Skip to main content
Log in

Metabolic relevance of selenium in the insectCorcyra cephalonica

Uptake of75Se and subcellular distribution

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Requirement, uptake, and subcellular distribution of Na2 75SeO3 in the larvae of the insectC. cephalonica was investigated. That Se is well tolerated byC. cephalonica upto an added level of 2 ppm in the diet is suggested by the observed increase in body weight, total protein, and succinate dehydrogenase levels. Significant increases in the State 3 respiration ensued with Se supplementation up to 2 ppm in the mitochondrial oxidation of D-glycerol 1-phosphate, succinate and NADH, along with concomitant unaltered State 4 respiration, leading to enhanced RCR values. Maximal uptake of75Se was registered in the larvae maintained on basal diet when subjected to short-term exposure to 0.5 ppm75Se level. When exposure level was further increased up to 20 ppm, the observed decrease in the uptake of75Se suggested that Se status of larvae itself controlled the tissue uptake. Subcellular distribution pattern revealed maximal incorporation of75Se (cpm/g tissue) in the supernatant fraction, whereas, maximal specific75Se activity (cpm/mg protein) was associated with the mitochondrial fraction. Autoradiography of the soluble fractions indicated the presence of single selenoprotein in the larval group with short term 2 ppm75Se exposure. Inherent Se controls both the extent and the nature of distribution of mitochondrial75Se incorporation. Uptake of45Ca by the insect mitochondria was enhanced by dietary Se up to 2 ppm but was unaffected by addition ofin vitro 75Se in the medium. A more fundamental role for Se in the mitochondrial energy metabolism emerges from these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GSH-Px:

glutathione peroxidase

TEMED:

N, N, N′, N′-tetramethylenediamine

SDH:

succinate dehydrogenase

NADH:

nicotinamide adenine dinucleotide, reduced form

RCR:

respiratory control ratio

References

  1. K. Schwarz and C. M. Foltz,J. Am. Chem. Soc. 79, 3292 (1957).

    Article  CAS  Google Scholar 

  2. K. Schwarz,Fed. Proc. Fed. Am. Soc. Exp. Biol. 24, 58 (1975).

    Google Scholar 

  3. P. D. Whanger, P. H. Weswig, J. A. Schmitz and J. E. Oldfield,J. Nutr. 107, 1298 (1977).

    PubMed  CAS  Google Scholar 

  4. D. Medina, H. Lane, and C. J. Oborn,Cancer Lett. 15, 301 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. G. N. Schrauzer and D. Ishmael,Ann. Clin. Lab. Sci. 4, 411 (1974).

    Google Scholar 

  6. G. N. Schrauzer, D. A. White and C. J. Schneider,Bioinorg. Chem. 6, 265 (1976).

    Article  PubMed  CAS  Google Scholar 

  7. G. N. Schrauzer, J. E. McGinness, and K. Kuenn,Carcinogenesis 1, 199 (1980).

    Article  CAS  Google Scholar 

  8. R. F. Burk, R. Whitney, H. Frank and N. Pearson,J. Nutr. 95, 420 (1968).

    PubMed  CAS  Google Scholar 

  9. J. N. Thompson and M. L. Scott,J. Nutr. 97, 335 (1969).

    PubMed  CAS  Google Scholar 

  10. V. Narayanaswami, R. Padma Bai, Mary Babu and K. Lalitha,Biol. Trace Element. Res. 10, 79 (1986).

    Article  CAS  Google Scholar 

  11. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra,Science 179, 588 (1973).

