Skip to main content
Log in

Studies on the corrosion and the behavior of inert anodes in aluminum electrolysis

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The corrosion rates of inert anodes based on tin oxide and nickel ferrite cermet materials were studied as a function of some operating parameters. To reach a better understanding of the corrosion mechanism, the behavior of the anodes was observed under some specific conditions, such as in pure cryolite, at high current densities, at different potentials, and at varying cathode surface areas. It was confirmed that low alumina concentrations led to catastrophic corrosion of the anodes and that high current densities and high as well as low NaF/AlF3 molar ratios were also detrimental. The corrosion rate of tin oxide based anodes showed a minimum (so-called “normal corrosion”) at anodic potentials of 2.2 to 2.4 V with respect to aluminum. The normal corrosion is due to chemical dissolution of the anode material and reduction of the corrosion products into the cathode metal. The corrosion rate increased with increasing cathode surface area. At potentials higher than ∼2.5 V, the anodes showed catastrophic corrosion. Catastrophic corrosion can be ascribed to decomposition of the anode material by depletion of alumina at the anode surface provoked by low bulk concentration of alumina and/or high current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, and J. Thonstad:Aluminum Electrolysis, Fundamentals of the Hall-Heroult Process, 2nd ed., Aluminum-Verlag, Dusseldorf, 1982, p. 405.

    Google Scholar 

  2. K. Billehaug and H.A. Øye:Aluminium, 1980, vol. 57, pp. 146–50.

    Google Scholar 

  3. K. Grjotheim:Proc. 8th Int. Light Metals Meeting, Leoben-Vienna, Vienna, 1987, pp. 76–81.

    Google Scholar 

  4. A.I. Belyaev and A.E. Studentsov:Legkie Metally, 1937, vol. 6, pp. 17–22.

    CAS  Google Scholar 

  5. A.I. Belyaev:Legkie Metally, 1938, vol. 8, pp. 7–20.

    Google Scholar 

  6. S.P. Ray:Light Metals 1986, TMS-AIME, Warrendale, PA, 1986, pp. 287–98.

    Google Scholar 

  7. S.P. Ray:Light Metals 1987, TMS-AIME, Warrendale, PA, 1987, pp. 367–80.

    Google Scholar 

  8. D.M. Strachan, O.H. Koski, C.H. Schilling, S.C. Marschman, and C.F. Windisch, Jr.:Inert Anodes Program, Fiscal Year 1988 Annual Report, Report No. Battelle PNL-7106, prepared for the United States Department of Energy, under Contract No. DE-ACO6-76RLO 1830, 1988.

  9. T.R. Alcom, A.T. Tabereaux, N.E. Richards, C.F. Windisch. Jr., D.M. Strachan, J.S. Gregg, and M.S. Frederick:Light Metals 1993, TMS-AIME, Warrendale, PA. 1993, pp. 433–43.

    Google Scholar 

  10. T.E. Landon, D.R. Secrist, and J.M. Clark: U.S. Patent 4,462,889, 1984.

  11. D.R. Sadoway:Light Metals 1990, TMS-AIME, Warrendale, PA, 1990, pp. 403–07.

    Google Scholar 

  12. H. Alder: Swiss Patent 14609, 1973; U.S. Patent 3,960,678, 1977; U.S. Patent 3,930,967, 1976.

  13. H. Klein:U.S. Patent 3,718,550, 1976.

  14. C. Zollner and K. Kahl:Dimensionsstabile Elektroden fur die Schmeltzfluss-elektrolyse, Report Conradty Nurenberg to “Bundesministerium fur Forschung und Technologie,” O1ZM012, Bonn, 1985.

  15. J. Thonstad. Y.X. Liu, and S. Jarek:Proc. 8th Int. Light Metals Meeting, Leoben-Vienna, Aluminium-Verlag, Dusseldorf, 1987, pp. 150–54.

    Google Scholar 

  16. J.J. Duruz, J.P. Derivaz, P. Debely, and J. Adorian: U.S. Patent 4,614,569, 1987.

  17. J.K. Walker, J. Kinkoph, and C.K. Saha:J. Appl. Electrochem., 1989, vol. 19, pp. 225–30.

    Article  CAS  Google Scholar 

  18. H. Wang and J. Thonstad:Light Metals 1989, TMS-AIME, Warrendale, PA, 1989, pp. 283–89.

    Google Scholar 

  19. H. Xiao, R. Hovland, S. Rolseth, and J. Thonstad:Light Metals 1992, TMS-AIME. Warrendale, PA, 1992, pp. 389–99.

    Google Scholar 

  20. Å. Rostum, A. Solheim, and Å Sterten:Light Metals 1990. TMS-AIME, Warrendale, PA, 1990, pp. 317–23.

    Google Scholar 

  21. J. Cai and Y.X. Liu:Light Metals, 1986, vol. 9, pp. 28–33 (in Chinese).

    Google Scholar 

  22. J. Xue and Z. Qiu:Trans. North-East Univ. Technol., 1986, vol. 2, p. 107.

    Google Scholar 

  23. J. Evans and R. Keller:Extended Abstract No. 653, Electrochemical Society Fall Meeting, San Diego, CA, Oct. 19–24, 1986, Electrochemical Society, Pennington, NJ, vol. 86-2.

    Google Scholar 

  24. H. Xiao: Ph.D. Thesis, Norwegian Institute of Technology, Trondheim, 1993.

    Google Scholar 

  25. H. Xiao, J. Thonstad, and S. Rolseth:Acta Chem. Scand. 1995, vol. 49, pp. 96–102.

    Article  CAS  Google Scholar 

  26. H. Xiao, Y.X. Liu, K.X. Huang, and J. Li: Central South University of Technology, Changsha, People’s Republic of China, unpublished research, 1986.

  27. D.H. DeYoung:Light Metals 1986, TMS-AIME, Warrendale, PA, 1986, pp. 299–307.

    Google Scholar 

  28. A. Sterten and O. Skar:Aluminium, 1988, vol. 64, pp. 1051–54.

    CAS  Google Scholar 

  29. I. Barin:Thermochemical Data of Pure Substances, VCH, Weinheim, 1989.

    Google Scholar 

  30. T.B. Reed:Free Energy of Formation of Binary Compounds, An Atlas of Charts for High-Temperature Chemical Calculations, Massachusetts Institute of Technology, Cambridge, MA, 1971.

    Google Scholar 

  31. E.W. Dewing:Metall. Trans. B. 1990, vol. 21B, pp. 285–94.

    Article  CAS  Google Scholar 

  32. E.W. Dewing:Can. Met. Q., 1974, vol. 13, pp. 607–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

H. XIAO, formerly with the Department of Electrochemistry, Norwegian Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Hovland, R., Rolseth, S. et al. Studies on the corrosion and the behavior of inert anodes in aluminum electrolysis. Metall Mater Trans B 27, 185–193 (1996). https://doi.org/10.1007/BF02915044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02915044

Keywords

Navigation