Skip to main content
Log in

Microbial growth and production of antibiotics

  • Discussion
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adman R., Schultz L. D., Hall B. D.: Transcription in yeast: separation and properties of multiple RNA polymerases.Proc. Nat. Acad. Sci. U.S.A. 69, 1702 (1972).

    Article  CAS  Google Scholar 

  • Armsteong R. L., Sueoka N.: Phase transition in ribonucleic acid synthesis during germination ofBacillus subtilis spores.Proc. Nat. Acad. Sci. U.S.A. 59, 153 (1968).

    Article  Google Scholar 

  • Aubert J. P., Millet J., Pineau E., Milhaud G.: L(+)-N-succinyl glutamic acid inBacillus megaterium during sporulation.Biochim. Biophys. Acta 51, 529 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Barabás G., Ottenberger A., Szabó J., Erdei J., Szabó G.: The biological role of aminoglucoside. Intern. Symposium on Nocardia and Streptomyces in Warsaw, 1976.

  • Barabás G., Szabó G.: Effect of penicillin on streptomycin production byStreptomyces griseus.Antimicrob. Agents Chemoth. 11, 392 (1977).

    Google Scholar 

  • Barabás G., Szabó J., Szabó G.: Enzymically released cell wall fragments with antibiotic activity from aminoglucoside producing Streptomycetes. 10th International Congress of Chemotherapy, Sept. 18–23, 1977 (Zurich, Switzerland).

  • Ben-Zèiev H., Hattori J., Silbersein Z., Tesone C., Torriani A.: Ribonucleic acid polymerase from dormant and germinating spores ofBacillus cereus T, inSpores VI. Gerhardt P., Costilow R. N. and Sadoff H. L. (eds.), Amer. Soc. Microbiol., p. 472 (1975).

  • Bernlohr R. W., Novelli G. D.: Bacitracin biosynthesis and spore formation. The physiological role of an antibiotic.Arch. Biochem. Biophys. 103, 94 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Biffi G., Boretti G., Di Marco A.,Pennella P.: Metabolic behavior and chlortetracycline production ofStreptomyces aureofaciens in liquid culture.Appl. Microbiol. 2, 288 (1954).

    PubMed  CAS  Google Scholar 

  • Bishop H. L., Migita L. K., Doi R. H.: Peptide synthesis by extracts fromBacillus subtilis spores.J. Bacteriol. 99, 771 (1969).

    PubMed  CAS  Google Scholar 

  • Boretti G., Di Marco A.,Julita P., Raggi F., Bardi U.: Presenza degli enzimi della via eso monofosfato ossidativa melloStreptomyces aureofaciens.Giorn. Microbiol. 1, 406 (1956).

    CAS  Google Scholar 

  • Brian P. W.: The ecological significance of antibiotic production.Symp. Soc. Gen. Microbiol. 7, 168 (1957).

    Google Scholar 

  • Bu’Lock J. D.: Intermediary metabolism and antibiotic synthesis.Advances Appl. Microbiol. 3, 293 (1961).

    PubMed  CAS  Google Scholar 

  • Bu’Lock J. D.: The biosynthesis of natural compounds. An introduction to secondary metabolism. McGraw-Hill Publishing Company Limited, London (1965).

    Google Scholar 

  • Bu’Lock J. D.: The two-faced microbiologist: contributions of pure and applied microbiology to good research.Develop. Industrial Microbiol. 15, 11 (1975).

    Google Scholar 

  • Bu’Lock J. D., Powell A. J.: Secondary metabolism: an explanation in terms of induced enzyme mechanisms.Experientia 21, 55 (1965).

    Article  CAS  Google Scholar 

  • Calam C. T.: Starting investigational and production cultures.Process Biochemistry, p. 7 (1976).

  • Cohen A., Ben-Zéiev H., Yashouv J.: The outgrowth ofBacillus cereus spores harboring CP-51 bacteriophage DNA. I. Initiation of bacteriophage development.J. Virol. 11, 648 (1973).

