Skip to main content
Log in

Phonon dispersion in aluminium arsenide and antimonide

  • Brief Reports
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The phonon dispersion curves for aluminium arsenide and antimonide have been investigated by using a deformation bond approximation model. The results obtained from this model are compared with the experimental values wherever it is available. Since there is no complete experimental phonon dispersion curves for AlAs, we could not compare our calculated results, but the results of AlSb have been compared with the inelastic neutron scattering measurements at 15 K. However, we compare the phonon frequencies of AlAs and AlSb at critical points of the Brillouin zone obtained by our calculations and Raman spectroscopy measurements. This model predicts the phonon modes satisfactorily in all the symmetry directions of the Brillouin zone (BZ). The spectrum has similar features as observed in other III–V compound semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B Jusserand, D Paquet and A Regreny,Phys. Rev. B30, 6245 (1984)

    ADS  Google Scholar 

  2. E Molinari, A Fasolino and K Kunc,Superlatt. and Microstr. 2, 397 (1986)

    Article  ADS  Google Scholar 

  3. M V Klein,IEEE J. Quantum Electrton. QE22, 1760 (1986) and references therein

    Article  ADS  Google Scholar 

  4. M Cardona,Superlatt. and Microstr. 7, 183 (1990)

    Article  ADS  Google Scholar 

  5. M Cardona,Spectroscopy of semiconductors (Plenum Press, New York, 1990)

    Google Scholar 

  6. S Rath and S P Sanyal,Phys. Status Solidi B176, 63 (1993)

    Article  Google Scholar 

  7. G P Schwarz, G S Gualtiers, W A Sunder and L A Farrow,Superlatt. and Microstr. 3, 523 (1987)

    Article  ADS  Google Scholar 

  8. P V Santos, A K Sood, M Cardona, K Ploog, Y Ohmori and H Okamoto,Phys. Rev. B37, 6381 (1988)

    ADS  Google Scholar 

  9. D Strauch, B Dorner and K Karch, ‘Phonons 89’,Proceeding of Third International Conference on Phonon Physics (World Scientific, Singapore, 1989)

    Google Scholar 

  10. P Molinas-Mata, A J Shields and M Cardona,Phys. Rev. B47, 1866 (1994)

    ADS  Google Scholar 

  11. M R Lorenz, R Chicotka, D G Pettit and P J Dean,Solid State Commun. 8, 693 (1970)

    Article  ADS  Google Scholar 

  12. A Oriton and R Chicotka,Phys. Rev. B10, 591 (1974)

    ADS  Google Scholar 

  13. Z P Wang, D S Jiang and K Ploog,Solid State Commun. 65, 6619 (1988)

    Google Scholar 

  14. A Yu Pusen, A G Mileklin, M P Sinyuleore, K Ploog and A I Tosopore,JETP 52, 462 (1990)

    Google Scholar 

  15. D J Mowbray, M Cardona, K Ploog,Phys. Rev. B43, 1598 (1991)

    ADS  Google Scholar 

  16. Z V Propovic, M Cardona, E Richter, D Strauch, L Taffer and K Ploog,Phys. Rev. B41, 5904 (1991)

    ADS  Google Scholar 

  17. F Calu, P J Mowbray, D W Noles, M Cardona, J M Caluja and K Ploog,Phys. Rev. B45, 9152 (1991)

    ADS  Google Scholar 

  18. G S Spencer, J Grant, R Gray, J Zolman, J Menendez, R Drooped and G N Maracos,Phys. Rev. B49, 5761 (1994)

    ADS  Google Scholar 

  19. J Wagner, A Fisher, W Barus and K Pllog,Phys. Rev. B49, 7295 (1994)

    ADS  Google Scholar 

  20. T Azuhata, T Sota and K Suzuki,J. Phys. C7, 1949 (1995)

    Google Scholar 

  21. P Giannozi, S de Gironcoli, D Pavone and S Baroni,Phys. Rev. B43, 7231 (1991)

    ADS  Google Scholar 

  22. D Strauch and B Dorner,J. Phys. C19, 2853 (1986)

    ADS  Google Scholar 

  23. K Kunc, M Balakanaski and M Nusimovici,Phys. Rev. B12, 4346 (1975)

    ADS  Google Scholar 

  24. K Kunc, M Balakanaski and M Nusimovici,Phys. Status Solidi B71, 341 (1975)

    Article  Google Scholar 

  25. K Kunc, M Balakanaski and M Nucimovici,Phys. Status Solidi B73, 456 (1976)

    Google Scholar 

  26. J R Hardy,Philos. Mag. 4, 1278 (1959);5, 859 (1960);6, 27 (1961);7, 315 (1965)

    Article  Google Scholar 

  27. A M Karo and J R Hardy,Phys. Rev. B129, 2024 (1965);141, 696, (1966);181, 1272 (1969)

    Google Scholar 

  28. N Vegelatos, D Wehe and J S King,J. Chem. Phys. 60, 3613 (1974)

    Article  ADS  Google Scholar 

  29. R M Martin,Phys. Rev. B1, 4005 (1970)

    ADS  Google Scholar 

  30. J L Yarnell, J L Warren and R G Wenzel,Neutron scattering (International Atomic Agency, Vienna, 1968) vol. 1, pp. 301

    Google Scholar 

  31. J F Vetelino and S Mitra,Phys. Rev. B178, 1349 (1969)

    Article  ADS  Google Scholar 

  32. P K Jha, S Rath and S P Sanyal,Indian J. Pure Appl. Phys. 34, 269 (1996)

    Google Scholar 

  33. R W Weikoff,Crystal structures (Interscience Publishers, New York, 1963)

    Google Scholar 

  34. E Burstein, H M Brodsky and G Lucovsky,Int. J. Quantum. Chem. 15, 759 (1967)

    Google Scholar 

  35. F S Hickernell and W R Gaytam,J. Appl. Phys. 37, 462 (1966)

    Article  ADS  Google Scholar 

  36. G Arlt and P Quadfling,Phys. Status Solidi 25, 323 (1968)

    Article  Google Scholar 

  37. Y S Raptis, E Anastassakis and G Kanellis,Phys. Rev. B46, 15801 (1992)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafulla K Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, P.K., Rath, S. & Sanyal, S.P. Phonon dispersion in aluminium arsenide and antimonide. Pramana - J Phys 49, 547–553 (1997). https://doi.org/10.1007/BF02875236

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875236

Keywords

PACS Nos

Navigation