Skip to main content
Log in

The construction of single wavelets in d-dimensions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Sets K in d-dimensional Euclidean space are constructed with the property that the inverse Fourier transform of the characteristic function 1 K is a single dyadic orthonormal wavelet. The construction is characterized by its generality in the procedure, by its computational implementation, and by its simplicity. The general case in which the inverse Fourier transforms of the characteristic functions 1K 1, ..., 1K L are a family of orthonormal wavelets is treated in [27].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher, P. Solutions of two problems on wavelets,The Journal of Geometric Analysis,5, 181–236, (1995).

    MathSciNet  MATH  Google Scholar 

  2. Baggett, I., Carey, A., Moran, W., and Ohring, P. General existence theorems for orthonormal wavelets, an abstract approach,Publ. RIMS, Kyoto Univ.,31, 95–111, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedetto, J.J.Harmonic Analysis and Applications, CRC Press LLC, Boca Raton, FL, 1997.

    Google Scholar 

  4. Benedetto, J.J. Frames sampling, and seizure prediction, in Lau, K.-S., Ed.,Advances in Wavelets, Springer-Verlag, New York, (1998).

    Google Scholar 

  5. Benedetto, J.J. and Leon, M. The construction of multiple dyadic minimally supported frequency wavelets on ℝd,AMS Contemporary Math., 247, (1999).

  6. Baggett, I., Medina, H., and Merril, K. Generalized multiresolution analysis, and a construction procedure for all wavelet sets in ℝn,J. Fourier Analysis and Applications, 2000. To appear.

  7. Benedetto, J.J. and Walnut, D.F. Gabor frames forL 2 and related spaces, in Benedetto, J.J. and Frazier, M.W., Eds.,Wavelets: Mathematics and Applications, 97–162, CRC Press LLC, Boca Raton, FL, 1994.

    Google Scholar 

  8. Calogero, A. Wavelets on general lattices, associated with general expanding maps of ℝn,AMS Research Announcements, (1999).

  9. Cohen, A. and Daubechies, I. Non-separable bidimensional wavelet bases,Revista Matematica Ibero-Americana,9, 5–137, (1993).

    MathSciNet  Google Scholar 

  10. Coifman, R.R. and Weiss, G. Review of “Littlewood-Paley and Multiplier Theory,”Bull. Am. Math. Soc.,84, 242–250, (1978).

    Article  MathSciNet  Google Scholar 

  11. Daubechies, I.Ten Lectures em Wavelets, CBMS-NSF Series in Applied Math. 61. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.

    Google Scholar 

  12. Dai, X. and Larson, D.R. Wandering vectors for unitary systems and orthogonal wavelets,Memoirs Am. Math. Soc., Providence, RI, (1998).

  13. Dai, X., Larson, D.R., and Speegle, D. Wavelets sets in ℝn,J. Fourier Analysis and Aplications,3, 451–456, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  14. Dai, X., Larson, D.R., and Speegle, D. Wavelets sets in ℝn, II,AMS Contemporary Math.,216, 15–40, (1998).

    MathSciNet  Google Scholar 

  15. Edwards, R.E. and Gaudry, G.I.Littlewood-Paley and Multiplier Theory, Springer-Verlag, New York, (1977).

    Google Scholar 

  16. Frazier, M.W., Garrigós, G., Wang, K., and Weiss, G. A characterization of functions that generate wavelet and related expansion,J. Fourier Analysis and Applications, Special Issue Dedicated to M. De Guzmán. El Escorial 1996,3, 883–906, (1997).

    MATH  Google Scholar 

  17. Frazier, M.W., Jawerth, B., and Weiss, G.Littlewood-Paley Theory and the Study of Function Spaces, CBMS-NSF Series in Math. 79, Providence, RI, 1991.

  18. Fang, X. and Wang, X. Construction of minimally-supported-frequency wavelets,J. Fourier Analysis and Applications,2, 315–327, (1996).