    PubMed  CAS  Google Scholar 

  • Cohen A., Ben-Zèiev H., Silberstein Z.: Control of temporal gene expression during outgrowth ofBacillus cereus spores, inSpores VI. Gerhardt P., Costilow R. N., Sadoff H. L. (eds.) Amer. Soc. Microbiol., p. 478 (1975).

  • Cohen A., Silberstein Z. Mazor Z.: Ribonucleic acidpolymerase from vegetative cells and spores ofBacillus cereus, inSpores V. Halvorson H. O., Hanson R., Campbell L. L. (eds.), Amer. Soc. Microbiol., p.247 (1972).

  • Collett M. S., Jones G. H.: Morphological changes accompanying actinomycin production inStreptomyces antibioticus.J. Ultrastruct. Res. 46, 452 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Demain A. L.: How do antibiotic-producing microorganisms avoid suicide?Ann. New York Acad. Sci. 235, 601 (1974).

    Article  CAS  Google Scholar 

  • Deutscher M. P., Chambon P., Kornberg A.: Biochemical studies of bacterial sporulation and germination. XI. Protein-synthesizing systems from vegetative cells and spores ofBacillus megaterium.J. Biol. Chem. 243, 5117 (1968).

    PubMed  CAS  Google Scholar 

  • Di Marco A.,Boretti G., Julita P., Pennella P.: Researches on carbohydrate metabolism inStreptomyces aureofaciens in connection with chlortetracycline production.Rev. Ferment. Ind. Aliment. 11, 140 (1956).

    Google Scholar 

  • Di Marco A.,Pennella P.: The fermentation on the tetracyclines.Progr. Ind. Microbiol. 1, 45 (1957).

    Google Scholar 

  • Donovick R., Brow’s W. E.: Comments on the general role of carbohydrates in antibiotic synthesis, inBiogenesis of Antibiotic Substances, Publishing House of the Czechoslovak Academy of Sciences Prague, p. 283 (1965).

  • Doskočil J., Sikyta B., Kašparová J., Doskočilová D., Zajíček J.: Development of the culture ofStreptomyces rimosus in submerged fermentation.J. Gen. Microbiol. 18, 302 (1958).

    PubMed  Google Scholar 

  • Doskočil J., Hošťalek Z., Kašparová J., Zajíček J., Herold M.: Development ofStreptomyces aureofaciens in submerged culture.J. Biochem. Microbiol. Technol. & Eng. 1, 261 (1959).

    Article  Google Scholar 

  • Drew S. W., Demain A. L.: Methionine control of cephalosporin C formation.Biotechnol. Bioeng. 15, 743 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Dulaney E. L., Perlman D.: Observations onStreptomyces griseus. I. Chemical changes occurring during submerged streptomycin fermentations.Bull. Torrey Botan. Club 74, 504 (1947).

    Article  CAS  Google Scholar 

  • Dunkel R., Müller W., Nover L., Luckner M.: Stimulation of alkaloid formation inPenicillium cyclopium Westling by phenylalanine and mycelial extracts, in Nova Acta Leopoldina, Supplementum Nr. 7.Secondary Metabolism and Coevolution. Luckner M., Mothes K., Nover L. (eds.). Deutsche Akademie der Naturforscher, Leopoldina, Halle (Saale), p. 281 (1976).

    Google Scholar 

  • Enguist L. W., Bradley S. G.: Characterization of deoxyribonucleic acid fromStreptomyces venezuelae spores.Dev. Ind. Microbiol. 12, 225 (1971).

    Google Scholar 

  • Fencl Z., Vinterová E.: A new metabolic regulator: its stimulation of citric acid production and antisulphonamide and streptomycin effect.Nature 199, 905 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Fortnagel P., Bergmann R.: Alteration of the ribosomal fraction ofBacillus subtilis during sporulation.Biochim. Biophys. Acta 299, 136 (1973).

    PubMed  CAS  Google Scholar 

  • Fukuda R., Doi R. H.: Two polypeptides associated with the ribonucleic acid polymerase coreof Bacillus subtilis during sporulation.J. Bacteriol. 129, 422 (1977).

