Skip to main content
Log in

Low-energy consequences of superstring-inspired models with intermediate-mass scales

Следствия при низких энергиях, связанные с введением масштабов промежуточных масс в суперструнных моделях

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

We discuss the phenomenological consequences of implementing intermediate-mass scales inE 6 superstring-inspired models. Starting from a suitable Calabi-Yau compactification withb 1,1>1, one gets, after Hosotani breaking, the rankr=5 gauge groupSU(3)c×SU(2)L×U(1)Y×U(1) E , that is broken at an intermediate-mass scale down to the standard-model group. The analysis of both the intermediate and the electroweak breaking is performed in the two cases Λc=M x and Λc<M z, where λc is the scale at which the hidden sector gauginos condensate. We perform quantitatively the minimization of the low-energy effective potential and the renormalization group analysis, yielding a viable set of mass spectra and confirming the reliability of the intermediate-breaking scheme.

Riassunto

Si discutono le conseguenze fenomenologiche derivanti dall'introduzione di scale di massa intermedia nei modelli con gruppo di gaugeE 6 ispirati alle superstringhe. Partendo da un'idonea compattificazione su manifold di Calabi-Yau conb 1,1>1, si ottiene, dopo la rottura di Hosotani, il gruppo di rangor=5SU(3)c×SU(2)L×U(1) Y ×U(1) E , che viene rotto a una scala di massa intermedia nel gruppo del modello standard. Si svolge l'analisi sia della rottura intermedia che di quella elettrodebole, nei due casi Λc=M x e Λc<M z dove λc è la scala alla quale i gaugini del settore nascosto condensano. La minimizzazione del potenziale effettivo a bassa energia e l'analisi col gruppo di rinormalizzazione sono eseguite quantitativamente, producendo un insieme realistico di spettri di masse e confermando l'attendibilità dello schema di rottura intermedia.

Резюме

Мы обсуждаем феноменологические следствия введения масштабов промежуточных масс вE 6 суперструнных моделях. Исходя из компактификации Калаби-Яу сb 1,1>1, можно получить, после нарушения Хозотани, калибровочную группу рангаr=5,SU(3)c×SU(2)L×U(1) Y ×U(1) E , которая нарушается при масштабе промежуточной массы в группу стандартной модели. Проводится анализ обоих нарушений промежуточного и электрослабого в двух случаях Λc=M x и Λc<M z, где λc есть масштаб, при котором происходит конденсация. Мы количественно проводим минимизацию эффективного потенциала при низких энергиях и анализ группы перенормировки. Получается система массовых спектров и подтверждение надежности схемы промежуточного нарушения.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Candelas, G. Horowitz, A. Strominger andE. Witten:Nucl. Phys. B,258, 46 (1985);E. Witten:Phys. Lett. B,155, 151 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Witten:Nucl. Phys. B,258, 75 (1985).

    Article  ADS  Google Scholar 

  3. M. Dine, V. Kaplunovsky, M. Mangano, C. Nappi andN. Seiberg:Nucl. Phys. B,259, 519 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  4. J. P. Deredinger, L. E. Ibáñez andH. P. Nilles:Nucl. Phys. B,267, 365 (1986).

    Article  ADS  Google Scholar 

  5. F. Del Aguila, G. Blair, M. Daniel, andG. G. Ross:Nucl. Phys. B,272, 413 (1986).

    Article  ADS  Google Scholar 

  6. E. Cohen, J. Ellis, K. Enqvist andD. V. Nanopoulos:Phys. Lett. B,165, 76 (1985).

    Article  ADS  Google Scholar 

  7. J. Ellis, K. Enqvist, D. V. Nanopoulos andF. Zwirner:Nucl. Phys. B,276, 14 (1986).

    Article  ADS  Google Scholar 

  8. For reviews, seeJ. Ellis: CERN preprint TH-4439 (1985);L. E. Ibáñez: CERN preprint TH-4459 (1986);H. P. Nilles: CERN preprint TH-4444 (1986).

