Skip to main content
Log in

Biogenesis of indole compounds from D- and L-tryptophan in segments of etiolated seedlings of cabbage, maize and pea

Biogenese indolových sloučenin z D-a L-tryptofanu v úsecích z klíěních rostlin zelí, kukuřice a hrachu

  • Published:
Biologia Plantarum

Abstract

The metabolism of D-and L-tryptophan-3-14C (Try-3-14C) was studied and compared for three different plant species, cabbage, maize and pea. Apical segments of the seedlings were incubated for 6 hours in solutions of L- or D-Try-3-14C (1·5 μc/ml) with the addition of chloramphenicol (10−4g/ml) and then allowed to stand for another 20 hours in moist chambers. The methanolic extract of the tissues was analyzed radiochromatographically and by paper electrophoresis in combination with biological tests. Chloramphenicol in a concentration of 10−4 g/ml had little influence on the growth of the segments, though the antibiotic slightly decreased the uptake of L-Try, it did not prevent the formation of IAA from L-Try. In the segments of cabbage the following metabolites were formed from L-Try-3-14C (accounting for 52% of the activity of the chromatographically separated extract): glucobrassicin (26·0%), neoglucobrassicin (3·6%), a spot corresponding according to its Rf to 3-indolylacetamide (IAAmide—10·9%), β-glucoside of 3-indolylacetic acid (IAGluc—3·3%) and traces of 3-indolylacetonitrile (IAN), IAA and indole-3-carboxylic acid (total 5%). In maize segments L-Try-3-14C (53·0%) was transformed to several unidentified hydrophilic substances, one of them possessing auxin activity (total amount 6·9%), IAGlue (9·3%) accompanied by a small amount of tryptamine, a spot corresponding according to its Rf to IAAmide (16·5%), IAA and another unidentified hydrophobic substance (4·1%). In pea segments L-Try-3-14C (66·7%) gave a zone corresponding according to its Rf to IAAmide (20·0%), a substance similar to IAGluc (10·5%) and also hydrophobic substances (3·1%) containing traces of IAA, which could be demonstrated only by bioassay.

D-Try is metabolised in the three plants by the virtually exclusive formation of malonyltryptophan.

Abstract

Metabolismus D-a L-tryptofanu-3-14C (Try-3-14C) byl studován a vzájemně srovnáván u zelí, kukuřice a hrachu. Apikální segmenty z klíčních rostlin byly inkubovány po 6 hodin v roztocích L- nebo D-Try-3-14C (1,5μCi/ml) s přídavkem chloramfenikolu (10−4 g/ml) a dále ponechány 20 hodin ve vlhkých komůrkách. Metanolický extrakt tkání byl analyzován radiochromatograficky a papírovou elektroforesou, též v kombinaci s biologickými testy. Chloramfenikol v koncentraci 10−4 g/ml ovlivňoval růst segmentů jen málo, částečně snižoval příjem L-Try a nezabraňoval tvorbě IAA z L-Try. V segmentech rostlin zelí se z L-Try-3-14C (zbývá 52% aktivity v chromatograficky rozděleném extraktu) vznikly následující metabolity: glucobrasicin (26,0%), neoglucobrasicin (3,6%), skvrna odpovídající podle Rf indolylacetamidu (IAAmid—10,9%), β-glukosid kyseliny indolyloctové (IAGluc—3,3%), konečně stopy β-indolylacetonitrilu (IAN), IAA a kyseliny β-indolylkarbonové (celkem 5%). V segmentech kukuřice se z L-Try-3-14C (53%), vytvořily blíže neidentifikované hydrofilní filní látky, z nichž jedna měla auxinovou aktivitu (6,9%), dále IAGluc (9,3%) doprovázen v zóně malým kvantem tryptaminu (TryNH2) skvrna odpovídající podle Rf IAAmidu (16,5%), IAA a další neidentifikovaná hydrofobní látka (dohromady 4,1%). V segmentech hrachu se z L-Try-3-14C (66,7%) vytvořily skvrny odpovídající podle Rf IAAmidu (20,0%), látka podobná IAGluc (10,5%), konečně hydrofobní látky (3,1%) obsahující stopy IAA, kterou bylo možno určit pouze biologickou cestou.

D-Try je ve všech třech rostlinách metabolizován prakticky pouze na malonyltryptofan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, W. A., Good, N. E.: The formation of indoleacetylaspartic acid in pea seedlings.— Plant Physiol.30: 380–382, 1955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davies, D. D., Giovanelli, J., Ap Rees, T.: Plant Biochemistry. Davis Comp., Philadelphia, pp. 396–397, 1964.