    PubMed  CAS  Google Scholar 

  • Gaden E. L. Jr.: Fermentation process kinetics.J. Biochem. Microbiol. Technol. Eng. 1, 413 (1959).

    Article  CAS  Google Scholar 

  • Gatenbeck S.: Studies on the basic metabolism determining the biosynthesis of malonate derived compounds inPenicillium islandicum, inBiogenesis of Antibiotic Substances, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1965, p. 255.

    Google Scholar 

  • Gottlieb D.: The production and role of antibiotics in soil.J. Antibiot. 29, 987 (1976).

    PubMed  CAS  Google Scholar 

  • Gräfe U., Bocker H., Reinhard C., Thrum H.: Induzierbare Akkumulation von α-Ketoglutarsäure in Kulturen eines Makrolidantibioticum —bildenden Stammes vonStreptomyces hygroscopicus JA 6599.Z. Allg. Mikrobiol. 15, 575 (1975a).

    Article  PubMed  Google Scholar 

  • Gräfe U., Bocker H., Thrum H.: Precursorbildung und Biosynthese des Makrolidantibioticums A 6599 Turimycin) durchStreptomyces hygroscopicus JA 6599.Z. Allg. Microbiol. 15, 249 (1975).

    Article  Google Scholar 

  • Gräfe U., Bocker H., Thrum H.: Regulative influence of o-aminobenzoic acid on the biosynthesis of nourseothricin in cultures ofStreptomyces noursei JA 3890b. II. Regulation of glutamine synthetase and the role of the glutamine synthetase/glutamate synthase pathway.Z. Allg. Microbiol. 17, 201 (1977).

    Article  Google Scholar 

  • Gröger D.: Influence of methionine on β-lactam antibiotic formation byCephalosporium, in Nova Acta Leopoldina, Supplementium Nr. 7,Secondary Metabolism and Coevolution. Luckner M., Mothes K., Nover L. (eds.). Deutsche Akademie der Naturforscher, Leopoldina, Halle (Saale), p. 271 (1976).

    Google Scholar 

  • Guberniev M. A., Ugoleva N. A., Tokbochkina L. J.: Nucleic acids and phosphoric compounds in the mycelium ofActinomyces aureofaciens at different development stages.Antibiotiki 1, 8 (1956a).

    CAS  Google Scholar 

  • Guberniev M. A., Ugoleva N. A., Torbochkina L. J.: Content of nucleic acids and phosphoric compounds in the mycelium ofActinomyces rimosus at different development stages.Antibiotiki 1, 25 (1956b).

    CAS  Google Scholar 

  • Gwatkin R.: Are glucosidic antibiotics, such as neomycin, part of the actinomycete cell wall?Nature 193, 279 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Harvey R. J.: Fraction of ribosomes synthesizing protein as a function of specific growth rate.J. Bacteriol. 114, 287 (1953).

    Google Scholar 

  • Hill P.: The production of penicillins in soils and seeds byPenicillium chrysogenum and the role of penicillin β-lactamase in the ecology of soil bacillus.J. Gen. Microbiol. 70, 243 (1972).

    PubMed  CAS  Google Scholar 

  • Hirsch Ch. F., Ensign J. G.: Germination ofStreptomyces viridochromogenes spores, inSpores VI. Gerhardt P., Costilow R. N., Sadoff H. L. (eds.). Amer. Soc. for Microbiol., p. 28 (1975).

  • Hockenhull D. J. D.: The influence of medium constituents on the biosynthesis of penicillin.Progr. Ind. Microbiol. 1, 3 (1959).

    Google Scholar 

  • Hockenhull D. J. D.: The biochemistry of streptomycin production.Progr. Ind. Microbiol. 2, 131 (1960).

    CAS  Google Scholar 

  • Hodgson B.: Possible roles for antibiotics and other biologically active peptides at specific stages during sporulation of Bacillaceae.J. Theoret. Biol. 30, 111 (1971).

