Skip to main content
Log in

The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: A review of the hypothesis

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

IX. Literature Cited

  • Allison, J. C. S., &D. J. Watson. 1966. The production and distribution of dry matter in maize after flowering. Ann. Bot. (London) N.S.30: 365–382.

    Google Scholar 

  • Bartoš, J., Š. Kubín &I. Šetlík. 1960. Dry weight increase of leaf disks as a measure of photosynthesis. Biol. Plant. (Praha)2: 201–215.

    Article  Google Scholar 

  • Beevers, L., &J. P. Cooper. 1964a. Influence of temperature on growth and metabolism of ryegrass seedlings. I. Seedling growth and yield components. Crop Sci.4: 139–143.

    CAS  Google Scholar 

  • —————, & —————. 1964b. Influence of temperature on growth and metabolism. Crop Sci.4: 143–146.

    CAS  Google Scholar 

  • Bierhuizen, J. F., &R. O. Slatyer. 1964. Photosynthesis of cotton leaves under a range of environmental conditions in relation to internal and external diffusive resistances. Australian Jour. Biol. Sci.17: 348–359.

    Google Scholar 

  • Blackman, G. E., &G. L. Wilson. 1951. Physiological and ecological studies in the analysis of plant environment. VI. The constancy for different species of a logarithmic relationship between net assimilation rate and light intensity and its ecological significance. Ann. Bot. (London) N.S.15: 63–94.

    Google Scholar 

  • Böhning, R. H. 1949. Time course of apple leaves exposed to continuous illumination. Plant Physiol.24: 222–240.

    Article  PubMed  Google Scholar 

  • Bolas, B. D., &R. Melville. 1933. The influence of environment on the growth and metabolism of the tomato plant. I. Methods, technique, and preliminary results. Ann. Bot. (London)47: 673.

    CAS  Google Scholar 

  • Boussingault, J. B. 1868. Agronomie, chimie agricole et physiologie. 2e Ed. Mallet Bachelier, Paris, 1860–1874, 5 vols. (pp. 236–312).

    Google Scholar 

  • Bucke, C., D. W. Walker, &C. W. Baldry. 1966. Some effects of sugars and sugar phosphates on CO2 fixation by isolated chloroplasts. Biochem. Jour.101: 636–641.

    CAS  Google Scholar 

  • Burt, R. L. 1964. Carbohydrate utilization as a factor in plant growth. Australian Jour. Biol. Sci.17: 867–877.

    CAS  Google Scholar 

  • ————— 1966. Some effects of temperature on carbohydrate utilization and plant growth. Australian Jour. Biol. Sci.19: 711–714.

    CAS  Google Scholar 

  • Canny, M. J., &M. J. Askham. 1967. Physiological inferences from the evidence of translocated tracer: a caution. Ann. Bot. (London) N.S.31: 409–416.

    CAS  Google Scholar 

  • Carr, D. J., &W. J. Burrows. 1966. Evidence of the presence in xylem sap of substances with kinetin-like activity. Life Sciences5: 2061–2077.

    Article  CAS  Google Scholar 

  • Chibnall, A. C. 1939. Protein metabolism in the plant. Yale Univ. Press, New Haven, xiii + 306 pp.

  • ————— 1954. Protein metabolism in rooted runner-bean leaves. New Phytol.53: 31–37.

    Article  CAS  Google Scholar 

  • Curtis, O. F. 1929. Studies on solute translocation in plants. Experiments indicating that translocation is dependent on the activity of living cells. Amer. Jour. Bot.16: 154–168.

    Article  CAS  Google Scholar 

  • El-Sharkawy, M. A., &J. Hesketh. 1964. Effect of stomatal differences among species on leaf photosynthesis. Crop Sci.4: 619–621.

    Google Scholar 

  • —————, —————. 1965. Leaf photosynthetic rates and other growth characteristics among 26 species ofGossypium. Crop Sci.5: 173–175.

    CAS  Google Scholar 

  • —————, & —————. 1965. Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances. Crop Sci.5: 517–521.

    Google Scholar 

  • Ewart, A. J. 1896. On assimilatory inhibition in plants. Jour. Linn. Soc. London31: 364–461.

    Google Scholar 

  • Gaastra, P. 1959. Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Meded. Landbouwhogesch., Wageningen,59: 1–68.

    Google Scholar 

  • Geiger, D. R. 1966. Effect of sink region cooling on translocation of photosynthate. Plant Physiol.41: 1667–1672.

    PubMed  CAS  Google Scholar 

  • Gibbs, M. 1967. Photosynthesis. Ann. Rev. Biochem.36(2): 757–784.

