Skip to main content
Log in

Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The elemental composition of 10 methanogenic species was determined by inductively coupled plasma emission spectrometry and by a C-H-N-analyzer. The 10 species were representative of all three orders of the methanogens and were cultivated under defined conditions. Special emphasis was given toMethanosarcina barkeri, represented by 5 strains and cultivated on various substrates. The following elements with the lowest and highest values in parentheses were determined: C (37–44%, w/w), H (5.5–6.5%), N (9.5–12,8%); Na (0.3–4.0%), K (0.13–5.0%), S (0.56–1.2%), P (0.5–2.8%), Ca (order I: 85–550 ppm; order II: 1000–4500 ppm), Mg (0.09–0.53%), Fe (0.07–0.28%), Ni (65–180 ppm), Co (10–120 ppm). Mo (10–70 ppm), Zn (50–630 ppm), Cu (<10–160 ppm), Mn (<5–25 ppm). The biggest variations were found with respect to N and K, which both seem to have important physiological functions. Although it is unknown whether zinc and copper are essential trace elements for methanogens, all investigated species contained remarkably high zinc contents, whereas copper seemed to be present only in some species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe,Microbiol. Rev. 43, 260 (1979).

    PubMed  CAS  Google Scholar 

  2. H. J. M. Bowen,Trace Elements in Biochemistry, Academic Press, New York, 1966.

    Google Scholar 

  3. G. Diekert, U. Konheiser, K. Piechulla, and R. K. Thauer,J. Bacteriol. 148, 459 (1981).

    PubMed  CAS  Google Scholar 

  4. A. A. Esener, J. A. Roels, and N. W. F. Kossen,Biotechnol. Bioeng. 24, 1445 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. E. M. Godsy,Appl. Environ. Microbiol. 39, 1074 (1980).

    PubMed  CAS  Google Scholar 

  6. E.-G. Graf and R. K. Thauer,FEBS Lett. 136, 165 (1981).

    Article  CAS  Google Scholar 

  7. D. Herbert, inMicrobial Reaction to Environment (11th Symp. Soc. General Microbiol.), Cambridge University Press, Cambridge, UK, 1961, pp. 391–416.

    Google Scholar 

  8. H. Hippe, D. Caspari, K. Fiebig, and G. Gottschalk,Proc. Natl. Acad. Sci. USA 76, 494 (1979).

    Article  PubMed  CAS  Google Scholar 

  9. T. J. Hutten, H. C. M. Bongaerts, C. van der Drift, and G. D. Vogels,Antonie van Leeuwenhoek 46, 601 (1980).

    Article  PubMed  CAS  Google Scholar 

  10. K. F. Jarrell and G. D. Sprott,Can. J. Microbiol. 27, 720 (1981).

    PubMed  CAS  Google Scholar 

  11. K. F. Jarrell, J. R. Colvin, and G. D. Sprott,J. Bacteriol. 149, 346 (1982).

    PubMed  CAS  Google Scholar 

  12. J. B. Jones and T. C. Stadtman,J. Bacteriol. 130, 1404 (1977).

    PubMed  CAS  Google Scholar 

  13. G. E. Jones, L. G. Royle, and L. Murray,Appl. Environ. Microbiol. 38, 800 (1979).

    PubMed  CAS  Google Scholar 

  14. O. Kandler and H. König,Arch. Microbiol. 118, 141 (1978).

    Article  PubMed  CAS  Google Scholar 

  15. T. W. Kirby, J. R. Lancaster, Jr., and I. Fridovich,Arch. Biochem. Biophys. 210 140 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. F.-C. Kung, J. Raymond, and D. A. Glaser,J. Bacteriol. 126, 1089 (1976).

    PubMed  CAS  Google Scholar 

  17. J. K. Lanyi,Biochem. Biophys. Acta 559, 377 (1979).

    PubMed  CAS  Google Scholar 

  18. R. A. Mah, M. R. Smith, and L. Baresi,Appl. Environ. Microbiol. 35, 1174 (1978).

    PubMed  CAS  Google Scholar 

  19. R. A. Mah and M. R. Smith, inThe Prokaryotes (M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, 1981, pp. 948–977.