    Article  CAS  Google Scholar 

  • Hošťálek Z.: Relationship between the carbohydrate metabolism ofStreptomyces aureofaciens and the biosynthesis of chlortetracycline. I. The effect of interrupted aeration, inorganic phosphate and benzyl thiocyanate on chlortetracyeline biosynthesis.Folia Microbiol. 9, 78 (1964a).

    Article  Google Scholar 

  • Hošťálek Z.: Relationship between the carbohydrate metabolism ofStreptomyces aureofaciens and the biosynthesis of chlortetracycline. II. The effect of benzyl thiocyanate on the respiration of washed mycelium ofStreptomyces aureofaciens.Folia Microbiol. 9, 89 (1964b).

    Article  Google Scholar 

  • Hošťálek Z.: Relationship between the carbohydrate metabolism ofStreptomyces aureofaciens and the biosynthesis of chlortetracycline. III. The effect of benzyl thiocyanate on carbohydrate metabolism ofStreptomyces aureofaciens.Folia Microbiol. 9, 96 (1964c).

    Article  Google Scholar 

  • Hošťálek Z., Herold M., Nečásek J.: Die Beeinflussung der Chlortetracyclinproduction und des Kohlenhydratverbrauches durch Benzylrhodanid.Naturwiss. 45, 543 (1958).

    Article  Google Scholar 

  • Hošťálek Z., Vaněk Z.: Molecular basis of polygenic inheritance in the biosynthesis of chlortetracycline, inGenetics of Industrial Microorganisms, Actinomycetales and Fungi, Academia-Prague, p. 353 (1973).

  • Idriss J. M., Halvorson H. O.: The nature of ribosomes of sporesof Bacillus cereus T. andBacillus megaterium.Arch. Biochem. Biophys. 133, 442 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Jarvis F. G., Johnson M. J.: The role of constituents of synthetic media for penicillin production.J. Amer. Chem. Soc. 69, 3010 (1947).

    Article  CAS  Google Scholar 

  • Jones G. H.: RNA synthesis inStreptomyces antibiotics: In vitro effects of actinomycin and transcriptional inhibitors from 48-h cells.Biochemistry 15, 3341 (1976).

    Google Scholar 

  • Jones G. H.: Relationship between changes in the translational apparatus and actinomycin production inStreptomyces antibioticus.J. Bacteriol. 129, 81 (1977).

    PubMed  CAS  Google Scholar 

  • Kalakoutskii L. V., Agre N. S.: Comparative aspects of development and differentiation inActinqmycetes.Bacteriol. Rev. 40, 469 (1976).

    PubMed  CAS  Google Scholar 

  • Katz E.:Actinomycin in Antibiotics II. Gottlieb D. and Shaw P. D. (eds.), Springer-Verlag Berlin, p. 276 (1967).

    Google Scholar 

  • Katz E., Pienta P., Sivak A.: The role of nutrition in the synthesis of actinomycin.Appl. Microbiol. 6, 236(1958).

    PubMed  CAS  Google Scholar 

  • Katz E., Weissbach H.: Incorporation of C14-labelled amino acids into actinomycin and protein byStreptomyces antibioticus.J. Biol. Chem. 238, 666 (1963).

    PubMed  CAS  Google Scholar 

  • Kerjan P.: Effect of proteases on RNA-polymerase of Bacillus subtilis, inRegulation de la Sporulation Microbienne No. 227. Editions du centre national de la recherche scientifique, Paris, p. 41 (1973).

    Google Scholar 

  • Keynak A., Evenchik Z.: Activation, inThe Bacterial Spore, Gould G. W. and Hurst A. (eds), Academic Press Inc. London, p. 359 (1969).

    Google Scholar 

  • Khokhlov A. S., Tovarova I. I., Anisova L. N.: Regulators of streptomycin biosynthesis and development ofActinomyces streptomycini, in Nova Acta Leopoldina, Supplementum Nr. 7,Secondary Metabolism and Coevolution. Luckner M., Mothes K., Nover L. (eds.). Deutsche Akademie der Naturforscher, Leopoldina, Halle (Saale), p. 289 (1976).

