Skip to main content
Log in

Green composites. I. physical properties of ramie fibers for environment-friendly green composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly ‘green’ composites. SEM micrographs of a longitudinal and cross-sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young’s modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to 160°C with no decrease in tensile strength or Young’s modulus. However, at temperatures higher than 160°C the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9%. These properties make ramie fibers suitable as reinforcement for ‘green’ composites. Also, the green composites can be fabricated at temperatures up to 160°C without reducing the fiber properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Sera, L. Robles-Austriaco, and R. P. Pama,J. Ferrocement,20, 109 (1990).

    Google Scholar 

  2. M. N. Cazaurang-Martinez, P. J. Herrera-Franco, P. I. Gonzalez-Chi, and M. Aguilar-Vega,J. Appl. Polym. Sci.,43, 749 (1991).

    Article  CAS  Google Scholar 

  3. K. Joseph, S. Thomas, C. Pavithran, and M. Brahmakumar,J. Appl. Polym. Sci.,47, 1731 (1993).

    Article  CAS  Google Scholar 

  4. S. Luo and A. N. Netravali,J. Mater. Sci.,34, 3709 (1999).

    Article  CAS  Google Scholar 

  5. S. Luo and A. N. Netravali,Polym. Composite.,20, 367 (1999).

    Article  CAS  Google Scholar 

  6. S. Luo and A. N. Netravali,J. Adhes. Sci. Technol.,15, 423 (2001).

    Article  CAS  Google Scholar 

  7. P. Lodha and A. N. Netravali,J. Mater. Sci.,37, 3657 (2002).

    Article  CAS  Google Scholar 

  8. P. Lodha and A. N. Netravali,Polym. Compos.,26, 647 (2005).

    Article  CAS  Google Scholar 

  9. P. Lodha and A. N. Netravali,Composites Science and Technology,65, 1211 (2005).

    Article  CAS  Google Scholar 

  10. B. V. Kokta, R. Chen, C. Daneault, and J. L. Valade,Polym. Compos.,4, 229 (1983).

    Article  CAS  Google Scholar 

  11. C. Pavithran, P. S. Mukjerjee, M. Brahmakumar, and A. D. Damodaran,J. Mater. Sci.,26, 455 (1991).

    Article  CAS  Google Scholar 

  12. M. Wollerdorfer and H. Bader,Industrial Crops and Products,8, 105 (1998).

    Article  CAS  Google Scholar 

  13. A. K. Mohanty and M. Misra,Polym-Plast. Technol. Eng.,34, 729 (1995).

    Article  CAS  Google Scholar 

  14. D. N. Saheb and J. P. Jog,Adv. Polym. Tech.,18, 351 (1999).

    Article  CAS  Google Scholar 

  15. J. George, M. S. Sreekala, and S. Thomas,Polym. Eng. Sci.,41, 1471 (2001).

    Article  CAS  Google Scholar 

  16. R. T. Woodhams, G. Thomas, and D. K. Rodgers,Polym. Eng. Sci.,24, 1166 (1984).

    Article  CAS  Google Scholar 

  17. F. Shafizadeh, “The Chemistry of Solid Wood” (R. M. Rowell ed.), pp.489–529, American Chemical Society, Washington, 1984.

    Google Scholar 

  18. A. K. Mohanty, M. Misra, and G. Hinrichsen,Macromol. Mater. Eng.,276, 1 (2000).

    Article  Google Scholar 

  19. M. K. Sridhar, G. Basavarajjappa, S. S. Kasturi, and N. Balsubramanian,Indian J. Text. Res.,7, 87 (1982).

    Google Scholar 

  20. C. Gonzalez and G. E. Mayers,Int. J. Polym. Mater.,23, 67 (1993).

    Article  CAS  Google Scholar 

  21. A. K. Bledzki, S. Reihmane, and J. Gassan,J. Appl. Polym. Sci.,59, 1329 (1996).

    Article  CAS  Google Scholar 

  22. T. T. Le Thi, H. Gauthier, R. Gauthier, B. Chabert, J. Guillet, B. V. Luong, and V. T. Nguygen,J. Macromol. Sci. Pure Appl. Chem.,33, 1997 (1996).

    Google Scholar 

  23. R. Gauthier, C. Joly, A. C. Coupas, H. Gauthier, and M. Escoubes,Polym. Compos.,19, 287 (1998).

    Article  CAS  Google Scholar 

  24. F. H. M. M. Costa and J. R. M. D’Almedia,Polym-Plast. Technol. Eng.,38, 1081 (1999).

    Article  CAS  Google Scholar 

  25. F. R. Al-Siddique, A. U. Khan, and R. A. Sheikh,World Textile Abstr.,No. 4196, (1984).

  26. E. T. N. Bisanda and M. P. Ansell,J. Mater. Sci.,27, 1690 (1992).

    Article  CAS  Google Scholar 

  27. A. Bismarck, A. K. Mohanty, I. Aranberri-Askargorta, S. Czapla, M. Misra, G. Hinrichsen, and J. Springer,Green Chemistry,3, 100 (2001).

    Article  CAS  Google Scholar 

  28. D. Fengel and X. Shao,Wood Sci. and Technol.,18, 103 (1984).

    CAS  Google Scholar 

  29. S. Li, B. Zhou, Q. Zeng, and X. Bao,Composites,25, 225 (1994).

    Article  CAS  Google Scholar 

  30. W. Weibull,Ing. Vetenskaps. Akad. Handl.,151, 153 (1939).

    Google Scholar 

  31. H. F. Wu and A. N. Netravali,J. Mater. Sci.,27, 3318 (1992).

    Article  CAS  Google Scholar 

  32. S. Nam and A. N. Netravali,J. Adhes. Sci. Technol.,18, 1063 (2004).

    Article  CAS  Google Scholar 

  33. B. C. Barkakaty,J. Appl. Polym. Sci.,20, 2921 (1971).

    Article  Google Scholar 

  34. A. K. Bledzki and J. Gassan,J. Prog. Polym. Sci.,24, 221 (1999).

    Article  CAS  Google Scholar 

  35. M. Lewin and E. M. Pearce Eds., “Handbook of Fiber Chemistry”, Marcel Dekker, New York, 1998.

    Google Scholar 

  36. S. Ochi, H. Takagi, R. Takura, and R. Niki,Jsms. Composites,30, 131 (2001).

    Google Scholar 

  37. A. K. Bledzki, S. Reihmane, and J. Gassan, “Handbook of Engineering Polymeric Materials” (N. P. Cheremisinoff ed.), pp.787–810, Marcel Dekker, New York, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil N. Netravali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, S., Netravali, A.N. Green composites. I. physical properties of ramie fibers for environment-friendly green composites. Fibers Polym 7, 372–379 (2006). https://doi.org/10.1007/BF02875769

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875769

Keywords

Navigation