    Article  PubMed  CAS  Google Scholar 

  12. O. A. Levander, D. P. DeLoach, V. C. Morris and P. B. MoserJ. Nutr. 113, 55 (1983).

    PubMed  CAS  Google Scholar 

  13. P. D. Whanger, N. D. Pedersen, and P. H. Weswig,Biochem. Biophys. Res. Commun. 53, 1031 (1973).

    Article  PubMed  CAS  Google Scholar 

  14. D. Behne, H. Hilmert, S. Scheid, H. Gessner and W. Elger,Biochim. Biophys. Acta. 966, 12 (1988).

    PubMed  CAS  Google Scholar 

  15. D. Behne, S. Scheid, A. Kyriakopoulos, and H. Hilmert,Biochim. Biophys. Acta. 1033, 219 (1990).

    PubMed  CAS  Google Scholar 

  16. T. C. Stadtman, inAnnu. Rev, Biochem. 59, 1990, pp. 111–127.

  17. J. Smith and A. Shrift,Comp. Biochem. Physiol. 63B, 39 (1979).

    CAS  Google Scholar 

  18. V. Narayanaswami, S. Sriman Narayanan, and K. Lalitha,J. Prot. Chem. 5, 4 (1986).

    Google Scholar 

  19. T. W. Simmons, I. S. Jamall, and R. A. Lockshin,FEBS Lett. 218, 251 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. S. Ahmad, M. A. Beilstein, and R. S. Pardini,Arch. Insect. Biochem. Biophys. 12, 31 (1989).

    Article  CAS  Google Scholar 

  21. T. W. Simmons, I. S. Jamall, and R. A. Lockshin,Comp. Biochem. Physiol. 94B, 323 (1989).

    CAS  Google Scholar 

  22. T. W. Simmons, I. S. Jamall, and R. A. Lockshin,Biochem. Biophys. Res. Commun. 165, 158 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. M. J. Ihnat,J. Assoc. Off. Anal. Chem. 57, 368 (1974).

    PubMed  CAS  Google Scholar 

  24. P. J. Blackshear, inMethods in Enzymology, vol. 104, W. B. Jakoby, ed., 1984, Academic, New York, pp. 237–255.

    Google Scholar 

  25. B. Chance and G. R. Williams,Nature 175, 1120 (1955).

    Article  PubMed  CAS  Google Scholar 

  26. E. C. Slater and W. D. Bonner. Jr.,Biochem. J. 52, 85 (1952).

    Google Scholar 

  27. A. L. Lehninger, C. S. Rossi, and J. W. Greenawalt,Biochem. Biophys. Res. Commun. 10, 444 (1963).

    Article  PubMed  CAS  Google Scholar 

  28. O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  29. B. Chance and B. Sacktor,Archs. Biochem. Biophys. 76, 509 (1958).

    Article  CAS  Google Scholar 

  30. S. G. Van den Berg and E. C. Slater,Biochem. J. 82, 362 (1962).

    Google Scholar 

  31. E. Stevenson,Biochem. J. 110, 105 (1968).

    PubMed  CAS  Google Scholar 

  32. R. G. Hansford,Biochem. J. 121, 771 (1971).

    PubMed  CAS  Google Scholar 

  33. E. Carafoli, R. G. Hansford, B. Sacktor, and A. L. Lehninger,J. Biol. Chem. 246, 964 (1971).

    PubMed  CAS  Google Scholar 

  34. E. Carafoli and A. L. Lehninger,Biochem. J. 122, 681 (1971).

    PubMed  CAS  Google Scholar 

  35. V. Narayanaswami and K. Lalitha,Biol. Trace Element. Res. 14, 87 (1987).

    Article  CAS  Google Scholar 

  36. R. T. Schimke,J. Biol. Chem. 239, 3808 (1964).

    PubMed  CAS  Google Scholar 

  37. R. T. Schimke, inAdvances in Enzymology, Vol. 37, A. Meister, ed., 1973, pp. 135–187.

  38. K. P. McConnell and D. M. Roth,Biochim. Biophys. Acta. 62, 503 (1962).

    Article  CAS  Google Scholar 

  39. H. E. Ganther and C. Concoran,Biochemistry 8, 2557 (1969).

    Article  PubMed  CAS  Google Scholar 

  40. K. J. Jenkins and M. Hidiroglow,Can. J. Biochem. 49, 468 (1971).

    Article  PubMed  CAS  Google Scholar 

  41. J. A. Fee and G. Palmer,Biochim. Biophys. Acta. 245, 175 (1971).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalitha, K., Rani, P. & Narayanaswami, V. Metabolic relevance of selenium in the insectCorcyra cephalonica . Biol Trace Elem Res 41, 217–233 (1994). https://doi.org/10.1007/BF02917424

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02917424

Index Entries

Navigation