Skip to main content
Log in

Electrical conductivity of molten cryolite-based mixtures obtained with a tube-type cell made of pyrolytic boron nitride

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A pyrolytic boron nitride tube-type cell was used to measure the electrical conductivity for molten cryolite, for binary mixtures of cryolite with Al2O3, AlF3, CaF2, KF, Li3AlF6, and MgF2, and for ternary mixtures Na3AlF6-Al2O3-CaF2 (MgF2) and Na3AlF6-AlF3-KF (Li3AlF6). The cell constant was about 40 cm−t. The temperature and concentration dependence of the conductivity in the investigated concentration range was described by the equation

$$\begin{gathered} \kappa /S cm^{ - 1} = 7.22 exp\left( { - 1204.3/T} \right) - 2.53\left[ {Al_2 O_3 } \right] - 1.66\left[ {AlF_3 } \right] \hfill \\ - 0.76\left[ {CaF_2 } \right] - 0.206\left[ {KF} \right] + 0.97\left[ {Li_3 AlF_6 } \right] - 1.07\left[ {MgF_2 } \right] \hfill \\ - 1.80\left[ {Al_2 O_3 } \right]\left[ {CaF_2 } \right] - 2.59\left[ {Al_2 O_3 } \right]\left[ {MgF_2 } \right] \hfill \\ - 0.942\left[ {AlF_3 } \right]\left[ {Li_3 AlF_6 } \right] \hfill \\ \end{gathered} $$

whereT represents the temperature in Kelvin and the brackets represent the mole fractions of the additions. The standard deviation was found to be 0.026 S cm−1 (∼1 pct). For practical reasons, it is often desired to express composition in weight percent. In that case, it holds that

$$\begin{gathered} \ln \kappa = 1.977 - 0.0200\left[ {Al_2 O_3 } \right] - 0.0131\left[ {AlF_3 } \right] - 0.0060\left[ {CaF_2 } \right] \hfill \\ - 0.0106\left[ {MgF_2 } \right] - 0.0019\left[ {KF} \right] + 0.0121\left[ {LiF} \right] - 1204.3/T \hfill \\ \end{gathered} $$

whereT represents the temperature in Kelvin and the brackets denote the concentration of the additives in weight percent. However, in this case, the maximum relative error of the conductivity equation can reach up to 2.5 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, and J. Thonstad:Aluminum Electrolysis—Fundamentals of the Hall-Heroult Process, 2nd ed., Aluminium-Verlag, Dusseldorf, 1982.

    Google Scholar 

  2. J. Thonstad and A. Solheim:Aluminium, 1986, vol. 62, pp. 939–41.

    Google Scholar 

  3. K. Grjotheim, H. Kvande, and B.J. Welch:Light Metals, Proc. TMS-AIME, TMS-AIME, Warrendale, PA, 1986, pp. 417–23.

    Google Scholar 

  4. Å. Sterten, S. Rolseth, E. Skybakmoen, A. Solheim, and J. Thonstad:Light Metals, Proc. TMS-AIME, TMS-AIME, Warrendale, PA, 1988, pp. 663–70.

    Google Scholar 

  5. X. Wang, R.D. Peterson, and A.T. Tabereaux:Light Metals, Proc. TMS-AIME, TMS-AIME, Warrendale, PA, 1992, pp. 481–88.

    Google Scholar 

  6. P. Fellner, O. Kobbeltvedt, Å. Sterten, and J. Thonstad:Electrochim. Acta, 1993, vol. 38, pp. 589–92.

    Article  CAS  Google Scholar 

  7. X. Wang, R.D. Peterson, and A.T. Tabereaux:Light Metals, Proc. TMS-AIME, TMS-AIME, Warrendale, PA, 1993, pp. 247–55.

    Google Scholar 

  8. P. Fellner, S. Midtlyng, Å. Sterten, and J. Thonstad:J. Appl. Electrochem., 1993, vol. 23, pp. 78–81.

    Article  CAS  Google Scholar 

  9. K.B. Kim and D.R. Sadoway:J. Electrochem. Soc., 1992, vol. 139, pp. 1027–33.

    Article  CAS  Google Scholar 

  10. G.J. Hills and S. Djordjevic:Electrochim. Acta, 1968, vol. 13, pp. 1721–26.

    Article  CAS  Google Scholar 

  11. G. Choudhary:J. Electrochem. Soc., 1973, vol. 120, pp. 381–83.

    Article  CAS  Google Scholar 

  12. J. Thonstad, S. Jarek, T. Müftüoglu, P. Godet, and R. Ødegård:Proc. Int. Symp. on Reduction and Casting of Aluminum and Other Light Metals, Pergamon Press, New York, NY, 1987, pp. 219–28.

