Skip to main content
Log in

Bioavailability of sediment-bound metals to marine bivalve molluscs: An overview

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Coastal marine sediments are commonly enriched in metals, including potentially toxic trace metals, by natural processes and human activities. These sediments have long been regarded as the final repositories of contaminants, but in recent years it has been recognized that they can also serve as potentially important sources of metal contaminants for benthic organisms and benthic food chains in general. The geochemical and biological factors governing the bioavailability of diverse metals (Ag, Cd, Co, Cr, Se, Zn) that are bound to different kinds of marine sediments are reviewed. Particular attention has been paid to those species of marine bivalve mollusks that are used as bioindicators of coastal contamination. Both deposit-feeding and suspension-feeding bivalves can accumulate metals appreciably by assimilating sediment-bound metals that are ingested, although important differences have been recognized between these two feeding modes as well as between metals. The properties of the digestive tracts of deposit and suspension-feeding bivalves that influence metal bioaccumulation from food are also discussed. Through kinetic modeling, the relative importance of ingestion as a route of metal uptake has been compared quantitatively with uptake from the dissolved phase, including from pore water and from overlying water, and has been shown to account for the high concentrations in bivalve tissues for a number of contaminant metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aller, R. C. 1978. Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry.American Journal of Science 278:1185–1234.

    CAS  Google Scholar 

  • Aller, R. C. 1994. Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation.Chemical Geology 114:331–345.

    Article  CAS  Google Scholar 

  • Ankley, G. T., D. M. DiToro, D. J. Hansen, andW. J. Berry. 1996. Technical basis and proposal for deriving sediment quality criteria for metals.Environmental Toxicology and Chemistry 15:2056–2066.

    Article  CAS  Google Scholar 

  • Berry, W. J., D. J. Hansen, J. D. Mahoney, D. L. Robson, D. M. DiToro, B. P. Shipley, B. Rogers, J. M. Corbin, andW. S. Boothman. 1996. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations.Environmental Toxicology and Chemistry 15:2067–2079.

    Article  CAS  Google Scholar 

  • Brown, C. L., F. Parcheso, J. K. Thompson, andS. N. Luoma. 2003. Assessing toxicant effects in a complex estuary: A case study of effects of silver on reproduction in the bivalve,Potamocorbula amurensis, in San Francisco Bay.Human Ecological. Risk Assessment 9:95–119.

    Article  CAS  Google Scholar 

  • Bryan, G. W. andW. J. Langston. 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review.Environmental Pollution 76:89–131.

    Article  CAS  Google Scholar 

  • Campbell, P. G. C. 1995. A critique of the free-ion activity model, p. 45–102.In A. Tessier and D. R. Turner (eds.), Metal Speciation and Bioavailability in Aquatic Systems, John Wiley and Sons, Chichester, U.K.

    Google Scholar 

  • Campbell, P. G. C., S. J. Clearwater, P. Brown, N. S. Fisher, C. Hogstrand, G. R. Lopez, L. Mayer, and J. S. Meyer. in press. Gut physiology, chemistry, and nutrition.In J. S. Meyer, W. J. Adams, K. V. Brix, S. N. Luoma, D. R. Mount, W. A. Stubblefield, and C. M. Wood (eds.), Toxicity of Dietborne Metals to Aquatic Biota. SETAC Press, Pensacola, Florida.

  • Campbell, P. G. C., A. G. Lewis, P. M. Chapman, A. A. Crowder, W. K. Fletcher, B. Imber, S. N. Luoma, P. M. Stokes, and M. Winfrey. 1988. Biologically available metals in sediments. National Research Council of Canada publication 27694, Ottawa, Canada.

  • Chen, Z. andL. M. Mayer. 1998. Mechanisms of Cu solubilization during deposit-feeding.Environmental Science and Technology 32:770–775.

    Article  CAS  Google Scholar 

  • Chen, Z. andL. M. Mayer. 1999a. Assessment of sedimentary Cu availability: A comparison of biomimetic and AVS approaches.Environmental Science and Technology 33:650–652.