    Google Scholar 

  • Kjeldgaard N. O., Gausing K.: Regulation of biosynthesis of ribosomes, inRibosomes,Nomura M. et al. (eds.). Cold Spring Harbor Laboratory, p. 369 (1974).

  • Kobayashi Y.: Activation of dormant spore ribosomes during germination. II. Existence of defective ribosomal subunits in dormant spore ribosomes, inSpores V,Halvorson, H. O. et al. (eds.). Am. Soc. Microbiol., p. 269 (1972).

  • Krassilnikov N. A.: Formation and accumulation of antibiotic substances in soil.Doklady Akad. Nauk SSSR 94, 957 (1954).

    Google Scholar 

  • Lavallé R., De Hauwer G. D.: Tryptophan messenger translation inEscherichia coli.J. Mol. Biol. 51, 435 (1970).

    Article  PubMed  Google Scholar 

  • Light R. J.: The biosynthesis of 6-methylsalicylic acid. Crude enzyme systems from early and late producing strains ofPenicillium patulum.J. Biol. Chem. 242, 1880 (1967).

    PubMed  CAS  Google Scholar 

  • Maia J. C. C., Kerjan P., Szulmajster J.: DNA-dependent RNA polymerase from vegetative cells and spores ofBacillus subtilis. IV. Subunit composition.FEBS Lett. 13, 269 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Malik V. S., Vining L.: Metabolism of chloramphenicol by the producing organism.Can. J. Microbiol. 16, 173 (1970).

    PubMed  CAS  Google Scholar 

  • Makarevich V. G., Slugina M. D., Upiter G. D., Zaslavskaya P. L., Gerasimova T. M.: Regulation of tetracycline biosynthesis by control of antibiotic —producing organism growth.Antibiotiki 21, 205 (1976).

    PubMed  CAS  Google Scholar 

  • Makarevich V. G., Upiter G. D., Slugina M. D., Tarasova S. S., Gravit N. F.: Effect of orthophosphate on growth rate ofActinomyces aureofaciens and tetraeycline biosynthesis by it.Antibiotiki 20, 295 (1975).

    PubMed  CAS  Google Scholar 

  • MatelovÁ V., Musílková M., Nečásek J., Šmejkal F.: Influence of interrupted aeration on chlortetracycline production.Preslia 27, 27 (1955).

    Google Scholar 

  • Matteo C. C., Cooney C. L., Demain A. L.: Production of gramicidin S synthetases byBacillus brevis in continuous culture.J. Gen. Microbiol. 96, 415 (1976).

    PubMed  CAS  Google Scholar 

  • Maxon W. D.: Microbiological process report. Continuous fermentation. A discussion of its principles and applications.Appl. Microbiol. 3, 110 (1955).

    PubMed  CAS  Google Scholar 

  • Mikulík K., Blumauerová M., Vaněk Z., Ludvík J.: Characterization of ribosomes of a strain ofStreptomyces aureofaciens producing chlortetracyeline.Folia Microbiol. 16, 24 (1971b).

    Article  Google Scholar 

  • Mikulík K., Janda I., Řičicová A., Vinter V.: Differentiation in Actinomycetes. I. Ribosomes of veg-j etative cells and spores ofStreptomyces granaticolor. InSpores VI,Gerhardt P., Costilow R. N., Sadoff H. L. (eds.). Amer. Soc. for Microbiology, p. 15 (1975).

  • Mikulík K., Janda L., Mašková H., Jirešová M., Čáslavská J., Šťastná J.: Translation control of cell differentiation. InRibosomes and RNA Metabolism, Zelinka J., Balán J. (eds.). Publishing House of the Slovak Academy of Sciences, Bratislava, p. 379 (1976).

    Google Scholar 

  • Mikulík K., Janda I., Mašková H., Šťastná J., Jiráňová A.: Differentiation in Actinomycetes. III. Macromolecular synthesis accompanying the transition from spores to vegetative forms ofStreptomyces granaticolor.Folia Microbiol. 22, 250 (1977).