    Google Scholar 

  13. G.D. Robbins:J. Electrochem. Soc., 1969, vol. 116, pp. 813–17.

    Article  CAS  Google Scholar 

  14. R.P.T. Tomkins, G.J. Janz, and E. Andalaft:J. Electrochem. Soc., 1970, vol. 117, pp. 906–07.

    Article  CAS  Google Scholar 

  15. G.J. Janz:J. Phys. Chem. Ref. Data, 1988, Suppl. 2, vol. 17, p. 232.

    Google Scholar 

  16. P. Fellner, K. Grjotheim, and H. Kvande:J. Met., 1985, vol. 37, pp. 29–32.

    CAS  Google Scholar 

  17. J.D. Edwards, C.S. Taylor, L.A. Cosgrove, and A.S. Russell:J. Electrochem. Soc., 1953, vol. 100, pp. 508–12.

    Article  CAS  Google Scholar 

  18. K. Matiasovsky, M. Malinovsky, and S. Ordzovensky: J.Electrochem. Soc., 1964, vol. 111, pp. 973–76.

    Article  Google Scholar 

  19. E.W. Yim and M. Feinleib:J. Electrochem. Soc., 1957, vol. 104, pp. 622–26.

    Article  CAS  Google Scholar 

  20. G.A. Abramov, M.M. Vcyukov, I.P. Gupalo, A.A. Kostyukov, and L.N. Lozhkin:Teoreticheskie osnovy elektrometallurgii alyuminiya, Metallurgizdat, Moscow, 1953, pp. 158–75.

    Google Scholar 

  21. K. Matiasovsky and V. Danek: unpublished results, (cited in Reference 1.)

  22. G.J. Janz and R.P.T. Tomkins:Physical Properties Data Compilations Relevant to Energy Storage, IV. Molten Salts: Data on Additional Single and Multi-Component Salt Systems, U.S. Government Printing Office, Washington, DC, 1981.

    Google Scholar 

  23. R.D. Peterson:Proc. Electrolyte Workshop, Light Metal Production Group, Carnegie-Mellon University, Pittsburgh, PA, 1986.

    Google Scholar 

  24. M.A. Kuvakin, T.D. Vol’khina, and L.M. Kuvakina:Tsvetn. Met., 1971. vol. 44, pp. 33–34.

    CAS  Google Scholar 

  25. V. Danek, M. Malinovsky, and K. Matiasovsky:Chem. Zvesti. 1968, vol. 22, pp. 707–14.

    CAS  Google Scholar 

  26. G.A. Abramov, A.A. Kostyukov, and L.V. Nordvik:Tr. Leningrad Politekn. Inst., 1957, vol. 188, pp. 40–44.

    Google Scholar 

  27. A.I. Belyaev:Elektrolit alyuminievykh vann, Metallurgizdat, Moscow, 1953, p. 48.

    Google Scholar 

  28. E. Vatslavik and A.I. Belyaev.Zh. Neorgan. Khim., 1958, vol. 3, pp. 1044–47.

    CAS  Google Scholar 

  29. E. Skybakmoen, A. Solheim, and Å. Sterten:Light Metals, Proc. TMS-AIME, TMS-AIME, Warrendale, PA, 1990, pp. 317–23.

    Google Scholar 

  30. K. Grjotheim and B.J. Welch:Aluminium Smelter Technology, Aluminium-Verlag, Dusseldorf, 1980, p. 34.

    Google Scholar 

  31. R. Oblakowski:Rudy. Met. Niezel., 1987, vol. 32, pp. 379–82.

    CAS  Google Scholar 

  32. A. Vajna:Alluminio, 1950, vol. 19, pp. 215–24.

    Google Scholar 

  33. L. Wang, A.T. Tabereaux, and N.E. Richards:Light Metals, Proc. TMS-AIME, 1994, pp. 177–85.

  34. K. Itoh and E. Nakamura:Sumitomo Light Met. Tech. Rep., 1993, vol. 34, pp. 27–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiveš, J., Thonstad, J., Sterten, Å. et al. Electrical conductivity of molten cryolite-based mixtures obtained with a tube-type cell made of pyrolytic boron nitride. Metall Mater Trans B 27, 255–261 (1996). https://doi.org/10.1007/BF02915051

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02915051

Keywords

Navigation