    Google Scholar 

  • Delmer, D. P., Mills, S. E.: Tryptophan biosynthesis in cell cultures ofNicotiana tabacum.— Plant Physiol.43: 81–87, 1968.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gmelin, R., Virtanen, A. I.: Glucobrassicin, der Prekursor von SCN, 3-indolylacetonitril und Ascorbigen inBrassica oleracea species.—Ann. Acad. Sci. Fennicae, Ser. A., II. Chemica: 1–24, 1961.

  • Gmelin, R., Virtanen, A. I.: Neoglucobrassicin, ein zweiter SCN-Prekursor vom Indoltyp inBrassica-Arten.—Acta chemica Scand.16: 1378–1384, 1962.

    Article  CAS  Google Scholar 

  • Good, N. E., Andreae, W. A.: Malonyltryptophan in higher plants.—Plant Physiol.32: 561–566, 1957.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Good, N. E., Andreae, W. A., vanYsselstein, M. W. H.: Studies on 3-indoleacetic acid metabolism. II. Some products of the metabolism of endogenous indoleacetic acid in plant tissues.—Plant Physiol.31: 231–235, 1956.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon, S. A.: Occurence, formation and inactivation of auxins.—Ann. Rev. Plant Physiol.5: 341–378, 1954.

    Article  CAS  Google Scholar 

  • Gordon, S. A.: The biogenesis of auxin.—In:Ruhland, W. (ed.): Handbuch der Pflanzenphysiol vol. 14, Springer Verlag Berlin, pp. 620–646, 1961.

    Google Scholar 

  • Gordon, S. A., Paleg, L. C.: Formation of auxin from tryptophan through action of polyphenols.—Plant Physiol.36: 838–845, 1961.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofinger, M., Gaspar, T.: Tryptamine catabolism by a“Vicia lens” roots extract.—Arch. intern. Physiol. Bioch.76: 376–377, 1968.

    Google Scholar 

  • Klämbt, H.: Wachstumsinduktion und Wuchsstoffmetabolismus in Weizen-Koleoptilzylinder-II. Stoffwechselprodukte der Indol-3-Essigsäure und der Benzoesäure.—Planta56: 618–631, 1961.

    Article  Google Scholar 

  • Klämbt, H.: Wachstumsinduktion und Wuchsstoffmetabolismus im Weizenkoleoptilzylinder. III. Stoffwechselprodukte der Naphtyl-1-Essigsäure und 2,4,Di-Chlorphenoxyessigsäure und der Vergleich mit jenen der Indol-3-Essigsäure und Benzoesäure.—Planta57: 399–453, 1961.

    Article  Google Scholar 

  • Klämbt, H. D.: Pyridoxalphosphat—abhängige oxidative Decarboxylierung von L-Tryptophan durch Meerrettich-Peroxydase.—Z. Naturforsch.19b: 449–450, 1964.

    Google Scholar 

  • Kutáček, M.: Indolderivate in Pflanzen der FamilieBrassicaceae.—Wissenschaftl. Z. Univ. Rostock16: 417–426, 1967.

    Google Scholar 

  • Kutáček, M., Bulgakov, R., Oplištilová, K.: On the auxin activity of glucobrassicin in biological tests.—Biol. Plant.8: 252–255, 1966.

    Article  Google Scholar 

  • Kutáček, M., Galston, A. W.: The metabolism of14C-labelled isatin and anthranilate inPisum stem sections.—Plant Physiol.43: 1793–1798, 1968.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kutáček, M. Nováková, J., Valenta, M.: Papierchromatographische und Extraktions-Methoden für Indol Derivate.—Flora153: 54–72, 1963.

    Google Scholar 

  • Kutáček, M., Oplištilová, K.: O rasprostraneniji gljukobrassicina, prekursora indolilacetonitrila, askorbigena i rodanidnych ijonov v rastenijach semejstvaBrassicaceae.—Fiziol. Rast.11: 867–870, 1964.

    Google Scholar 

  • Kutáček, M., Procházka, Ž.: Méthodes de détermination et d’isolement des composés indoliques chez les Crucifères. In: Régulateurs naturels de la croissance végétale.—C.N.R.S., Paris, pp. 445–456, 1964.

    Google Scholar 

  • Kutáček, M., Procházka, Ž., VereŠ, K.: Biogenesis of glucobrassicin, thein vitro precursor of ascorbigen.—Nature194: 393–394, 1962.

    Article  PubMed  Google Scholar 

  • Kutáček, M., Rokosová, K., Řetovský, R.: A study of metabolism of exogenous tryptophan and β-indolylacetic acid in extirpated wheat embryos.—Biol. Plant.1: 54–62, 1959.