    MathSciNet  MATH  Google Scholar 

  19. Gu, Q. and Han, D. On multiresolution analysis (MRA) wavelets in ℝn, 1999, preprint

  20. Gröchenig, K.-H. and Madych, W.R. Multiresolution Analysis, Haar bases, and self-similar tilings of ℝd,IEEE Trans. Inf. Theory,38(2), 556–568, (1992).

    Article  Google Scholar 

  21. Gripenberg, G. A necessary and sufficient condition for the existence of a father wavelet,Studia Math.,114, 207–226, (1995).

    MathSciNet  MATH  Google Scholar 

  22. Hernández, E. and Weiss, G.A First Course in Wavelets, CRC Press LLC, Boca Raton, FL, 1996.

    Google Scholar 

  23. Hernández, E., Wang, X., and Weiss, G. Smoothing minimally supported frequency wavelets, Part I,J. Fourier Analysis and Applications,2, 329–340, (1996).

    MATH  Google Scholar 

  24. Hernández, E., Wang, X., and Weiss, G. Smoothing minimally supported frequency (MSF) wavelets, Part II,J. Fourier Analysis and Applications,3, 23–41, (1997).

    Article  MATH  Google Scholar 

  25. Kolmogoroff, A. Une contribution à l’étude de la convergence des séries de Fourier,Fund. Math.,5, 96–97, (1924).

    Google Scholar 

  26. Kovačević, J. and Vetterli, M. Nonseparable multidimensional perfect reconstruction filter banks and wavelets bases for ℝn,IEEE Trans. Inf. Theory,38(2), 533–555, (1992).

    Article  Google Scholar 

  27. Leon, M.On minimally supported frequency wavelets, Ph.D. Thesis, University of Maryland, 1999.

  28. Littlewood, J.E. and Paley, R.E.A.C. Theorems on Fourier series and power series,J. London Math. Soc.,6, 230–233, (1931).

    Article  MATH  Google Scholar 

  29. Littlewood, J.E. and Paley, R.E.A.C. Theorems on Fourier series and power series III,Proc. London Math. Soc.,43, 105–126, (1937).

    Article  MATH  Google Scholar 

  30. Lagarias, J.C. and Wang, Y. Integral self-affine tiles in ℝn, Part II; Lattice tilings,J. Fourier Analysis and Applications,3, 83–102, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  31. Madych, W.R. Some elementary properties of multiresolution analysis ofL 2(ℝn), in Chui, C.K., Ed.,Wavelets: A Tutorial in Theory and Applications, 259–294, Academic Press, Inc, 1992.

  32. Meyer, Y. Ondelettes, fonctions splines, et analyses graduées. Technical report, University of Torino 1986 and Rapport CEREMADE 8703 (1987), 1986.

  33. Meyer, Y.Wavelets and Operators, Cambridge University Press, 1992. Translated from the 1990 French Edition by D.H. Salinger.

  34. Stein, E.M.Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

  35. Stein, E.M.Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton University Press, 1970.

  36. Strichartz, R.S. Construction of orthonormal wavelets, in Benedetto, J.J. and Frazier, M.W., Eds.,Wavelets: Mathematics and Applications, 23–50, CRC Press LLC, Boca Raton, FL, 1994.

    Google Scholar 

  37. Stein, E.M. and Weiss, G.Introduction to Fourier Analysis on Euclidean Spaces, Princeton mathematical series, 32. Princeton University Press, Princeton, NJ, 1971.

    MATH  Google Scholar 

  38. Soardi, P. and Weiland, D. Single wavelets in n-dimensions,J. Fourier Analysis and Applications,4, 299–315, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, X.The study of wavelets from the properties of their Fourier transform, Ph.D. Thesis, Washington University in St. Louis, 1995.

  40. Zakharov, V. Nonseparable multidimensional Littlewood-Paley like wavelet bases, 1996, preprint.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Benedetto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, J.J., Leon, M. The construction of single wavelets in d-dimensions. J Geom Anal 11, 1–15 (2001). https://doi.org/10.1007/BF02921951

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921951

Math Subject Classifications

Key Words and Phrases

Navigation