    Article  CAS  Google Scholar 

  • Chen, Z. andL. M. Mayer. 1999b. Sedimentary metal bioavailability determined by the digestive constraints of marine deposit feeders: Gut retention time and dissolved amino acids.Marine Ecology Progress Series 176:139–151.

    Article  CAS  Google Scholar 

  • Decho, A. W. andW. N. Luoma. 1991. Time-courses in the retention of food material in the bivalvesPotamocorbula amurensis andMacoma balthica Significance to the absorption of carbon and chromium.Marine Ecology Progress Series 78:303–314.

    Article  CAS  Google Scholar 

  • Decho, A. W. andS. N. Luoma. 1994. Humic and fulvic acids: Sink or source in the availability of metals to the marine bivalvesMacoma balthica andPotamocorbula amurensis?.Marine Ecology Progress Series 108:133–145.

    Article  CAS  Google Scholar 

  • Decho, A. W. andS. N. Luoma. 1996. Flexible digestion strategies and trace metal assimilation in marine bivalves.Limnology and Oceanography 41:568–572.

    CAS  Google Scholar 

  • DiToro, D. M., J. D. Mahony andA. M. Gonzalez. 1996. Particle oxidation model of synthetic FeS and sediment acid-volatile sulfide.Environmental Toxicology and Chemistry 15:2156–2167.

    Article  CAS  Google Scholar 

  • DiToro, D. M., J. D. Mahony, D. J. Hansen, K. J. Scott, A. R. Carlson, andG. T. Ankley. 1992. Acid volatile sulfide predicts the acute toxicity of caldmium and nickel in sediments.Environmental Science and Technology 26:96–101.

    Article  CAS  Google Scholar 

  • Fisher, N. S. andS. E. Hook. 2002. Toxicology tests with aquatic animals need to consider the trophic transfer of metals.Toxicology 181/182:531–536.

    Article  Google Scholar 

  • Fisher, N. S. andJ. R. Reinfelder. 1995. The trophic transfer of metals in marine systems, p. 363–406.In A. Tesier and D. R. Turner (eds.), Metal Speciation and Bioavailability in Aquatic Systems VOLUME, John Wiley and Sons, Chichester, U.K.

    Google Scholar 

  • Fisher, N. S., I. Stupakoff, S. Sañudo-Wilhelmy, W.-X. Wang, J.-L. Teyssié, S. W. Fowler, andJ. Crusius 2000. Trace metals in marine copepods: A field test of a bioaccumulation model coupled to laboratory uptake kinetics data.Marine Ecology Progress Series 194:211–218.

    Article  CAS  Google Scholar 

  • Fisher, N. S. andJ.-L. Teyssié. 1986. Influence of food composition on the biokinetics and tissue distribution of zinc and americium in mussels.Marine Ecology Progress Series 28:197–207.

    Article  CAS  Google Scholar 

  • Fisher, N. S., J.-L. Teyssié, S. W. Fowler andW.-X. Wang. 1996. Accumulation and retention of metals in mussels from food and water: A comparison under field and laboratory conditions.Environmental Science and Technology 30:3232–3242.

    Article  CAS  Google Scholar 

  • Fisher, N. S. andW-X. Wang. 1998. The trophic transfer of silver to marine herbivores: A review of recent studies.Environmental Toxicology and Chemistry 17:562–571.

    Article  CAS  Google Scholar 

  • Gagnon, C. andN. S. Fisher. 1997. The bioavailability of sediment-bound Cd. Co. and Ag to the musselMytilus edulis.Canadian Journal of Fisheries and Aquatic Sciences 54:147–156.

    Article  CAS  Google Scholar 

  • Griscom, S. B., andN. S. Fisher. 2002. Uptake of dissolved Ag, Cd, and Co by the clam,Macoma balthica: Relative importance of overlying water, surface pore water and burrow pore water.Environmental Science and Technology 36:2471–2478.