    Article  Google Scholar 

  • Larsen, P.: Formation, occurrence and inactivation of growth substances.—Ann. Rev. Plant Physiol.2: 169–198, 1951.

    Article  CAS  Google Scholar 

  • Libbert, E., Wichner, S., Schiewer, U., Risch, H., Kaiser, W.: The influence of epiphytic bacteria on auxin metabolism.—Planta68: 327–334, 1966.

    Article  CAS  PubMed  Google Scholar 

  • Nitsch, J. P., Nitsch, C.: Studies on the growth of coleoptiles and first internode sections. A new sensitive straight-growth test for auxins.—Plant Physiol.31: 94–111, 1956.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Procházka, Ž., Kořístek, S.: O vázané formě kyseliny askorbové III. Studium některých vlastností askorbigenu pomocí papírové chromatografie (in Czech).—Chem. Listy45: 415–419, 1951.

    Google Scholar 

  • Procházka, Ž., Šanda, V.: On the bound form of ascorbic acid. XII. Isolation of pure ascorbigen and some other indole derivatives from Savoy cabbage.—Collection czechoslov. Chem. Commun.25: 270, 1960.

    Article  Google Scholar 

  • Riddle, V. M., Mazelis, M.: A role for peroxidase in biosynthesis of auxin.—Nature202: 391–392, 1964.

    Article  CAS  PubMed  Google Scholar 

  • Riddle, V. M., Mazelis, M.: Conversion of tryptophan to indoleacetamide and further conversion to indoleacetic acid by plant preparations.—Plant Physiol40: 481–484, 1965.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schraudolf, H.: Zur Verbreitung von Glucobrassicin und Neoglucobrassicin in höheren Pflanzen.—Experientia21: 520–522, 1965.

    Article  CAS  Google Scholar 

  • Schraudolf, H., Bergmann, F.: Der Stoffwechsel von Indolderivaten inSinapis alba L. Untersuchungen zu Biogenese und Umsetzung von Indolglucosinolaten mit Hilfe von ringmarkiertem C14-Tryptophan und S35 Sulfat.—Planta67: 75–95, 1965.

    Article  CAS  Google Scholar 

  • Thimann, K. V.: Plant growth substances: past, present and future.—Ann. Rev. Plant Physiol.14: 1–18, 1963.

    Article  CAS  Google Scholar 

  • Valdovinos, J. G., Perley, J. E.: Metabolism of tryptophan in petioles ofColeus.—Plant Physiol.41: 1632–1636, 1966.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veen, H.: Transport immobilisation and localization of naphtylacetic acid-1-14C inColeus explantates.—Acta bot. neerl15: 419–433, 1966.

    Article  CAS  Google Scholar 

  • Whitehouse, R. L., Zalik, S.: Translocation of indole-3-acetic acid-1-14C and tryptophan-1-14C in seedlings ofPhaseolus coccineus L. andZea mays L.—Plant Physiol.42: 1363–1372, 1967.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wightman, F.: Metabolism and biosynthesis of 3-indoleacetic acid and related indole compounds in plants.—Can. J. Bot.40: 689–718, 1962.

    Article  CAS  Google Scholar 

  • Wightman, F., Cohen, D.: Intermediary steps in the enzymatic conversion of tryptophan to IAA in cell-free systems from higher plants.—In:Wightman, F., Setterfield, G. (eds.): Biochemistry and Physiology of Plant Growth Substances.—Runge Press, Ottawa, pp. 273–288, 1968.

    Google Scholar 

  • Zenk, M. H.: 1-(indole-3-acetyl)-β-D-glucose, a new compound in the metabolism of indole-3-acetic acid in plants.—Nature191: 493–494, 1961.

    Article  CAS  PubMed  Google Scholar 

  • Zenk, M. H.: Aufnahme und Stoffwechsel von α-Naphtyl-Essigsäure durch Erbsenepicotyle.— Planta58: 75–94, 1962.

    Article  CAS  Google Scholar 

  • Zenk, M. H.: Zur Frage der Stoffwechselprodukte der Benzoesäure in höheren Pflanzen.— Planta58: 668–672, 1962.

    Article  CAS  Google Scholar 

  • Zenk, M. H., Scherf, H.: D-Tryptophan in höheren Pflanzen.—Biochim. biophys. Acta71: 737–738, 1963.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutáček, M., Kefeli, V. Biogenesis of indole compounds from D- and L-tryptophan in segments of etiolated seedlings of cabbage, maize and pea. Biol Plant 12, 145–158 (1970). https://doi.org/10.1007/BF02920863

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920863

Keywords

Navigation