Skip to main content
Log in

Entropy and reduced distance for Ricci expanders

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Perelman has discovered two integral quantities, the shrinker entropy W and the (backward) reduced volume, that are monotone under the Ricci flow ∂gij/∂t = − 2Rij and constant on shrinking solitons. Tweaking some signs, we find similar formulae corresponding to the expanding case. The expanding entropy W+ is monotone on any compact Ricci flow and constant precisely on expanders; as in Perelman, it follows from a differential inequality for a Harnack-like quantity for the conjugate heat equation, and leads to functionals μ+ and v+. The forward reduced volume θ+ is monotone in general and constant exactly on expanders.

A natural conjecture asserts that g(t)/t converges as t → ∞ to a negative Einstein manifold in some weak sense (in particular ignoring collapsing parts). If the limit is known a-priori to be smooth and compact, this statement follows easily from any monotone quantity that is constant on expanders; these include vol(g)/tn/2 (Hamilton) and -λ (Perelman), as well as our new quantities. In general, we show that, if vol(g) grows like tn/2(maximal volume growth) then W+, θ+ and -λ remain bounded (in their appropriate ways) for all time. We attempt a sharp formulation of the conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M. T. The L2 structure of moduli spaces of Einstein metrics on 4-manifolds,Geom. Funct. Anal. 2, 29–89, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  2. Angenent, S. B., Chopp, D., and Ilmanen, T. A computed example of nonuniqueness of mean curvature flow in ℝ3,Comm. Part. Diff. Eq. 20, 1937–1958, (1995).

    Article  MathSciNet  Google Scholar 

  3. Barnes, I. and Ilmanen, T. unpublished computer study, (1994).

  4. Cao, H.-D., Hamilton, R. S., and Ilmanen, T. Gaussian densities and stability for some Ricci solitons, math.DG/ 0404165, April (2004).

  5. Cheeger, J. and Colding, T. H. On the structure of spaces with Ricci curvature bounded below. I,J. Differential Geom. 46, 406–480, (1997).

    MathSciNet  MATH  Google Scholar 

  6. Cheeger, J. and Tian, G. Collapsing and noncollapsing of Einstein 4-manifolds, in preparation, (2004).

  7. Chow, B., Chu, S.-C., Lu, P., and Ni, L. Notes on Perelman’s articles on Ricci flow.

  8. Chow, B. and Knopf, D. The Ricci flow, vol. I: An introduction, Math. Surveys and Monographs,AMS 110, (2004).

  9. Daskalopoulos, P. Eternal solutions to the Ricci flow on ℝ2, preprint, (2004).

  10. Feldman, M., Ilmanen, T., and Knopf, D. Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons,J. Differential Geom. 65, 169–209,(2003).

    MathSciNet  MATH  Google Scholar 

  11. Hamilton, R. S. The Harnack estimate for the Ricci flow,J. Differential Geom. 37, 225–243, (1993).

    MathSciNet  MATH  Google Scholar 

  12. Hamilton, R. S. A compactness property for solutions of the Ricci flow,Amer. J. Math. 117, 545–572, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamilton, R. S. Non-singular solutions of Ricci flow on three-manifolds,Comm. Anal. Geom. 7, 695–729, (1999).

    MathSciNet  MATH  Google Scholar 

  14. Hong, M.-C. and Tian, G. Asymptotical behavior of the Yang-Mills flow and singular Yang-Mills connections,Math. Ann., to appear.

  15. Huisken, G. Asymptotic behavior for singularities of the mean curvature flow,J. Differential Geom. 31, 285–299, (1990).

    MathSciNet  MATH  Google Scholar 

  16. Ilmanen, T. Elliptic regularization and partial regularity for motion by mean curvature,Mem. Amer. Math. Soc. #520, (1994).

  17. Ilmanen, T. Singularities of mean curvature flow of surfaces, preprint, http://www.math.ethz.ch/~ ilmanen/papers/pub.htm, (1995).

  18. Ilmanen, T. Lectures on mean curvature flow and related equations, Lecture Notes, ICTP, Trieste, http:// www.math.ethz.ch/~ilmanen/papers/pub.html,(1995).

  19. Ilmanen, T. Notes on mean curvature flow, in preparation,(2004).

  20. Li, P. and Yau, S.-T. On the parabolic kernel of the Schrödinger operator,Acta Math. 156, 153–201, (1986).

    Article  MathSciNet  Google Scholar 

  21. Nash, J. Continuity of solutions of parabolic and elliptic equations,Amer. J. Math. 80, 935–954, (1958).

    Article  MathSciNet  Google Scholar 

  22. Ni, L. The entropy formula for linear heat equation,J. Geom. Anal. 14(1), 87–100, (2004).

    MathSciNet  MATH  Google Scholar 

  23. Ni, L. Addenda to The entropy formula for linear heat equation,J. Geom. Anal. 14(2), 369–374, (2004).

    MathSciNet  MATH  Google Scholar 

  24. Ni, L. A new matrix Li-Yau-Hamilton inequality for Kahler-Ricci flow, submitted.

  25. Perelman, G. The entropy formula for the Ricci flow and its geometric applications, math.DG/ 0211159, November (2002).

  26. Perelman, G. Ricci flow with surgery on three-manifolds, math.DG/0303109, March (2003).

  27. Sesum, N. Limiting behavior of the Ricci flow, preprint, (2004).

  28. Uhlenbeck, K. Removable singularities in Yang-Mills fields,Comm. Math. Phys. 83, 11–29, (1982).

    Article  MathSciNet  MATH  Google Scholar 

  29. Weinkove, B. A complex Frobenuis theorem, multiplier ideal sheaves and Hermitian-Einstein metrics on stable bundles, preprint, (2003).

  30. White, B. personal communication, (2000).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Peter Li

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, M., Ilmanen, T. & Ni, L. Entropy and reduced distance for Ricci expanders. J Geom Anal 15, 49–62 (2005). https://doi.org/10.1007/BF02921858

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921858

Math Subject Classifications

Key Words and Phrases

Navigation