  9. V. Kaplunovsky:Phys. Rev. Lett.,55, 1036 (1986).

    Article  ADS  Google Scholar 

  10. Y. Hosotani:Phys. Lett. B,126, 309 (1983);129, 193 (1983);E. Witten:Phys. Lett. B,149, 351 (1984);J. D. Breit, B. A. Ovrut andG. Segré:Phys. Lett. B,158, 33 (1985).

    Article  ADS  Google Scholar 

  11. J. P. Deredinger, L. E. Ibáñez andH. P. Nilles:Phys. Lett. B,155, 65 (1985);M. Dine, R. Rohm, N. Seiberg andE. Witten:Phys. Lett. B,156, 55 (1985).

    Article  ADS  Google Scholar 

  12. J. Ellis, D. V. Nanopoulos, M. Quirós andF. Zwirner:Phys. Lett. B,180, 83 (1986);J. Ellis, A. B. Lahanas, D. V. Nanopoulos, M. Quirós andF. Zwirner:Phys. Lett. B,188, 408 (1987).

    Article  ADS  Google Scholar 

  13. E. Witten:Nucl. Phys. B,268, 79 (1986);C. M. Hull:Phys. Lett. B,167, 51 (1986);A. Strominger:Nucl. Phys. B,274, 253 (1986).

    Article  ADS  Google Scholar 

  14. B. R. Greene, K. H. Kirklin andP. J. Miron:Nucl. Phys. B,274, 574 (1986);R. Holman andD. B. Reiss:Phys. Lett. B,176, 74 (1986);D. Bailin, A. Love andS. Thomas:Phys. Lett. B,176, 81 (1986);178, 15 (1986);M. Drees andM. Glück:Phys. Lett. B,180, 66 (1986);D. Bailin andA. Love:Phys. Lett.B,181, 273 (1986);R. Holman andD. B. Reiss:Phys. Lett. B,166, 305 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Ellis, C. Gomez, D. V. Nanopoulos andM. Quirós:Phys. Lett. B,173, 59 (1986);M. Dine, N. Seiberg, X. G. Wen andE. Witten:Nucl. Phys. B,278, 769 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Ellis, K. Enqvist, D. V. Nanoppoulos, K. Olive, M. Quirós andF. Zwirner:Phys. Lett. B,176, 403 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  17. L. Dixon, J. Harvey, C. Vafa andE. Witten:Nucl. Phys. B,261, 678 (1985); Princeton preprint (1986);E. Witten:Nucl. Phys. B,268, 79 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  18. B. A. Campbell, J. Ellis andD. V. Nanopoulos:Phys. Lett. B,181, 283 (1986);L. E. Ibáñez, H. P. Nilles andF. Quevedo:Phys. Lett. B,187, 25 (1987).

    Article  ADS  Google Scholar 

  19. L. E. Ibáñez:Phys. Lett. B,181, 269 (1986);L. Dixon, D. Friedan, E. Martinec andS. Shenker:Nucl. Phys. B,282, 13 (1987).

    Article  ADS  Google Scholar 

  20. F. Del Aguila, M. Quirós andF. Zwirner:Nucl. Phys. B,287, 419 (1987).

    Article  ADS  Google Scholar 

  21. G. Costa, F. Feruglio, F. Gabbiani andF. Zwirner:Nucl. Phys. B,286, 325 (1987).

    Article  ADS  Google Scholar 

  22. K. Fujikawa andW. Lang:Nucl. Phys. B,88, 77 (1975);G. Woo:Phys. Rev. D,12, 975 (1975);S. Weinberg:Phys. Lett. B,62, 111 (1976);D. M. Capper andM. Ramón Medrano:J. Phys. G,2, 269 (1976);P. West:Nucl. Phys. B,106, 219 (1976);L. O'Raifeartaigh andG. Parravicini:Nucl. Phys. B,111, 516 (1976);W. Lang:Nucl. Phys. B,114, 123 (1976).

