Skip to main content
Log in

A uniformization theorem for complete Kähler manifolds with positive holomorphic bisectional curvature

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In the theory of complex geometry, one of the famous problems is the following conjecture of Greene and Wu [13] and Yau [33]: Suppose M is a complete noncompact Kähler manifold with positive holomorphic bisectional curvature; then M is biholomorphic to ℂn. In this paper we use the Ricci flow evolution equation to study this conjecture and prove the result that if M has bounded and positive curvature such that the L’ norm of the curvature on geodesic ball is small enough, then the conjecture is true. Our result gives an improvement on the results of Mok et al. [21] and Mok [22].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bando, S. On three-dimensional compact Kähler manifolds of nonnegative bisectional curvature.J. Differential Geometry,19, 283–297, (1984).

    MathSciNet  MATH  Google Scholar 

  2. Berger, M. Sur les groupes d’holonomie homogénes des variétés a connexion affine et des variétés riemanniennes,Bull. Soc. Math. France,83, 279–330, (1955).

    MathSciNet  MATH  Google Scholar 

  3. Bishop, R.L. and Crittenden, R.J.Geometry of Manifolds, Academic Press, (1964).

  4. Calabi, E. The space of Kähler metrics,Proc. Internat. Congress Math. Amsterdam. 2, 206–207, (1954).

    Google Scholar 

  5. Calabi, E. Improper affine hypersphere and generalization of a theorem of K. Jörgens,Mich. Math. J.,5, 105–126, (1958).

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, H.D. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds,Invent. Math.,81, 359–372, (1985).

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheeger, J. and Ebin, D.Comparison Theorems in Riemannian Geometry, North-Holland Math. Library, North-Holland, Amsterdam, (1975).

    MATH  Google Scholar 

  8. Gromoll, D. and Meyer, W. On complete open manifolds of positive curvature,Ann. of Math.,90, 75–90, (1969).

    Article  MathSciNet  Google Scholar 

  9. Cheng, S.Y. and Yau, S.T. Differential equations on Riemannian manifolds and their geometric applications,Comm. Pure Appl. Math.,28, 333–354, (1975).

    Article  MathSciNet  MATH  Google Scholar 

  10. Croke, C. Some isoperimetric inequalities and consequences,Ann. Scient. Ec. Norm. Sup.,13, (1980).

  11. De Turck, D.M. Deforming metrics in direction of their Ricci tensors,J. Differential Geometry,18, 157–162, (1983).

    Google Scholar 

  12. Donnelly, H. Bounded harmonic functions and positive Ricci curvature,Math. Z,191, 559–565, (1986).

    Article  MathSciNet  MATH  Google Scholar 

  13. Greene, R.E. and Wu, H.Analysis on Noncompact Kähler Manifolds, Proc. Symp. Pure Math.,30, AMS, (1977).

  14. Greene, R.E. and Wu, H. C-convex functions and manifolds of positive curvature,Acta Math.,137, 209–245, (1976).

    Article  MathSciNet  Google Scholar 

  15. Greene, R.E. and Wu, H.Function Theory on Manifolds which Possess a Pole, Lecture Notes in Math.,669, Springer-Verlag, Berlin-Heidelberg-New York, (1979).

    Google Scholar 

  16. Howard, A., Smyth, B., and Wu, H. On compact Kähler manifolds of nonnegative bisectional curvature, I,Acta Math.,147, 51–56, (1981).

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamilton, R.S. Three-manifolds with positive Ricci curvature,J. Differential Geometry,17, 255–306, (1982).

    MathSciNet  MATH  Google Scholar 

  18. Hamilton, R.S. Four-manifolds with positive curvature operator,J. Differential Geometry,24, 153–179, (1986).

    MathSciNet  MATH  Google Scholar 

  19. Huisken, G. Ricci deformation of the metric on a Riemannian manifold,J. Differential Geometry,21, 47–62, (1985).

    MathSciNet  MATH  Google Scholar 

  20. Li, P. and Yau, S.T. On the parabolic kernel of the Schrödinger operator,Acta Math.,156, 153–201, (1986).

    Article  MathSciNet  Google Scholar 

  21. Mok, N., Siu, Y.T., and Yau, S.T. The Poincaré-Lelong equation on complete Kähler manifolds,Comp. Math.,44, 183–218,(1981).

    MathSciNet  Google Scholar 

  22. Mok, N. An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties,Bull. Soc. Math. France,112, 197–258, (1984).

    MathSciNet  MATH  Google Scholar 

  23. Mok, N. The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature,J. Differential Geometry,27, 179–214, (1988).

    MathSciNet  MATH  Google Scholar 

  24. Moser, J. On Harnack’s theorem for elliptic differential equations,Comm. Pure and Appl. Math.,14, 577–591, (1961).

    Article  MathSciNet  MATH  Google Scholar 

  25. Protter, M.H. and Weinberger, H.F.Maximum Principle in Differential Equations, Prentice-Hall, NJ, (1967).

    Google Scholar 

  26. Shi, W.X. Deforming the metric on complete Riemannian manifolds,J. Differential Geometry,30, 223–301, (1989).

    MATH  Google Scholar 

  27. Shi, W.X. Ricci deformation of the metric on complete noncompact Riemannian manifolds,J. Differential Geometry,30, 303–394, (1989).

    MATH  Google Scholar 

  28. Shi, W.X. Complete noncompact three-manifolds with nonnegative Ricci curvature,J. Differential Geometry,29, 353–360, (1989).

    MATH  Google Scholar 

  29. Shi, W.X. Ricci deformation of the metric on complete noncompact Kähler manifolds, Ph.D. Thesis, Harvard University, (1990).

  30. Shi, W.X. Complete noncompact Kähler manifolds with positive holomorphic bisectional curvature,Bull. of the American Mathematical Society,23, 437–440, (1990).

    Article  MATH  Google Scholar 

  31. Schoen, R. and Yau, S.T. Complete three dimensional manifolds with positive Ricci curvature and scalar curvature, InSeminar on Differential Geometry, 209–228, Princeton University Press, Princeton, NJ, (1982).

    Google Scholar 

  32. Simons, J. On the transitivity of holnomy systems,Ann. of Math.,76, 213–234, (1962).

    Article  MathSciNet  Google Scholar 

  33. Yau, S.T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I,Comm. Pure and Appl. Math.,31, 339–411, (1978).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, WX. A uniformization theorem for complete Kähler manifolds with positive holomorphic bisectional curvature. J Geom Anal 8, 117–142 (1998). https://doi.org/10.1007/BF02922111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922111

Math Subject Classifications

Key Words and Phrases

Navigation