholar 

  564. Wakeman-Bonne, G. Die Abhängigkeit der Teilungsrichtung vom Licht beiEremosphaera viridis. Arch. Protistenk.84: 251–256. 1935.

    Google Scholar 

  565. Waller, J. C. Plant electricity. I. Photoelectric currents associated with the activity of chlorophyll in plants. Ann. Botany39: 515–538. 1925.

    CAS  Google Scholar 

  566. —. Plant electricity. II. Towards an interpretation of the photoelectric currents of leaves. New Phyt.28: 291–302. 1929.

    Article  Google Scholar 

  567. —. Towards an interpretation of photoelectric currents in leaves. Brit. Ass. Adv. Sci. Rep. Glasgow. 1928: 624. 1929.

    Google Scholar 

  568. Wann, F. B. Some of the factors involved in the sexual reproduction ofMarchantia polymorpha. Am. Jour. Bot.12: 307–318. 1925.

    Article  Google Scholar 

  569. Warburg, O. undChristian, W. Über das neue Oxydationsferment. Naturwiss.20: 980. 1932.

    Article  CAS  Google Scholar 

  570. Warburg, O. undNegelein, E. Ueber den Einfluss der Wellenlange auf den Energieumstaz bei der Kohlensäure Assimilation. Zeits. Phys. Chem.106: 191–218. 1923.

    CAS  Google Scholar 

  571. Warington, Katharine. The influence of length of day on the response of plants to boron. Ann. Botany47: 429–457. 1933.

    CAS  Google Scholar 

  572. Weaver, John E. andHimmel, W. J. Relation between the development of root system and shoot under long and short day illumination. Plant Physiol.4: 435–457. 1929.

    PubMed  CAS  Google Scholar 

  573. Weber, F. Plasmolysezeit und Lichtwirkung. Protoplasma7: 256–258. 1929.

    Article  Google Scholar 

  574. Wellensiek, S. J. The substitution of sunlight by artificial light in seed-potato storing. (Eng. summary.) Tijdschr. Plantenziekten35: 241–250. 1929.

    Article  Google Scholar 

  575. Welsh, J. H. Photokinesis and tonic effect of light inUnionicola. Jour. Gen. Physiol.16: 349–355. 1932.

    Article  CAS  Google Scholar 

  576. Wenger, R. Some effects of supplementary illumination with Mazda Lamps on the carbohydrate and nitrogen metabolism of the aster. Abstr. 11th Ann. Meeting Am. Soc. Plant Physiol. Pittsburgh, Pa. p. 9. 1934.

  577. Went, F. W. Wuchsstoff und Wachstum. Rec. Trav. Bot. Néerl.25: 1–116. 1928.

    Google Scholar 

  578. —. On a growth substance causing root formation. Proc. Kon. Akad. Wetensch. Amsterdam32: 35–39. 1929.

    Google Scholar 

  579. —. Eine botanische Polaritätstheorie. Jahrb. Wiss. Bot.76: 528–557. 1932.

    Google Scholar 

  580. —. A test method for rhizocaline, the root-forming substance. Proc. Kon. Akad. Wetensch. Amsterdam37: 445–455. 1934.

    CAS  Google Scholar 

  581. —. Auxin, the plant growth-hormone. Bot. Rev.1: 162–182. 1935.

    Article  CAS  Google Scholar 

  582. —. Hormones involved in root formation. The phenomenon of inhibition. Proc. Int. Bot. Cong., Amsterdam. Sept., 1935,2: 267. 1935.

    Google Scholar 

  583. Werner, H. O. The effect of a controlled nitrogen supply with different temperatures and photoperiods upon the development of the potato plant. Neb. Agr. Exp. Stat. Res. Bull. 75. 1934.

  584. Weston, W. A. R. Dillon. Studies on the reaction of disease organisms to certain wave lengths in the visible and invisible spectrum. II. Reaction of Urediniospores to visible light: wave lengths between 400 and 780 μμ. Phytopath. Zeits.4: 229–246. 1932.

    Google Scholar 

  585. Whyte, R. O. andHudson, P. S. Vernalization or Lyssenko’s method for the pre-treatment of seed. Bull. Imp. Bur. Plant Genet. (Great Britain)9: 1–27. 1933.

    Google Scholar 

  586. Wieser, Georg. Der Einfluss des Sauerstoffs auf die Lichtwirkung bei der Keimung lichtempfindlicher Samen. Planta4: 526–572. 1927.

    Article  Google Scholar 

  587. Wiessmann, H. Ueber den Einfluss des Lichtes auf die Nahrstoffaufnahme des Pflanzen im Jungenstadium. Zeits. Pflanzenernähr, u. Düng. B. Wirtsch-Prakt. Teil 4: 153–155. 1925.

  588. Willstätter, R. M. und Stoll, A. Untersuchungen über Chlorophyll; Methoden und Ergebnisse. 424 p. 1913.

  589. Winkler, H. Ueber den Einfluss äusserer Factoren auf die Theilung der Eier vonCystoseira barbata. Ber. Deut. Bot. Ges.18: 297–305. 1900.

    Google Scholar 

  590. Withrow, R. B. Plant forcing with electric lights. Ind. Agr. Exp. Sta. Circ. 206. 1934.

  591. -. Intensity and wave length of artificial supplemental radiation as factors in the flowering response of pansy, aster and stock. Abstr. 11th Ann. Meeting Am. Soc. Plant Physiol. Pittsburgh, Pa. 1934.

  592. Wood, R. W. Physical optics. 846 p. 1934.

  593. Work, P. Nitrate of soda in the nutrition of the tomato. Cornell Agr. Exp. Sta. Mem. 75: 86 p. 1924.

  594. Yoshii, Yoshiji. Some preliminary studies of the influence upon plants of the relative length of day and night. Sci. Rep. Tôhoku Imp. Univ. Sendai, Japan. IV,2: 143–157. 1926.

    Google Scholar 

  595. Zacharowa, T. M. Über den Gasstoffwechsel der Nadelholzpflanzen im Winter. Plante8: 68–83. 1929.

    Article  Google Scholar 

  596. Zeller, A. Ueber Licht- und Strahlungsmessungen in der Pflanzenphysiologie. Ber. Deut. Bot. Ges.52: 581–594. 1934.

    Google Scholar 

  597. Zillich, Rudolf. Über den Lichtgenuss einiger Unkräuter und Kulturpflanzen. Fortschr. Landw.1: 461–471. 1926.

    Google Scholar 

  598. Zimmerman, P. W. andHitchcock, A. E. Root formation and flowering of dahlia cuttings when subjected to different day lengths. Bot. Gaz.87: 1–13. 1929.

    Article  Google Scholar 

  599. Zinsser, H. and Bayne-Jones, S. A textbook of bacteriology. 1226 p. 1934.

  600. Zycha, Herbert. Ueber den Einfluss des Lichtes auf die Permeabilität von Blattzellen für Salze. Jahrb. Wiss. Bot.68: 499–548. 1928.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkholder, P.R. The rôle of light in the life of plants II. The influence of light upon growth and differentiation. Bot. Rev 2, 97–172 (1936). https://doi.org/10.1007/BF02872368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872368

Keywords

Navigation