    Article  CAS  Google Scholar 

  • Griscon, S. B., N. S. Fisher, R. C. Aller, andB.-G. Lee. 2002a. Effects of gut chemistry in marine bivalves on the assimilation of metals from ingested sediment particles.Journal of Marine Research 60:101–120.

    Article  Google Scholar 

  • Griscom, S. B., N. S. Fisher, andS. N. Luoma. 2000. Geochemical influences on assimilation of sediment-bound metals in clams and mussels.Environmental Science and Technology 34:91–99

    Article  CAS  Google Scholar 

  • Gruscom, S. B., N. S. Fisher, andS. N. Luoma. 2002b. Kinetic modeling of Ag, Cd and Co bioaccumulation in the clamMacona balthica: Quantifying dietary and dissolved sources.Marine Ecology Progress Series 240:127–141.

    Article  Google Scholar 

  • Guo, L. D., B. J. Hunt, P. H. Santschi, andS. M. Ray. 2001. Effect of dissolved organic matter on the uptake of trace metals by American oysters.Environmental Science and Technology 35:885–893.

    Article  CAS  Google Scholar 

  • Harf, L. andA. Tessier. 1996. Predicting animal cadmium concentrations in lakes.Nature 380:430–432.

    Article  Google Scholar 

  • Harvey, R. W., andS. N. Luoma. 1984. The role of bacterial expololymer and suspended bacteria in the nutrition of the deposit-feeding clam,Macoma balthica.Journal of Marine Research 42:957–968.

    Article  Google Scholar 

  • Harvey, R. W. andS. N. Luoma. 1985 Separation of solute and particulate vectors of heavy metal uptake in controlled suspension-feeding experiments withMacoma balthica.Hydrobiologia 121:97–102.

    Article  CAS  Google Scholar 

  • Hook, S. E. andN. S. Fisher. 2001a. Sublethal effects of silver in zooplankton: Importance of exposure pathways and implications for toxicity testing.Environmental Toxicology and Chemistry 20:568–574.

    Article  CAS  Google Scholar 

  • Hook, S. E. andN. S. Fisher. 2001b. Reproductive toxicity of metals in calanoid copepods.Marine Biology 138:1131–1140.

    Article  CAS  Google Scholar 

  • Hornberger, M. I., S. N. Luoma, A. van Geen, C. Fuller, andR. Anima. 1999. Historical trends of trace metals in the sediments of San Francisco Bay, California.Marine Chemistry 64: 39–55.

    Article  CAS  Google Scholar 

  • Hummel, H. 1985. Food intake ofMacoma balthica (Mollusca) in relation to seasonal changes in its potential food on a tidal flat in the Dutch Wadden Sea.Netherlands Journal of Sea Research 19:52–76.

    Article  Google Scholar 

  • Kaag, N. H. B. M., E. M. Foekema, M. C. T. Scholten, andN. M. Vanstraalen. 1997. Comparison of contaminant accumulation in three species of marine invertebrates with different feeding habits.Environmental Toxicology and Chemistry 16: 837–842.

    Article  CAS  Google Scholar 

  • Ke, C. andW.-X. Wang. 2001. Bioaccumulation of Cd, Se, and Zn in an estuarine oyster (Crassostrea rivularis) and a coastal oyster (Saccostrea glomerata).Aquatic Toxicology 56:33–51.

    Article  CAS  Google Scholar 

  • Lawrence, A. L., K. M. McAloon, R. P. Mason, andL. M. Mayer. 1999. Intestinal solubilization of particle-associated organic and inorganic mercury as a measure of bioavailability to benthic invertebrates.Environmental Science and Technology 33: 1871–1876.

    Article  CAS  Google Scholar 

  • Lee, B.-G., S. B. Griscom, J.-S. Lee, H. J. Choi, C.-H. Koh, S. N. Luoma, andN. S. Fisher, 2000a. Influence of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments.Science 287:282–284.