    Google Scholar 

  • Mikulík K., Karnetová J., Křemen A., Tax J., Vaněk Z.: Protein synthesis and production of tetraeycline inStreptomyces aureofaciens. InRadiation and Radioisotopes for Industrial Microorganisms. International atomic energy agency, Vienna (1971a).

    Google Scholar 

  • Mikulík K., Karnetová J., Quyen N., Blumauerová M., Komersová I., Vaněk Z.: Interaction of tetracycline with protein synthesizing system ofStreptomyces aureofaciens.J. Antibiot. 24, 803 (1971c).

    Google Scholar 

  • Mikulík K., Quyen N. D., Blumauerová M., Vaněk Z.: Binding of aureovocin to ribosomes ofStreptomyces aureofaciens B-96.FEBS Lett. 5, 131 (1969).

    Article  Google Scholar 

  • Miller P. A., Sjolander N. O., Nalesnyk S., Arnold N., Johnson S., Doerschuk A. P., McCormick J. R. D.: Cosynthetic factor I. A factor involved in hydrogen —transfer inStreptomyces aureofaciens.J. Amer. Chem. Soc. 82, 5002 (1960).

    Article  CAS  Google Scholar 

  • Mitani T., Heinze J. E., Freese E.: Induction of sporulation inBacillus subtilis by decoyine or hadacidin.Biochim. Biophys. Res. Comm. 77, 1118 (1977).

    Article  CAS  Google Scholar 

  • Nickerson K. W., De Pinto J.,Bulla L. A. Jr.: Lipid metabolism during bacterial growth, sporulation and germination: Kinetics of fatty acid and macromolecular synthesis during spore germination and outgrowth ofBacillus thuringiensis.J. Bacterial. 121, 227 (1976).

    Google Scholar 

  • Nover L., Luckner M.: The integration of secondary metabolism into the developmental program ofPenicillium cyclopium Westling, in Nova Acta Leopoldina, Supplementum Nr. 7,Secondary Metabolism and Coevolution, Luckner M., Mothes K., Nover L. (eds.). Deutsche Akademie der Naturforscher, Leopoldina, Halle (Saale), p. 375 (1976).

    Google Scholar 

  • Nüesch J., Treichler H. J., Liersch M.: The biosynthesis of cephalosporin C, inGenetics of Industrial Microorganisms, Actinomyces and Fungi,Vaněk Z., Hostálek Z., Cudlin J. (eds.). Aeademia Prague (1973).

  • Pirt S. J., Righelato R. C.: Effect of growth rate on the synthesis of penicillin byPenicillium chrysogenum in batch and chemostat cultures.Appl. Microbiol. 15, 1284 (1967).

    PubMed  CAS  Google Scholar 

  • Pollock M. R.: The function and evolution of penicillinase.Proc. Roy. Soc. (London), Ser B 179, 385 (1971).

    CAS  Google Scholar 

  • Pritchard R. H.: Review lecture on the growth and form of a bacterial cell.Phil. Trans. 207, 303 (1974).

    Google Scholar 

  • Prokofieva-Belgorskaya A., Popova L.: The influence of phosphorus on the development ofStreptomyces aureofaciens and on its activity to produce chlortetracycline.J. Gen. Microbiol. 20, 462 (1959).

    Google Scholar 

  • Raczyńska-Bojanowska K.: Biochemical criteria in evaluation of antibiotic producing microorganisms.Postepy Hig. Med. Dosw. 28, 499 (1974).

    PubMed  Google Scholar 

  • Rafalski A., Raczyńska-Bojanowska K.: Synthesis of malonate and methylmalonate and the formation of polyene antibiotics.Acta Biochim. Pol. 19, 71 (1972).

    PubMed  CAS  Google Scholar 

  • Rana R. S., Halvorson H. O.: Nature of deoxyribonucleic acid synthesis and its relationship to protein synthesis during outgrowth ofBacillus cereus.Bacteriol. 109, 606 (1972).