    Article  PubMed  CAS  Google Scholar 

  • Goodall, D. W. 1945. The distribution of weight change in the young tomato plant. I. Dry weight changes of the various organs. Ann. Bot. (London) N.S.9: 101–139.

    Google Scholar 

  • ————— 1946. The distribution of weight change in the young tomato plant. II. Changes in dry weight of separated organs, and translocation rates. Ann. Bot. (London) N.S.10: 305–338.

    Google Scholar 

  • Hartt, C. E. 1963. Translocation as a factor in photosynthesis. Naturwissenschaften21: 666–667.

    Article  Google Scholar 

  • Hatch, M. D., &C. R. Slack. 1966. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem. Jour.101: 103–111.

    CAS  Google Scholar 

  • Heinicke, A. J. 1932. Assimilation of CO2 by apple leaves as affected by ringing the stem. Proc. Amer. Soc. Hort. Sci.29: 225–229.

    CAS  Google Scholar 

  • Hesketh, J. 1963. Limitations to photosynthesis responsible for differences among species. Crop. Sci.3: 493–496.

    Google Scholar 

  • Hoover, W. H., E. S. Johnston, &F. S. Brackett. 1933. Carbon dioxide assimilation in a higher plant. Smithsonian Inst. Misc. Collections87: 1–19.

    Google Scholar 

  • Hopkinson, J. M. 1964. Studies on the expansion of leaf surface. IV. The carbon and phosphorus economy of a leaf. Jour. Exp. Bot.15: 125–137.

    Article  CAS  Google Scholar 

  • Humphries, E. C. 1963a. Dependence of net assimilation rate on root growth of isolated leaves. Ann. Bot. (London) N.S.27: 175–183.

    Google Scholar 

  • ————— 1963b. Effects of (2 chloro-ethyl) trimethylammonium chloride on plant growth, leaf area and net assimilation rate. Ann. Bot. (London) N.S.27: 517–532.

    CAS  Google Scholar 

  • ————— 1967. The effect of root formation on photosynthesis of detached leaves. Ann. Bot. (London) N.S.31: 391–400.

    Google Scholar 

  • —————. 1964. The effect of root formation on photosynthesis of detached leaves. Ann. Bot. (London) N.S.28: 291–400.

    Google Scholar 

  • Iyama, J., Y. Murata, &T. Honma, 1964–65. Studies on the photosynthesis of forage crops. III. Influence of the different temperature levels on diurnal changes in the photosynthesis of forage crops under constant conditions. Proc. Crop Sci. Soc. Japan33: 25–28.

    Google Scholar 

  • Jensen, R. G., &J. A. Bassham. 1966. Conditions for obtaining photosynthetic carbon compound photosynthesis with isolated chloroplasts comparable within vivo rates and products. Plant. Physiol.41: lvii.

    Google Scholar 

  • Kiesselbach, T. A. 1948. Endosperm type as a physiologic factor in corn yield. Jour. Amer. Soc. Agron.40: 216–236.

    Google Scholar 

  • Kostytschew, S., M. Kudriavzewa, W. Moissejewa, &M. Smirnova. 1926. Der tägliche Verlauf der Photosynthese bei Landpflanzen. Planta1: 679.

    Article  Google Scholar 

  • Kurssanow, A. L. 1933. Über den einflus Kohlenhydrate auf den Tagesverlauf der Photosynthese. Planta20: 535.

    Article  Google Scholar 

  • ————— 1934. Die Photosynthese grüner Fruchte und Abhangigkeit von der normalen Tätigkeit der Blatten. Planta22: 240–250.

    Article  Google Scholar 

  • Lake, J. V. 1967. Respiration of leaves during photosynthesis. II. Effects on the estimation of mesophyll resistance. Australian Jour. Biol. Sci.20: 495–499.

    CAS  Google Scholar 

  • Loomis, W. E. 1934–35. The translocation of carbohydrates in maize. Iowa State Coll. Jour. Sci.9: 509–520.

    Google Scholar 

  • Loustalot, A. J. 1943. Effect of ringing the stem on photosynthesis, transpiration and respiration of pecan leaves. Proc. Amer. Soc. Hort. Sci.42: 127–132.

    CAS  Google Scholar 

  • Ludwig, L. T., T. Saeki, &L. T. Evans. 1965. Photosynthesis in artificial communities of cotton plants in relation to leaf area. I. Experiments with progressive defoliation of mature plants. Australian Jour. Biol. Sci.18: 1103–1118.

    CAS  Google Scholar 

  • Maggs, D. H. 1963. The reduction in growth brought about by fruiting. Jour. Hort. Sci.38: 119–128.