    Article  CAS  Google Scholar 

  • Lee, B.-G., J.-S. Lee, S. N. Luoma, H. J. Choi, andC.-H. Koh. 2000b. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments.Environmental Science and Technology 34: 4517–4523.

    Article  CAS  Google Scholar 

  • Lee, B.-G. andS. N. Luoma. 1998. Influence of microalgal biomass on absorption efficiency of Cd, Cr and Zn by two bivalves from San Francisco Bay.Limnology and Oceanography 43:1455–1466.

    CAS  Google Scholar 

  • Lee, B.-G., W. G. Wallace, andS. N. Luoma. 1998. Uptake and loss kinetics of Cd, Cr, and Zn in the bivalvesPotamocorbula amurensis andMacoma balthica: Effects of size and salinity.Marine Ecology Progress Series 175:177–189.

    Article  CAS  Google Scholar 

  • Luoma, S. N. 1989. Can we determine the biological availability of sediment-bound trace elements?Hydrobiologia 176/177: 379–396.

    Article  Google Scholar 

  • Luoma, S. N. 1996. The developing framework of marine ecotoxicology: pollutants as a variable in marine ecosystems?Journal of Experimental Marine Biology and Ecology 200:29–55.

    Article  CAS  Google Scholar 

  • Luoma, S. N. andG. W. Bryan. 1981. A statistical assessment of the form of trace metals in oxidized estuarine sediments employing chemical extractants.Science of the Total Environment 17:165–196.

    Article  CAS  Google Scholar 

  • Luoma, S. N. andG. W. Bryan. 1983. A statistical study of environmental factors controlling concentrations of heavy metals in the burrowing bivalve Scrobicularia plana and the polychaete Nereis diversicolor.Estuarine Coastal Shelf Science 15:95–108.

    Article  Google Scholar 

  • Luoma, S. N. andJ. A. Davis 1983. Requirements for modeling trace metal partitioning in oxidized estuarine sediments.Marine Chemistry 12:159–181.

    Article  CAS  Google Scholar 

  • Luoma, S. N. and N. S. Fisher. 1997. Uncertainties in assessing contaminant exposure from sediments, p. 211–237.In C. G. Ingersoll, T. Dillon, and G. R. Biddinger (eds.), Ecological Risk Assessment of Contaminated Sediments, Proceedings of the Pellston Workshop on Sediment Ecological Risk Assessment: 1995. Pacific Grove, California.

  • Luoma, S. N., C. Johns, N. S. Fisher, N. A. Steinberg, R. S. Oremiland, andJ. R. Reinfelder. 1992. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways.Environmental Science and Technology 26: 485–491.

    Article  CAS  Google Scholar 

  • Luoma, S. N., A. van Geen, B.-G. Lee, andJ. E. Cloern. 1998. Metal uptake by phytoplankton during a bloom in south San Francisco Bay: Implications for metal cycling in estuaries.Limnology and Oceanography 43:1007–1016.

    CAS  Google Scholar 

  • Maloney, J. 1996. Intluence of organic enrichment on the partitioning and bioavailability of cadmium in a microcosm study.Marine Ecology Progress Series 144:147–161.

    Article  CAS  Google Scholar 

  • Mayer, L. M., Z. Chen, R. H. Findlay, J. Fang, S. Sampson, R. F. L. Sele, P. A. Jumars, C. Quetel, andO. F. X. Donard. 1996. Bioavailability of contaminants subject to deposit-feeder digestion.Environmental Science and Technology 30:2641–2645.

    Article  CAS  Google Scholar 

  • Mayer, L. M., L. L. Schick, R. F. L. Self, P. A. Jumars, R. H. Findlay, Z. Chen, andS. Sampson. 1997. Digestive environments of benthic macroinvertebrate guts: Enzymes, surfactants and dissolved organic matter.Journal of Marine Research 55:785–812.

    Article  CAS  Google Scholar 

  • Morton, B. 1983. Feeding and digestion in bivalvia, p. 65–147.In A. S. M. Saleuddin and K. M. Wilbur (eds.). The Mollusca: Volume 5, Physiology, Part 2. Academic Press, New York.

