Skip to main content
Log in

Differentiation of human scalp hair follicle keratinocytes in culture

  • Published:
Virchows Archiv B

Summary

The morphology of human scalp hair follicle keratinocytes, cultured on the bovine eye lens capsule, is studied by light and electron microscopy.

The hair follicle keratinocytes in the stratified cultures are characterized by the presence of numerous tonofilaments, desmosomes and lysosomes and by the presence of glycogen accumulations. The cells in the upper layers develop a cornified envelope. Moreover, an incomplete basal lamina is found between the capsule and the basal cells. However, some features of epidermal keratinocytes in vivo, such as keratohyalin granules and stratum corneum formation, are absent. Analysis of the polypeptides by sodium dodecylsulfate polyacrylamide gel electrophoresis also reveals differences between the cultured hair follicle cells and epidermis, whilst the patterns of cultured cells and hair follicle sheaths are similar. The morphological and protein biosynthetic aspects of terminal differentiation of the keratinocytes in vitro are correlated. These results are discussed in the light of the findings with cultured epidermal keratinocytes, reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breitkreutz D, Boukamp P, Lueder M, Fusenig NE (1980) Morphological and biochemical criteria for keratinization in primary and permanent mouse epidermal cell cultures. Front Matrix Biol 9:57–82

    Google Scholar 

  • Cammarata PR, Spiro RG (1982) Lens epithelial cell adhesion to lens capsule: a model system for cell-basement membrane interaction. J Cell Physiol 113:273–280

    Article  PubMed  CAS  Google Scholar 

  • Doran T, Vidrich A, Sun T-T (1980) Intrinsic and extrinsic regulation of the differentiation of skin, corneal and esophageal epithelial cells. Cell 22:17–25

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Green H (1981) Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25:617–625

    Article  PubMed  CAS  Google Scholar 

  • Freeman AE, Igel HJ, Herrman BJ, Kleinfeld KL (1976) Growth and characterization of human skin epithelial cultures. In Vitro 12:352–362

    Article  PubMed  CAS  Google Scholar 

  • Gay S, Miller EJ (1979) Characterization of lens capsule collagen: evidence for the presence of two unique chains in molecules derived from basement membrane structures. Arch Biochem Biophys 198:370–378

    Article  PubMed  CAS  Google Scholar 

  • Green H (1977) Terminal differentiation of cultured human epidermal cells. Cell 11:405–416

    Article  PubMed  CAS  Google Scholar 

  • Green H (1979) The keratinocyte as differentiated cell type. The Harvey Lectures Series 74:101–139

    Google Scholar 

  • Hirone T, Tanigushi S (1980) Basal lamina formation by epidermal cells in cell culture. Curr Probl Dermatol 10:159–169

    PubMed  CAS  Google Scholar 

  • Hukkelhoven MWAC, Vermorken AJM, Bloemendal H (1980) A novel method for culturing epithelial cells on a biological substrate. Prep Biochem 10:473–481

    Article  PubMed  CAS  Google Scholar 

  • Kubilus J, MacDonald MJ, Baden HP (1979) Epidermal proteins of cultured human and bovine keratinocytes. Biochem Biophys Acta 578:484–492

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lavker RM, Sun T-T (1983) Rapid modulation of keratinocyte differentiation by the external environment. J Invest Dermatol 80:228–237

    Article  PubMed  CAS  Google Scholar 

  • Liu SC, Eaton MJ, Karasek MA (1979) Growth characteristics of human epidermal keratinocytes from newborn foreskin in primary and serial cultures. In Vitro 15:813–822

    Article  PubMed  CAS  Google Scholar 

  • Milo GE, Ackerman GA, Noyer I (1980) Growth and ultrastructural characterization of proliferating human keratinocytes in vitro without added intrinsic factors. In Vitro 16:20–30

    Article  PubMed  CAS  Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepier R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24

    Article  PubMed  CAS  Google Scholar 

  • Moss M, Asch B, Schwartz R (1979) Differentiation of actin-containing filaments during chick skeletal myogenesis. Exp Cell Res 121:167–178

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 250:4007–4021

    PubMed  CAS  Google Scholar 

  • Parthasarathy N, Spiro RG (1982) Basement membrane glycosaminoglycans: examination of several membranes and evaluation of the effect of sonic treatment. Arch Biochem Biophys 213:504–511

    Article  PubMed  CAS  Google Scholar 

  • Régnier M, Prunieras M, Woodley D (1981) Growth and differentiation of adult human epidermal cells on dermal substrates. Front Matrix Biol 9:4–35

    Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    Article  PubMed  CAS  Google Scholar 

  • Schweizer J, Goerttler K (1980) Synthesis in vitro of keratin polypeptides directed by mRNA from newborn and adult mouse epidermis. Eur J Biochem 112:243–249

    Article  PubMed  CAS  Google Scholar 

  • Spiro RG, Parthasarathy N (1982) Studies on the proteoglycan of basement membranes. In: Kühn K, Timpl R, Schöne H (eds) New trends in basement membrane research. Raven Press, New York, p 87

    Google Scholar 

  • Stanley JR, Woodley DT, Katz SI, Martin GR (1982) Structure and function of basement membrane. J Invest Dermatol 79:69–72

    Article  CAS  Google Scholar 

  • Steinert P, Yuspa SH (1978) Biochemical evidence for keratinization by mouse epidermal cells. J Biol Chem 253:2053–2060

    Google Scholar 

  • Sun T-T, Green H (1978) Biochemical evidence for keratinization by mouse epidermal cells in culture. Science 200:1491–1493

    Article  Google Scholar 

  • Taichman L, Reilly S, Garant PR (1979) In vitro cultivation of human oral keratinocytes. Arch Oral Biol 24:335–341

    Article  PubMed  CAS  Google Scholar 

  • Vermorken AJM, Bloemendal H (1978) α-Crystallin polypeptides as markers of lens cell differentiation. Nature 271:779–781

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determination by dodecylsulfate polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    PubMed  CAS  Google Scholar 

  • Weterings PJJM, Vermorken AJM, Bloemendal H (1980) Protein biosynthesis in cultured human hair follicle cells. Mol Biol Rep 6:153–158

    Article  PubMed  CAS  Google Scholar 

  • Weterings PJJM, Vermorken AJM, Bloemendal H (1981) A method for culturing human hair follicle cells. Br J Dermatol 104:1–5

    Article  PubMed  CAS  Google Scholar 

  • Weterings PJJM, Vermorken AJM, Bloemendal H (1982) Subcultivation of human hair follicle keratinocytes. Exp Cell Res 139:439–443

    Article  PubMed  CAS  Google Scholar 

  • Weterings PJJM, Vermorken AJM, Bloemendal H (1983) Serial cultivation of human scalp hair follicle keratinocytes. Acta Derm Venereol [Stockh] 63:315–320

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weterings, P.J.J.M., Verhagen, H., Wirtz, P. et al. Differentiation of human scalp hair follicle keratinocytes in culture. Virchows Archiv B Cell Pathol 45, 255–266 (1984). https://doi.org/10.1007/BF02889868

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02889868

Key words

Navigation