    Google Scholar 

  • ————— 1964. Growth rates in relation to assimilate supply and demand. I. Leaves and roots as limiting regions. Jour. Exp. Bot.15: 574–583.

    Article  Google Scholar 

  • ————— 1965. Growth rates in relation to assimilate supply and demand. II. The effect of particular leaves and growing regions in determining dry matter distribution in young apple trees. Jour. Exp. Bot.16: 387–404.

    Article  Google Scholar 

  • Mason, T. G., &E. J. Maskell. 1928a. Studies on the transport of carbohydrates in the cotton plant. I. A study of the diurnal variation in the carbohydrates of leaf, bark and wood, and the effects of ringing. Ann. Bot. (London)42: 189–253.

    Google Scholar 

  • —————, & —————. 1928b. Studies on the transport of carbohydrates. II. The factors determining the rate and the direction of movement of sugars. Ann. Bot. (London)42: 571–636.

    CAS  Google Scholar 

  • McCree, K. J., &J. H. Troughton. 1966. Prediction of growth rate at different light levels from measured photosynthesis and respiration rates. Plant Physiol.41: 559–566.

    PubMed  CAS  Google Scholar 

  • Mooney, H. A., &W. D. Billings. 1961. Comparative physiological ecology of arctic and alpine populations ofOxyria digyna. Ecol. Monogr.31: 1–29.

    Article  Google Scholar 

  • Moss, D. N. 1962. Photosynthesis and barrenness. Crop Sci.2: 366–367.

    CAS  Google Scholar 

  • Murata, Y., &J. Iyama. 1962–1963. Studies on the photosynthesis of forage crops. I. Diurnal changes in photosynthesis of several grasses and barley seedlings under constant temperature and light intensity. Proc. Crop Sci. Soc. Japan31: 311–314.

    Google Scholar 

  • —————, —————, &T. Honma. 1965–66. Studies on the photosynthesis of rice plants. XIII. On the inter-relationships between photosynthetic activity of the leaf and the physiological activity of the root. Proc. Crop Sci. Soc. Japan34: 148–153.

    Google Scholar 

  • Nátr, L., &I. Kousalova. 1965. Comparison of results of photosynthetic intensity measurements in cereal leaves as determined by the dry weight increase or by the gasometric method. Biol. Plant. (Praha)7: 98–108.

    Article  Google Scholar 

  • —————. 1961. Application of the leaf-disk method to the determination of photosynthesis in cereals. Biol. Plant. (Praha)3: 245–251.

    Google Scholar 

  • Neubauer, E. 1939. Der Einfluss der ‘Ringlung’ auf der Kohlenhydrategehalt der Blatter. Gartenbauwissenschaft12: 23.

    Google Scholar 

  • Nösberger, J., &E. C. Humphries. 1965. The influence of removing tubers in dry-matter production and net assimilation rate of potato plants. Ann. Bot. (London) N.S.29: 579–588.

    Google Scholar 

  • —————. 1965. Effect of removing florets or shading the ear of barley on production and distribution of dry matter. Ann. Bot. (London) N.S.29: 635–644.

    Google Scholar 

  • Rabinowitch, E. I. 1945. Photosynthesis and related processes. Interscience Publ. Inc., New York, Vol. I, xiv + 599 pp. (pp. 331–333).

    Google Scholar 

  • ————— 1951. Photosynthesis and related processes. Interscience Publ. Inc., New York, Vol. II (1), xi + 603–1208 pp. (pp. 873–900).

    Google Scholar 

  • Rackham, O. 1966. Radiation, transpiration, and growth in a woodland annual.In: “Light as an Ecological Factor,” ed. by R. Bainbridge, G. C. Evans, & O. Rackham, Blackwell Sci. Publ., Oxford, England, xi + 452 pp. (pp. 167–185).

    Google Scholar 

  • Sachs, J. 1884. Ein Beitrag zur Kenntnis der Ernährungsthätigkeit der Blatter. Arb. Bot. Inst., Würzburg,3: 1.

    Google Scholar 

  • Saposchnikoff, W. 1890. Bildung und Wanderung der Kohlenhydrate in den Laubblättern. Ber. Deut. Bot. Ges.8: 233–242.

    Google Scholar 

  • ————— 1891. Uber die Grenzen der Anhäufung der Kohlenhydrate in den Blättern der Weinrebe und anderer Pflanzen. Ber. Deut. Bot. Ges.9: 293–300.

    Google Scholar 

  • ————— 1893. Beitrag zur Kenntniss der Grenzen der Anhäufung von Kohlenhydraten in der Blättern. Ber. Deut. Bot. Ges.11: 391–393.

    Google Scholar 

  • Sestak, Z. 1966. Limitations for finding a linear relationship between chlorophyll content and photosynthetic activity. Biol. Plant. (Praha)8: 336–346.