    Google Scholar 

  20. G. B. Patel, and L. A. Roth,Can. J. Microbiol. 23, 893 (1977).

    PubMed  CAS  Google Scholar 

  21. G. B. Patel, A. W. Khan, and L. A. Roth,J. Appl. Microbiol. 45, 347 (1978).

    Article  CAS  Google Scholar 

  22. H.-J. Perski, J. Moll, and R. K. Thauer,Arch. Microbiol. 130, 319 (1981).

    Article  CAS  Google Scholar 

  23. H.-J. Perski, P. Schönheit, and R. K. Thauer,FEBS Lett. 143, 323 (1982).

    Article  CAS  Google Scholar 

  24. N. Pfennig and K. D. Lippert,Arch. Mikrobiol. 55, 245 (1966).

    Article  CAS  Google Scholar 

  25. P. H. Rönnow and L. A. H. Gunnarsson,FEMS Microbiol. Lett. 14, 311 (1982).

    Article  Google Scholar 

  26. P. A. Scherer and R. K. Thauer,Eur. J. Biochem. 85, 125 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. P. Scherer and H. Sahm, inProceedings of the 1st International Symposium on Anaerobic Digestion, Cardiff, 1979, Poster Papers (D. A. Stafford and B. I. Wheatley, eds.), A. D. Scientific Press, Cardiff, 1980, pp. 45–47.

    Google Scholar 

  28. P. Scherer and H. Sahm,Eur. J. Appl. Microbiol. Biotechnol. 12, 28 (1981).

    Article  CAS  Google Scholar 

  29. P. Scherer and H. Sahm,Acta Biotechnologica 1, 57 (1981).

    Article  Google Scholar 

  30. P. Scherer, M. Kluge, J. Klein, and H. Sahm,Biotechnol. Bioeng. 23, 1057 (1981).

    Article  CAS  Google Scholar 

  31. C. G. T. P. Schnellen, Thesis, Technical University of Delft, The Netherlands, (Rotterdam: De Maastad, publisher), 1947.

  32. P. Schönheit, J. Moll, and R. K. Thauer,Arch. Microbiol. 123, 105 (1979).

    Article  PubMed  Google Scholar 

  33. G. D. Sprott and K. F. Jarrell,Can. J. Microbiol. 27, 444 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. T. C. Stadtman, and B. A. Blaylock,Fed. Proc. 25, 1657 (1966).

    PubMed  CAS  Google Scholar 

  35. C. H. Suelter, inCRC Handbook of Microbiology, vol. 4, 2nd ed., A. I. Laskin and H. A. Lechevalier, eds., CRC Press, Boca Raton, Florida, 1982, pp. 553–564.

    Google Scholar 

  36. F. P. Takacs, T. I. Matula, and R. A. MacLeod,J. Bacteriol. 87, 510 (1964).

    PubMed  CAS  Google Scholar 

  37. G. D. Vogels, J. T. Keltjens, T. J. Hutten, and C. van der Drift,Zbl. Bakt. Hyg. I. Abt. Orig. C 3, 258 (1982).

    CAS  Google Scholar 

  38. W. B. Whitman, E. Ankwanda, and R. S. Wolfe,J. Bacteriol. 149, 852 (1982).

    PubMed  CAS  Google Scholar 

  39. R. J. P. Williams,Q. Rev. 24, 331 (1970).

    Article  CAS  Google Scholar 

  40. C. R. Woese,Sci. Amer. 244(6), 94 (1981).

    Article  Google Scholar 

  41. E. A. Wolin, M. J. Wolin, and R. S. Wolfe,J. Biol. Chem. 238, 2882 (1963).

    PubMed  CAS  Google Scholar 

  42. S. Yamazaki and L. Tsai,Fed. Proc. 39, p. 1698 (Abstr. 490) (1980).

    Google Scholar 

  43. S. Yamazaki and L. Tsai,J. Biol. Chem. 255, 6462 (1980).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, P., Lippert, H. & Wolff, G. Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biol Trace Elem Res 5, 149–163 (1983). https://doi.org/10.1007/BF02916619

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916619

Index Entries

Navigation