    CAS  Google Scholar 

  • Robbers J. E., Floss H. G.: Induction by tryptophan of the enzymes of ergot alkaloid biosynthesis, in Nova Acta Leopoldina, Supplementum Nr. 7,Secondary Metabolism and Coevolution, Luckner M., Mothes K., Nover L. (eds), Deutsche Akademie der Naturforscher, Leopoldina, Halle (Saale), p. 243 (1976).

    Google Scholar 

  • Ruczaj Z., Ostrowska-Krysiak B., Sawnor-Korszyńska D., Raczyńska-Bojanowska K.: On the effect of barbital onStreptomyces mediterranei.Acta Microbiol. Polon. 4, 201 (1972).

    CAS  Google Scholar 

  • Sadoff H. L.: Sporulation antibiotics of Bacillus species, inSpores V,Halvorson H. O., Hanson R., Campbell L. L. (eds.), 157 (1972).

  • Sakakibara Y., Saito H., Ikeda Y.: The similarity of DNA from dormant spores ofBacillus subtilis and that from vegetative cells.Biochim. Biophys. Acta 174, 752 (1969).

    PubMed  CAS  Google Scholar 

  • Sarkar N., Paulus H.: Function of peptide antibiotics in sporulation.Nature-New Biol. 239, 228 (1972).

    PubMed  CAS  Google Scholar 

  • Schaechter M., Maaløe O., Kjeldgaard N. O.: Dependency on medium and temperature of cell size, and chemical composition during balanced growth ofSalmonella typhimurium.J. Gen. Microbiol. 19, 592 (1958).

    PubMed  CAS  Google Scholar 

  • Schatz A., Waksman S. A.: Strain specificity and production of antibiotic substances. IV. Variations among actinomycetes, with special reference toActinomyces griseus.Proc. Nat. Acad. Sci. U.S.A. 31, 129 (1945).

    Article  CAS  Google Scholar 

  • Srinivasan R.: Intracellular regulation of sporulation of bacteria, p. 64–74. InL. L. Campbell andHalvorson (ed.),Spores III. Am. Soc. Microbiol., Ann Arbor, Michigan, USA, 1965.

    Google Scholar 

  • Stafford R. S., Donnellan J. E., Jr.: Photochemical evidence for conformation changes in DNA during germination of bacterial spores.Proc. Nat. Acad. Sci. U.S.A. 59, 822 (1968).

    Article  CAS  Google Scholar 

  • Sussman A. S.: Activators of fungal spore germination, inThe Fungus Spore, Form and Function. Weber D. J., Hess W. M. (eds.), Wiley Interscience, New York (1975).

    Google Scholar 

  • Szabo G., Barabas Gy., Valyi-Nagy T., Magyae Zs.: A new component from the cell wall ofStreptomyces griseus. 1. The role of streptomycin in the life ofStreptomyces griseus.Acta Microbiol. Acad. Sci. Hung. 12, 109 (1965).

    CAS  Google Scholar 

  • Szulmajster J.:Bacillus subtilis RNA polymerase from vegetative and sporulating cells and from d ormant spores: hypotheses and realities, inRégulation de la Sporulation Microgienne, No. 227. Editions du centre national de la recherche scientifique, Paris, p. 47 (1973).

    Google Scholar 

  • Scribner H. E., Tang T., Bradley S. G.: Production of a sporulation pigment byStreptomyces venezuelae.Appl. Microbiol. 25, 873 (1973).

    PubMed  CAS  Google Scholar 

  • Šťastná J.: A method of rapid welting and synchronous germination ofStreptomycete spore.Folia Microbiol. 22, 137 (1977).

    Google Scholar 

  • Šťastná J., Čáslavská J., Wolf A., Vinter V., Mikulík K.: Origin and morphology of atypical forms ofStreptomyces granaticolor.Folia Microbiol. 22, 339 (1977).