    Google Scholar 

  • Neff, J. W., R. S. Foster, and J. F. Slowey. 1978. Availability of sediment-adsorbed heavy metals to benthos with particular emphasis on deposit-feeding infauna. Army Corp of Engineers Technical Report D-78-42. Vicksburg. Mississippi.

  • Owen, G. 1974. Feeding and digestion in the Bivalvia.Advances in Comparative Physiology and Biochemistry 5:1–35.

    CAS  Google Scholar 

  • Plante, C. andP.A. Jumars. 1992. The microbial environment of marine deposit-feeder guts characterized via microelectrodes.Microbial Ecology 23:257–277.

    Article  Google Scholar 

  • Purchon, R. D. 1971. Digestion in filter feeding bivalves—A new concept.Proceedings of the Malacological Society of London 39:253–262.

    Google Scholar 

  • Reinfelder, J. R. andN. S. Fisher. 1991. The assimilation of elements ingested by marine copepods,Science 251:794–796.

    Article  CAS  Google Scholar 

  • Reinfflder, J. R. andN. S. Fisher. 1994. The assimilation of elements ingested by marine planktonic bivalve larvae.Limnology and Oceanography 39:12–20.

    Google Scholar 

  • Reinfelder, J. R., W.-X. Wang, S. N. Luoma, andN. S. Fisher. 1997. Assimilation efficiency and turnover rates of trace elements in marine bivalves: A comparison of oysters, clams and mussels.Marine Biology 129:443–452.

    Article  CAS  Google Scholar 

  • Roditi, H. A., N. S. Fisher, andS. A. Sanudo-Wilhelmy. 2000. Field testing a metal bioaccumulation model for zebra mussels.Environmental Science and Technology 34:2817–2825.

    Article  CAS  Google Scholar 

  • Shumway, S. E., T. L. Cucci, R. C. Newell, andC. M. Yentsch. 1985. Particle selection, ingestion, and absorption in filterfeeding bivalves.Journal of Experimental Marine Biology and Ecology 91:77–92.

    Article  Google Scholar 

  • Stewart, G.M. andN. S. Fisher. 2003. Bioaccumulation of polonium-210 in marine copepods.Limnology and Oceanography 48:2011–2019.

    CAS  Google Scholar 

  • Tessier, A. 1992. Sorption of trace elements on natural particles in oxic environments, p. 425–453.In J. Buffle and H. Van Leeuwen (eds.), Environmental Particles, Volume 1. Lewis, Boca Raton, Florida.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell, J. C. Auclair, andM. Bisson. 1984. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc,Elliptio complanata in a mining area.Canadian Journal of Fisheries and Aquatic Sciences 41:1463–1471.

    Article  CAS  Google Scholar 

  • Tessier, A., P. G. C. Campbell, andM. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals.Analytical Chemistry 51:844–851.

    Article  CAS  Google Scholar 

  • Tessier, A, R. Carignan, andN. Belzile. 1994. Processes occurring at the sediment-water interface: Emphasis on trace elements, p. 137–173.In J. Buffle and R. R. De Vitre (eds.), Chemical and Biological Regulation of Aquatic Systems, VOLUME. Lewis, Boca Raton, Florida.

    Google Scholar 

  • U.S. Environmental Protection Agency. 2000. A Science Advisory Board Report: Review of an integrated approach to metals assessment in surface waters and sediments. Ecological Processes and Effects Committee of the Science Advisory Board, April 6–7, 1999. EPA-SAB-EPEC-00-005. Washington, D.C.

  • Wang, W.-X. andN. S. Fisher. 1996a. Assimilation of trace elements by the mussel,Mytilus edulis: Effects of diatom chemical composition.Marine Biology 125:715–724.

    Article  CAS  Google Scholar 

  • Wang, W.-X. andN. S. Fisher. 1996b. Assimilation of trace elements and carbon by the musselMytilus edulis. Effects of food composition.Limnology and Oceanography 41:197–207.