    CAS  Google Scholar 

  • —————. 1962. Photosynthesis and chlorophyll content in different areas of fodder cabbage leaves. Biol. Plant. (Praha)4: 47–53.

    CAS  Google Scholar 

  • Slatyer, R. O., &J. F. Bierhuizen. 1964. Transpiration from cotton leaves under a range of environmental conditions in relation to internal and external diffusive resistances. Australian Jour. Biol. Sci.17: 115–130.

    Google Scholar 

  • Sweet, G. B., &P. F. Wareing. 1966. Role of plant growth in regulating photosynthesis. Nature210: 77–79.

    Article  Google Scholar 

  • Thoday, D. 1910. Experimental researches on vegetable assimilation and respiration. V. A critical examination of Sach’s method for using increase in dry weight as a measure of CO2 assimilation in leaves. Proc. Roy. Soc. London B82: 1–56.

    CAS  Google Scholar 

  • Thomas, M. D., &G. R. Hill. 1949. Photosynthesis under field conditions.In: “Photosynthesis in Plants,” ed. by J. Franck & W. E. Loomis, Iowa State College Press, Ames, Iowa, pp. 19–52.

    Google Scholar 

  • Thorne, G. N., &A. F. Evans. 1964. Influence of tops and roots on net assimilation rate of sugar-beet and spinach beet and grafts between them. Ann. Bot. (London) N.S.28: 499–508.

    CAS  Google Scholar 

  • —————. 1967. Effects of temperature at different times on growth and yield of sugarbeet and barley. Ann. Bot. (London) N.S.31: 71–101.

    Google Scholar 

  • Thrower, S. L. 1962. Translocation of labelled assimilates in the soybean. II. The pattern of translocation in intact and defoliated plants. Australian Jour. Biol. Sci.15: 629–649.

    Google Scholar 

  • ————— 1965. Translocation of labelled assimilates in the soybean. IV. Some effects of low temperature on translocation. Australian Jour. Biol. Sci.18: 449–461.

    CAS  Google Scholar 

  • Tsuno, J., &K. Fujise. 1964–65. Studies on the dry matter production of the sweet potato. VIII. The internal factors’ influence on photosynthetic activity of the sweet potato leaf. Proc. Crop Sci. Soc. Japan33: 230–235.

    Google Scholar 

  • Turner, W. B., &R. G. S. Bidwell. 1965. Rates of photosynthesis in attached and detached bean leaves, and the effect of spraying with indole acetic acid solution. Plant Physiol.40: 446.

    PubMed  CAS  Google Scholar 

  • Verduin, J., &W. E. Loomis. 1944. Absorption of CO2 by maize. Plant Physiol.19: 278–293.

    PubMed  CAS  Google Scholar 

  • Wardlaw, I. F. 1961. Photosynthesis in cereals (with particular reference to the distribution of photosynthetic assimilates in wheat during grain development). Ph.D. Thesis, School of Botany, Univ. Melbourne, 209 pp.

  • ————— 1967. The effect of water stress on translocation in relation to photosynthesis and growth. I. Effect during grain development in wheat. Australian Jour. Biol. Sci.20: 25–39.

    CAS  Google Scholar 

  • Warren Wilson, J. 1957. Arctic plant growth. Advancement of Science (London)13: 383–388.

    Google Scholar 

  • ————— 1966. An analysis of plant growth and its control in arctic environments. Ann. Bot. (London) N.S.30: 383–402.

    Google Scholar 

  • Webb, J. A., &P. R. Gorham. 1965. The effect of node temperature on assimilation and translocation of C14 in the squash. Can. Jour. Bot.43: 1009–1020.

    Article  Google Scholar 

  • Webb, J. A., &P. R. Gorham. 1965. The effect of node temperature on assimilation and translocation of C14 in the squash. Can. Jour. Bot.43: 1009–1020.

    Article  Google Scholar 

  • Went, F. W. 1958. The physiology of photosynthesis in higher plants. Preslia30: 225–249.

    Google Scholar 

  • Wildman, S. G. 1967. The organization of grana-containing chloroplasts in relation to location of some enzymatic systems concerned with photosynthesis, protein synthesis, and ribonucleic acid synthesis.In: “Biochemistry of Chloroplasts,” ed. by T. W. Goodwin, Proc. NATO Advan. Study Inst. (Aberystwyth), Academic Press, New York, Vol. 2, pp. 295–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neales, T.F., Incoll, L.D. The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: A review of the hypothesis. Bot. Rev 34, 107–125 (1968). https://doi.org/10.1007/BF02872604

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872604

Keywords

Navigation