    Article  ADS  Google Scholar 

  23. B. R. Greene, K. H. Kirklin, P. J. Miron andG. G. Ross:Nucl. Phys. B,278, 667 (1986);Phys. Lett. B,180, 69 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Gell-Mann, P. Ramond andR. Slansky: inSupergravity, edited byP. van Nieuwenhuizen andD. Z. Freedman (North Holland, Amsterdam, 1979);T. Yanagida: inProceedings of the Workshop on Unified Theory and Baryon Number in the Universe, edited byO. Sawada andA. Sugamoto (KEK, Japan, 1979);R. N. Mohapatra:Phys. Rev. Lett.,56, 561 (1986);S. Nandi andU. Sarkar:Phys. Rev. Lett.,56, 564 (1986);R. N. Mohapatra andJ. W. F. Valle:Phys. Rev. D,34, 1642 (1986).

    Google Scholar 

  25. A. Strominger andE. Witten:Commun. Math. Phys.,101, 341 (1985);A. Strominger:Phys. Rev. Lett.,55, 2547 (1985);M. W. Goodman andE. Witten:Nucl. Phys. B,271, 21 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Ellis, K. Enqvist, D. V. Nanopoulos andF. Zwirner:Mod. Phys. Lett. A,1, 57 (1986).

    Article  ADS  Google Scholar 

  27. L. E. Ibáñez andJ. Mas:Nucl. Phys. B,286, 107 (1987).

    Article  ADS  Google Scholar 

  28. B. Holdom:Phys. Lett. B,166, 196 (1986).

    Article  ADS  Google Scholar 

  29. F. Del Aguila, G. A. Blair, M. Daniel andG. G. Ross:Nucl. Phys. B,283, 50 (1987).

    Article  ADS  Google Scholar 

  30. T. Matsuoka andD. Suematsu:Prog. Theor. Phys.,76, 901 (1986).

    Article  ADS  Google Scholar 

  31. F. Del Aguila, M. Quirós, andF. Zwirner:Nucl. Phys. B,284, 530 (1987).

    Article  ADS  Google Scholar 

  32. F. Feruglio andF. Gabbiani:Mod. Phys. Lett. A,2, 133 (1987).

    Article  ADS  Google Scholar 

  33. S. Coleman andE. Weinberg:Phys. Rev. D,7, 1888 (1973);S. Weinberg:Phys. Rev. D,7, 2887 (1973).

    Article  ADS  Google Scholar 

  34. P. Fayet:Nucl. Phys. B,90, 104 (1975).

    Article  ADS  Google Scholar 

  35. L. E. Ibáñez:Phys. Lett. B,118, 73 (1982);H. P. Nilles:Phys. Lett. B,115, 193 (1982);K. Inoue, A. Kakuto, H. Komatsu andS. Takeshita:Prog. Theor. Phys.,68, 927 (1982);J. Ellis, D. V. Nanopoulos andK. Tamvakis:Phys. Lett. B,121, 123 (1983);L. E. Ibáñez andC. Lopez:Phys. Lett. B,126, 59 (1983);L. Alvarez-Gaumé, J. Polchinski andM. B. Wise:Nucl. Phys. B,221, 495 (1983);J. Ellis, J. S. Hagelin, D. V. Nanopoulos andK. Tamvakis:Phys. Lett. B,125, 275 (1983);J. Ellis, A. B. Lahanas, D. V. Nanopoulos andK. Tamvakis:Phys. Lett. B,134, 429 (1984);J. Ellis, C. Kounnas andD. V. Nanopoulos:Nucl. Phys. B,241, 406 (1984);Nucl. Phys. B,247, 373 (1984).

    Article  ADS  Google Scholar 

  36. J. P. Deredinger andC. A. Savoy:Nucl. Phys. B,237, 307 (1984);N. K. Falck:Z. Phys. C,30, 247 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Перевебено ребакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabbiani, F. Low-energy consequences of superstring-inspired models with intermediate-mass scales. Nuov Cim A 98, 1–23 (1987). https://doi.org/10.1007/BF02902350

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02902350

PACS. 11.30.Pb.

PACS.11.30.Qc.

PACS. 12.20.Hx.

Navigation