    Google Scholar 

  • Tanooka H., Sakakibara Y.: Radioresistant nature of the transforming activity of DNA in bacterial spores.Biochim. Biophys. Acta 155, 130 (1978).

    Google Scholar 

  • Tewfik E. M., Bradley S. G.: Characterization of deoxyribonueleic acids fromStreptomycetes andNocardiae.J. Bacteriol. 94, 1994 (1967).

    PubMed  CAS  Google Scholar 

  • Toropova E. G., Egorov N. S., Nugumanov B. S., Korosteleva N. L.: A study of carbon metabolism inActinomyces noursei producing nystatin.Mikrobiologiya 41, 668 (1972).

    CAS  Google Scholar 

  • Toropova E. G., Nugumauov B. S., Egorov N. S.: Studies on the activity of some enzymes and nystatin effect on them in active and inactive mutants ofAct. noursei.Antibiotiki 19, 223 (1974).

    PubMed  CAS  Google Scholar 

  • Toropova E. G., Braintling R., Egorov N. S., Pobedinsky N. A.: Studies on activity of fructosophosphataldolase and transketolase inAct. noursei, a nystatin-producing organism.Antibiotiki 20, 783 (1975).

    CAS  Google Scholar 

  • Upiter G. D., Makarevich V. G., Tarasova S. S., Birukov V. V.: Growth studies onActinomyces aureofaciens and tetracycline biosynthesis. Growth dependence on concentration of carbon and nitrogen in media. Antibiotiki18, 1089 (1973).

    Google Scholar 

  • Van Dyck P., De Somer P.: Production and extraction methods of aureomycin.Antib. Chemother. 2, 184 (1952).

    Google Scholar 

  • Vaněk Z.: Substances stimulating the production of chlortetracycline by a low-production strain ofStreptomyces aureofaciens.Folia Microbiol. 4, 100 (1958).

    Google Scholar 

  • Vaněk Z., Cudlín J., Blumauerová M., Hošťálek Z.: How many genes are required for the synthesis of chlortetracycline?Folia Microbiol. 15, 227 (1971).

    Google Scholar 

  • Vaněk Z., Hošťálek Z., Blumauerová M., Mikulík K., Podojil M., Běhal V., Jechová V.: The biosynthesis of tetracycline.Pure Appl. Chem. 34, 463 (1973).

    PubMed  Google Scholar 

  • Vold B. S., Minatogawa S.: Characterization of changes in transfer-ribonucleic acids during sporulation inBacillus subtilis. InSpores V.,Halvorson H. O. et al. (eds.). Amer. Soc. for Microbiol., p. 254 (1972).

  • Waksman S. A.: in The Actinomycetes vol. I., Williams and Wilkins Co. Baltimore, p. 163 (1959).

    Google Scholar 

  • Waksman S. A.: The role of antibiotics in nature.Perspect. Biol. Med. 4, 271 (1961).

    Google Scholar 

  • Waksman S. A., Schatz A.: Strain specificity and production of antibiotic substances. VI. Strain variation and production of streptothricin byActinomyces lavendulae.Proc. Nat. Acad. Sci. U.S.A. 31, 208 (1945).

    Article  CAS  Google Scholar 

  • Waksman S. A., Schatz A., Reilly H. C.: Metabolism and the chemical nature ofStreptomyces griseus.J. Bacteriol. 51, 753 (1946).

    PubMed  CAS  Google Scholar 

  • Woodruff H. B.: The physiology of antibiotic production. The role of the producing organism.Symp. Soc. Gen. Microbiol. 16, 22 (1966).

    CAS  Google Scholar 

  • Yegorov N. S., Toropova E. G., Suchkova L. A.: The effect of phosphorus metabolism on biosynthesis of antibiotic ristomycin inProactinomyces fructiferi var.ristomycini.Microbiologiya 40, 475 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaněk, Z., Mikulík, K. Microbial growth and production of antibiotics. Folia Microbiol 23, 309–328 (1978). https://doi.org/10.1007/BF02876686

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02876686

Keywords

Navigation