    CAS  Google Scholar 

  • Wang, W.-X. andN. S. Fisher. 1997a. Modeling metal bioavailability for marine mussels.Reviews in Environmental Toxicology and Chemistry 151:39–65.

    CAS  Google Scholar 

  • Wang, W.-X. andN. S. Fisher. 1997b. Modeling the influence of body size on trace element accumulation in the musselMytilus edulis.Marine Ecology Progress Series 161:103–115.

    Article  Google Scholar 

  • Wang, W.-X. andN. S. Fisher. 1999a. Assimilation efficiencies of chemical contaminants in aquatic invertebrates: A synthesis.Environmental Toxicology and Chemistry 18:2034–2045.

    Article  CAS  Google Scholar 

  • Wang, W.-X. andN. S. Fisher. 1999b. Delineating metal accumulation pathways for marine invertebrates.Science of the Total Environment 237/238:459–472.

    Article  CAS  Google Scholar 

  • Wang, W.-X., N. S. Fisher, andS. N. Luoma. 1995. Assimilation of trace elements ingested by the mussel,Mytilus edulis. Effects of algal food abundance.Marine Ecology Progress Series 129:165–176.

    Article  CAS  Google Scholar 

  • Wang, W.-X., N. S. Fisher, andS. N. Luoma. 1996. Kinetic determinations of trace element bioaccumulation in the mussel,Mytilus edulis.Marine Ecology Progress Series 140:91–113.

    Article  CAS  Google Scholar 

  • Wang, W.-X., S. B. Griscom, andN. S. Fisher. 1997. Bioavailability of Cr(III) and Cr(VI) to marine mussels (Mytilus edulis) from solute and particulate pathways.Environmental Science and Technology 31:603–611.

    Article  CAS  Google Scholar 

  • Wang, W.-X., I. Stupakoff, C. Gagnon, andN. S. Fisher. 1998. Bioavailability of inorganic and methylmercury to a marine deposit-feeding polychaete.Environmental Science and Technology 32:2564–2571.

    Article  CAS  Google Scholar 

  • Wang, W.-X., I. Stupakoff, andN. S. Fisher. 1999. Bioavailability of dissolved and sediment-bound metals to a marine deposit-feeding polychaete.Marine Ecology Progress Series 178: 281–293.

    Article  CAS  Google Scholar 

  • Wang, W.-X., Q.-L. Yan, W. Fan, andY. Xu 2002. Bioavailability of sedimentary metals from a contaminated bay.Marine Ecology Progress Series 240:27–38.

    Article  CAS  Google Scholar 

  • Warren, L. A., A. Tessier, andL. Hare. 1998. Modeling cadmium accumulation by benthic invertebrates in situ: The relative contributions of sediment and overlying water reservoirs to organism cadmium concentrations.Limnology and Oceanography 43:1442–1454.

    Article  CAS  Google Scholar 

  • Weston, D. P., D. L. Penry, andL. K. Gulmann. 2000. The role of ingestion as a route of contaminant bioaccumulation in a deposit-feeding polychaete.Archives of Environmental Contamination and Toxicology 38:446–454.

    Article  CAS  Google Scholar 

  • Widdows, J., P. Fieth, andC. M. Worrall. 1979. Relationship between seston, available food and feeding activity in the common musselMytilus edulis.Marine Biology 50:195–297.

    Article  CAS  Google Scholar 

  • Willows, R. I. 1992. Optimal digestive investment: A model for filter feeders experiencing variable diet.Limnology and Oceanography 37:829–847.

    Article  Google Scholar 

  • Zhang, H., W. Davison, S. Miller, andW. Tych. 1995. In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT.Geochimica et Cosmochimica Acta 59:4181–4192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griscom, S.B., Fisher, N.S. Bioavailability of sediment-bound metals to marine bivalve molluscs: An overview. Estuaries 27, 826–838 (2004). https://doi.org/10.1007/BF02912044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02912044

Keywords

Navigation